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Abstract. The universal abelian, band, and semilattice compactifications of a semitopo-
logical semigroup are characterized in terms of three function algebras. Some relationships
among these function algebras and some well-known ones, from the universal compacti-
fication point of view, are also discussed.
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1. Introduction. The notion of semigroup compactification has been produced in
several principal ways, in whose main approach the Gelfand-Naimark theory of com-
mutative C∗-algebras is employed. In fact, the spectrum of every m-admissible al-
gebra of functions is a semigroup compactification. Moreover, some of these com-
pactifications enjoy a universal property P . For instance, De Leeuw and Glicksberg
in their influential paper [2], characterized the universal property of (weakly) almost
periodic compactification. The existence of the universal P -compactification (using
the subdirect product methods) for a broad variety of properties P , is guaranteed by
Junghenn and Pandian [7]. The construction of some of the better known universal
P -compactifications in terms of m-admissible algebras of functions are collected in
Berglund et al. [1], which is our ground reference. The universal right simple, left sim-
ple, and group compactifications are characterized in terms of some types of distal
functions [6]. In two recent papers [9, 10], Pandian has examined the universal map-
ping property of generalized distal, and quasiminimal distal functions. Also, in an
earlier paper [3], we have characterized the universal nilpotent group compactifica-
tion. The present paper deals with the construction of three m-admissible algebras
AB, BD, and SL, which characterize the universal abelian, band, and semilattice com-
pactifications of a semitopological semigroup.

2. Preliminaries. For background and notations we follow Berglund et al. [1] as
much as possible. In what follows, S is a semitopological semigroup unless otherwise
stipulated. A (semigroup) compactification of S is a pair (ψ,X), where X is compact,
Hausdorff, right topological semigroup and ψ : S �→ X is a continuous homomor-
phism with dense image such that, for all s ∈ S, the mapping x � �→ψ(s)x : X �→ X is
continuous.
The C∗-algebra of all continuous bounded complex-valued functions on a topolog-

ical space Y is denoted by C(Y). For C(S) left and right translations, Ls and Rt , are
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defined for all s,t ∈ S by (Lsf )(t) = f(st) = (Rtf )(s), f ∈ C(S). A left translation
invariant C∗-subalgebra F of C(S) (i.e., Lsf ∈ F for all s ∈ S and f ∈ F ), containing
the constant functions, is calledm-admissible if the function s � �→ (Tµf)(s)= µ(Lsf )
is in F for all f ∈ F and µ ∈ SF ( = the spectrum of F ). If so, SF under the multipli-
cation µν = µ ◦Tν (µ,ν ∈ SF ), furnished with the Gelfand topology, makes (ε,SF) a
compactification (called the F -compactification) of S, where ε : S �→ SF is the evalu-
ation mapping. Conversely, if (ψ,X) is a compactification of S, then ψ∗(C(X)) is an
m-admissible subalgebra of C(S), where ψ∗ is the dual mapping of ψ, and this cor-
respondence between compactifications of S and m-admissible subalgebras of C(S)
is one-to-one (see [1, Thm. 3.1.7]).
A compactification (ψ,X) of S, possessing a certain property P , is called the univer-

sal P -compactification if for any other compactification (ϕ,Z), having the property P ,
there exists a homomorphism π : (ψ,X) �→ (ϕ,Z), where π is a continuous mapping
from X into Y with π ◦ψ =ϕ, or equivalently, ϕ∗(C(Z)) ⊆ ψ∗(C(X)) (see [1, Thm.
3.1.9]).
Some of the usual m-admissible subalgebras of C(S), that are needed in the se-

quel, are the left multiplicatively continuous, weakly almost periodic, almost peri-
odic, strongly almost periodic, distal, minimal distal, and strongly distal functions
on S. These are denoted by LMC ,WAP ,AP ,SAP ,D,MD and SD, respectively. We also
write GP for MD∩SD, LZ for {f ∈ C(S) : f(st) = f(s) for all s,t ∈ S}, and RZ for
{f ∈ C(S) : f(st) = f(t) for all s,t ∈ S}. Here, and also for other emerging spaces,
when there is no risk of confusion, we have suppressed the letter S from the notation.
For ease of reference, we mention the next proposition which describes the universal
mapping properties of thesem-admissible algebras.

Proposition 2.1. See [1, Chap. 4] and [6, Thm. 3.4]. The LMC ,WAP ,AP ,SAP ,D,MD,
SD,GP ,LZ, and RZ-compactifications are universal with respect to the properties of
being a (right topological) semigroup, a semitoplogical semigroup, a topological semi-
group, a topological group, an inflation of a rectangular group, a left simple semigroup,
a right simple semigroup, a group, a left zero semigroup, and a right zero semigroup,
respectively.

3. The main results. To follow the main objective, we examine the properties of
AB and BD, where

AB = {f ∈WAP : f(st)= f(ts), and f(stu)= f(sut) for all s,t,u∈ S
}

(3.1)

and BD consists of those f ∈ LMC such that
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for all nets {sα} and {tα} in S for which the relevant pointwise limits exist.
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Also, we write SL for AB∩BD. The next lemma, which requires a routine proof,
characterizes AB and BD in terms of the elements of SWAP and SLMC , respectively.

Lemma 3.1. (i) A function f ∈ WAP is in AB if and only if µν(f) = νµ(f) and
Tµνf = Tνµf for all µ,ν ∈ SWAP .
(ii) A function f ∈ LMC is in BD if and only if µ2(f )= µ(f), µ2ν(f)= µν(f), Tµ2f =

Tµf , and Tµ2νf = Tµνf for all µ,ν ∈ SLMC .

The following theorem states the main properties of AB,BD, and SL.

Theorem 3.2. AB,BD, and SL are those m-admissible subalgebras of C(S), whose
corresponding compactifications of S are universal with respect to the properties of
being an abelian semigroup, a band, and a semilattice, respectively.

Proof. It is enough to prove the conclusion for AB and BD. Using Lemma 3.1, the
m-admissibility of AB and BD can be easily demonstrated, and also it follows that
SAB and SBD are abelian and a band, respectively. Let (ψ,X) be an abelian compact-
ification of S, then C(X) = AB(X) and so ψ∗(C(X)) = ψ∗(AB(X)) ⊆ AB(S), where
the latter inclusion can be easily verified. Thus, (ε,SAB) is the universal abelian com-
pactification of S. Similarly, to see that (ε,SBD) is universal with respect to the prop-
erty of being a band, it is enough to show that for any other band compactification
(ϕ,Z) of S, ϕ∗(C(Z)) ⊆ BD(S). For this, let π : (ε,SLMC) �→ (ϕ,Z) be the canonical
homomorphism whose existence is guaranteed by the universal property of (ε,SLMC).
If g ∈ C(Z), then ϕ∗(g) ∈ LMC(S) and for all µ ∈ SLMC , µ2(ϕ∗(g)) = g(π(µ)2) =
g(π(µ))= µ(ϕ∗(g)). A similar argument shows that, for each ν∈SLMC ,µ2ν(ϕ∗(g))=
µν(ϕ∗(g)), Tµ2ϕ∗(g) = Tµϕ∗(g), and Tµ2νϕ∗(g) = Tµνϕ∗(g). Now, Lemma 3.1
shows that ϕ∗(g)∈ BD(S), as required.

It is trivial that BD ⊆ BDc (with the equality holding in the compact case), where

BDc =
{
f ∈ C(S) : f

(
s2
)= f(s), f

(
s2t
)= f(st)= f

(
st2
)
,

and f
(
st2u

)= f(stu) for all s,t,u∈ S
}
. (3.3)

The joint continuity of the multiplication of SAP implies that BD∩AP = BDc∩AP .
Furthermore, SSL is a compact semitopological semilattice, so by Lawson’s (joint con-
tinuity) theorem [8], SL ⊆AP . Thus, SL =AP∩BDc∩AB; more precisely:

Proposition 3.3. SL = {
f ∈ AP : f(s2) = f(s), f (s2t) = f(st) = f(ts), and

f(st2u)= f(stu)= f(sut), for all s,t,u∈ S
}
.

The universal properties of (ε,SBD) and (ε,SD) imply that (ε,SBD∩D) is universal
with respect to the property of being a rectangular band [1, Exercise 1.1.48]. Fur-
thermore, since every such rectangular band is a topological semigroup, BD∩D ⊆
AP which implies that BD∩D = BDc∩D∩AP . On the other hand, an adaptation of
Junghenn’s ideas in the proof of Proposition 3.10 of [6] implies that BD∩D = 〈LZ∪RZ〉
= LZ⊗RZ , where 〈LZ∪RZ〉 is the C∗-subalgebra of C(S) generated by LZ∪RZ and
LZ⊗RZ is the topological tensor product of LZ and RZ ; i.e., the completion in the
least cross norm of the algebraic tensor product.
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As a consequence of the universal properties of (ε,SGP ) and (ε,SAB), it is trivial
that (ε,SAB∩GP ) is the universal abelian group compactification of S. Some other facts
about AB∩GP are collected in the next result. Also, see [3].

Proposition 3.4. (i) AB∩MD =AB∩GP =AB∩SD = {f ∈ SAP : f(stu)= f(sut),
for all s,t,u∈ S}.
(ii) AB∩GP is the closed linear span of the set of all continuous characters of S.

Proof. The facts that SAB∩MD and SAB∩SD are abelian groups and that (ε,SAB∩GP ) is
universal with respect to the property of being an abelian group imply that AB∩MD =
AB∩GP = AB∩SD ⊆ SAP , where the latter containment is obtained from the Ellis’
(joint continuity) theorem [4]. Furthermore, the other condition in the definition ofAB,
i.e., f(st) = f(ts) is automatically deduced from f(stu) = f(sut) and the fact that
f ∈ SAP . The observation that the dual mapping of ε from C(SAB∩GP ) onto AB∩GP
establishes a one-to-one correspondence between the continuous characters of SAB∩GP

and those of S and using the Peter-Weyl theorem, [5, Thm. 22.17], for C(SAB∩GP ) imply
that AB∩GP is the closed linear span of the continuous characters of S.

Examples and Remarks 3.5.

(i) For all right zero and left zero semigroups, it is simple to verify that AB = C
(i.e., consists of the constant functions only) and that BD = C(S). Also, for all groups
BD = C.
(ii) Consider the discrete semigroup S = {a,b,c,d}, with multiplication given by:

a as a left identity, b and c be as left zeros, and ds = c for all s ∈ S (see [1, 1.1.7]). A
direct computation shows that AB = {f ∈ C(S) : f(b) = f(c) = f(d)} and BD = {f ∈
C(S) : f(c)= f(d)}.
(iii) Let S3 =≺ a,b | a3 = b2 = (ab)2 = 1 � be the symmetric group of order 6.

One may directly show that AB(S3) = {f ∈ C(S3) : f(1) = f(a) = f(a2), and f(b) =
f(ab)= f(a2b)}. Of course, BD(S3)= C.
(iv) An inductive proof shows that a function f ∈WAP lies in AB if and only if

f(each finite product of elements of S)= f(each re-ordering of it).

(v) Similar to what we have preceding to Proposition 3.3, using the Lawson’s theo-
rem, [8], one may show that for abelian semigroups BD∩WAP = SL = BD∩AP . Thus,
for semilattices, SL =AP .
(vi) The equality BD∩MD = LZ can be easily demonstrated from the fact that all

left simple bands are left zero semigroups. Similarly, BD∩SD = RZ . Also, we trivially
have BD∩GP = BD∩SAP = C.
(vii) The invariant mean on the abelian semigroup SAB induces a unique invariant

mean on AB, where the uniqueness is obtained from the fact that the m-admissible
subalgebras of WAP cannot have more than one invariant mean (see [1, Cor. 2.3.28,
Exereise 4.2.7]). A similar statement holds for SL and AB∩GP . But BD, in general, is
not even left amenable. For example, for S = {a,b,c,d} as in part (ii), let f in BD be
such that f(b) �= f(c), then for each left invariant meanm on BD, f(b)=m(Lbf)=
m(Lcf)= f(c) and this contradicts the choice of f .
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(viii) It should be mentioned that AB,SL,BD∩D, and AB∩GP are also admissible,
i.e., they are invariant under Tµ for all µ in their duals [1, Cor. 4.2.7]. But we guess
that BD is not admissible in general. It would be desirable to investigate the inclusion
BD ⊆WAP .
(ix) Parallel to BD and also SL which are defined by right translates, we have the

analogous spaces defined by left translates. It is a matter of fact that the left and right
notations do not change the structure of SL (see Proposition 3.3). A natural question
that arises is whether they do not change BD. In our opinion, there is a close tie
between the latter question and the inclusion BD ⊆WAP . See (viii).
(x) It is obvious that the SL-compactification of the direct product of two semitopo-

logical semigroups is isomorphic (in the sense of [1, Sec. 5.2]) to the direct product
of their SL-compactificatons. A similar fact holds for the (AB∩GP )-compactification;
(more generally, (AB∩GP)-compactification, roughly speaking, passes through semidi-
rect products. See [1, Lem. 5.2.3]).
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