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ABSTRACT. In this paper, we establish the following result: Let M be an n-dimensional
complete totally real minimal submanifold immersed in CP" with Ricci curvature bound-
ed from below. Then either M is totally geodesic or infr < (3n+1)(n—2)/3, where 7 is
the scalar curvature of M.
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1. Introduction. Let CP™ be the n-dimensional complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature ¢ = 4 and let M be
an n-dimensional totally real submanifold of CP™. Let r be the scalar curvature of M.
If M is compact, then many authors studied them and obtained many beautiful results
(for example [2, 4, 5]).

In this paper, we make use of Yau’s maximum principle to study the complete totally
real minimal submanifold with Ricci curvature bounded from below and obtain the
following result.

THEOREM 1. Let M be an n-dimensional complete totally real minimal manifold
immersed in CP™ with Ricci curvature bounded from below. Then either M is totally
geodesic orinfr < (3n+1)(n—-2)/3.

2. Preliminaries. Let M be an n-dimensional totally real minimal submanifold of
CP". We choose a local field of orthonormal frames ej,...,e,,e1x = Jei,...,enx = Jen
(J is the complex structure of CP™), such that, restricted to M, the vectors ey,...,e,
are tangent to M. We make use of the following convention on the range of indices

AB,C,...=1,...,n,1*,....n*;, i,j,k,...=1,...,n. 2.1)

With respect to the frame field of CP", let w# be the field of dual frames. Then the
structure equations of CP" are given by

dw? = - > wi rw?, wh+wj =0, (2.2)
1w -
dwg = - > w rwf + 5 > RpcpwC Aw?, (2.3)

Ricp =6ac68p —8ap0c +Jactep — JapJsc +2J apJcp, (2.4)
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where J = Japea ® e, so that

0 -I
(JAB)_<I 0"), (2.5)

where I, is the identity matrix of order n. We restrict these forms to M. Then from
[2], we have

w* =0, wl =wl, wi —w/, (2.6)
wk =S wi, nY =Rk =ni = nl, (2.7)
dwi=-Ywirw!, w+wi=0, (2.8)
dw] == 3wk nwf+ 5 S Rhwk aw, 29)
Riyy = Rigwk+> (R h" —hi " ni’ ), (2.10)
dwii = —Zw,ﬂi/\w}‘:+%ZRﬁklwk/\wl, (2.11)
R = Rig+ S (o = Pt i) - (2.12)

The second fundamental form h of M in CP" is defined as h = >’ h fwi {® ey, whose
squared length is ||h]|?> = Z(h]{;) .
If M is minimal in CP", i.e., trace h = 0, then from (2.4) and (2.10), we have

r=n(n-1)-|hl? (2.13)

where 7 is the scalar curvature of M.
Define hi ,k and h{;l,fl by

> h wk dhmﬂzhkj wk=> i wk+ > hbwi, (2.14)
Zhijklw Uk Zhljkw Zhllkw Zhul wk"'zhukwl* ) (2.15)
respectively.

Let Hj+ and A denote the (n X n)-matrix (hﬁ;) and the Laplacian on M, respectively.
By a simple calculation, we have (cf. [2])

1 - 2 o Hiw —H s Hys )?
ORI =3 (050 4 (n e VIR + v (e Hye = HjeHie)*
— > (trHs trHje ).

The following lemma is important in this paper.

LEMMA 1 [6]. Let M™ be a complete Riemannian manifold with Ricci curvature boun-
ded from below and let f be a C?-function bounded from above on M", then for all
€ > 0, there exists a point x € M™ at which

(i) sup f—€ < f(x);

(i) IVFf(x) <€

(iii) Af(x) <e
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PROOF OF THE MAIN THEOREM. By [3], we have >’ (tr Hix H j= 2= (trHiz* )2. From
[1], we know that > tr(H;x H = —Hj*Hi*)z - (ter*)z > —3/2||h||*. So, from (2.16),
we obtain

%AIIhIIZ2IIhIIZ((n+1)—3/2Hh||2)- (2.17)

We know that ||[h]|? = n(n—1) —r. By the condition of the theorem, we conclude that
[|h]|? is bounded. We define f = ||h||? and F = (f +a)!/? (where a > 0 is any positive
constant number). F is bounded. We have

dF = %(f+a)*”2df, (2.18)
AF == Liprayiianz e (f s 12ag)
2\ 7%
. (2.19)
= 5(_2”dFHZ +Af)(f+a) V3
i.e.,
I 2
AF = o= (= 21dFI1? + Af). (2.20)

Hence, FAF = —||dF||? +1/2Af or 1/2Af = FAF + ||dF||?.
Applying Lemma 1 to F, we have for all € > 0, there exists a point x € M such that
at x

lAF (x) < €[; (2.21)
AF(x) <€ (2.22)
F(x) >supF —e. (2.23)

From (2.21), (2.22), and (2.23), we have
%Af<62+Fe=e(e+F). (2.24)

We take a sequence {€,,} such that ¢;, — 0(m — o) and for all m, there exists a
point x,,;, € M such that (2.21), (2.22), and (2.23) hold. Therefore, €, (€ + F (X)) —
0(m — o) (because F is bounded).

From (2.23), we have F(x,,) > supF —€,,. Because {F(x,,)} is a bounded sequence.
So we get F(x,,) — Fy (if necessary, we can choose a subsequence). Hence, Fy > sup F.
So we have

Fy =supF. (2.25)
From the definition of F, we get
flxm) — f=supf. (2.26)
(2.17) and (2.24) imply that
f((n+1)—%f>s%Afse(e+F), (2.27)
and
fOem) ((n+1) - %f(xm)) <€+ emF(xXm) < €4 +€mFy (2.28)
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let m — oo, then €, — 0 and f(x,,) — fo. Hence,

fo((n+ 1)—%f0) <0. (2.29)

@) if fo = 0, we have f = ||h||2 = 0. Hence, M is totally geodesic.
(i) if fo > 0, we have (n+1)-3/2fy <0 and fy = 2/3(n+1), that is, sup||h|]* =
2/3(n+1). Therefore, infr < (3n+1)(n—2)/3. This completes the proof. O
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