
Internat. J. Math. & Math. Sci.
Vol. 22, No. 1 (1999) 205–208
S 0161-1712〈99〉22205-3

© Electronic Publishing House

TOTALLY REAL SUBMANIFOLDS IN A COMPLEX
PROJECTIVE SPACE

LIU XIMIN

(Received 23 July 1996 and in revised form 13 December 1996)

Abstract. In this paper, we establish the following result: Let M be an n-dimensional
complete totally real minimal submanifold immersed in CPn with Ricci curvature bound-
ed from below. Then either M is totally geodesic or infr ≤ (3n+1)(n−2)/3, where r is
the scalar curvature of M .

Keywords and phrases. Complex projective space, totally real submanifold, Ricci curva-
ture.

1991 Mathematics Subject Classification. 53C40, 53C55.

1. Introduction. Let CPn be the n-dimensional complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature c = 4 and let M be
an n-dimensional totally real submanifold of CPn. Let r be the scalar curvature of M .
IfM is compact, then many authors studied them and obtained many beautiful results
(for example [2, 4, 5]).
In this paper, wemake use of Yau’s maximum principle to study the complete totally

real minimal submanifold with Ricci curvature bounded from below and obtain the
following result.

Theorem 1. Let M be an n-dimensional complete totally real minimal manifold
immersed in CPn with Ricci curvature bounded from below. Then either M is totally
geodesic or infr ≤ (3n+1)(n−2)/3.

2. Preliminaries. Let M be an n-dimensional totally real minimal submanifold of
CPn. We choose a local field of orthonormal frames e1, . . . ,en,e1∗ = Je1, . . . ,en∗ = Jen
(J is the complex structure of CPn), such that, restricted to M , the vectors e1, . . . ,en
are tangent to M . We make use of the following convention on the range of indices

A,B,C, . . .= 1, . . . ,n,1∗, . . . ,n∗; i,j,k, . . .= 1, . . . ,n. (2.1)

With respect to the frame field of CPn, let wA be the field of dual frames. Then the
structure equations of CPn are given by

dwA =−
∑
wA
B ∧wB, wB

A+wA
B = 0, (2.2)

dwA
B =−

∑
wA
C ∧wC

B +
1
2

∑
R̄ABCDw

C∧wD, (2.3)

R̄ABCD = δACδBD−δADδBC+JACJBD−JADJBC+2JABJCD, (2.4)
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where J = JABeA⊗eB , so that
(
JAB

)=
(
0 −In
In 0

)
, (2.5)

where In is the identity matrix of order n. We restrict these forms to M . Then from
[2], we have

wi∗ = 0, wj
i =wj∗

i∗ , wi∗
j =wj∗

i , (2.6)

wk∗
i =

∑
hk

∗
ij w

j, hk
∗
ij = hk

∗
ji = hi

∗
jk = hj

∗
ik , (2.7)

dwi =−
∑
wi
j∧wj, wj

i +wi
j = 0, (2.8)

dwj
i =−

∑
wk
i ∧wj

k+
1
2

∑
Rjiklw

k∧wl, (2.9)

Rijkl = R̄ijklwk+
∑(

hm
∗

ik h
m∗
jl −hm

∗
il h

m∗
jk

)
, (2.10)

dwi∗
j∗ = −

∑
wi∗
k∗ ∧wk∗

j∗ +
1
2

∑
Ri

∗
j∗klw

k∧wl, (2.11)

Ri
∗
j∗kl = R̄i

∗
j∗kl+

∑(
hi

∗
kmh

j∗
ml−hi

∗
mlh

j∗
km

)
. (2.12)

The second fundamental form h ofM in CPn is defined as h=∑hk∗ij wi⊗ek∗ , whose
squared length is ‖h‖2 =∑(hk∗ij )2.
If M is minimal in CPn, i.e., trace h= 0, then from (2.4) and (2.10), we have

r =n(n−1)−‖h‖2, (2.13)

where r is the scalar curvature of M .
Define hm

∗
ijk and hm

∗
ijkl by

∑
hm

∗
ijk w

k = dhm∗
ij −

∑
hm

∗
kj w

k
i −

∑
hm

∗
ik w

k
j +

∑
hl

∗
ij w

m∗
l∗ , (2.14)∑

hm
∗

ijklw
l = dhm∗

ijk −
∑
hm

∗
ljk w

l
i−
∑
hm

∗
ilk w

l
j−

∑
hm

∗
ijl w

l
k+

∑
hl

∗
ijkw

m∗
l∗ , (2.15)

respectively.
Let Hl∗ and ∆ denote the (n×n)-matrix

(
hl

∗
ij
)
and the Laplacian onM , respectively.

By a simple calculation, we have (cf. [2])

1
2
∆‖h‖2 =

∑(
hl

∗
ijk
)2+(n+1)‖h‖2+∑tr

(
Hi∗Hj∗ −Hj∗Hi∗

)2
−
∑(

trHi∗ trHj∗
)2. (2.16)

The following lemma is important in this paper.

Lemma 1 [6]. LetMn be a complete Riemannianmanifold with Ricci curvature boun-
ded from below and let f be a C2-function bounded from above on Mn, then for all
ε > 0, there exists a point x ∈Mn at which

(i) supf −ε < f(x);
(ii) ‖∇f(x)‖< ε;
(iii) ∆f(x) < ε.
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Proof of the main theorem. By [3], we have
∑
(trHi∗Hj∗)2 =

∑(
trH2

i∗
)2
. From

[1], we know that
∑
tr(Hi∗Hj∗ −Hj∗Hi∗)2−

∑(
trH2

i∗
)2 ≥ −3/2‖h‖4. So, from (2.16),

we obtain

1
2
∆‖h‖2 ≥ ‖h‖2((n+1)−3/2‖h‖2). (2.17)

We know that ‖h‖2 =n(n−1)−r . By the condition of the theorem, we conclude that
‖h‖2 is bounded. We define f = ‖h‖2 and F = (f +a)1/2 (where a > 0 is any positive
constant number). F is bounded. We have

dF = 1
2
(f +a)−1/2df , (2.18)

∆F = 1
2

(
− 1
2
(f +a)−3/2‖df‖2+(f +a)−1/2∆f

)

= 1
2

(−2‖dF‖2+∆f )(f +a)−1/2, (2.19)

i.e.,

∆F = 1
2F
(−2‖dF‖2+∆f ). (2.20)

Hence, F∆F =−‖dF‖2+1/2∆f or 1/2∆f = F∆F+‖dF‖2.
Applying Lemma 1 to F , we have for all ε > 0, there exists a point x ∈M such that

at x ∥∥dF(x) < ε∥∥; (2.21)

∆F(x) < ε; (2.22)

F(x) > supF−ε. (2.23)

From (2.21), (2.22), and (2.23), we have

1
2
∆f < ε2+Fε= ε(ε+F). (2.24)

We take a sequence {εm} such that εm �→ 0(m �→ ∞) and for all m, there exists a
point xm ∈M such that (2.21), (2.22), and (2.23) hold. Therefore, εm(εm+F(xm)) �→
0(m �→∞) (because F is bounded).
From (2.23), we have F(xm) > supF−εm. Because {F(xm)} is a bounded sequence.

So we get F(xm) �→ F0 (if necessary, we can choose a subsequence). Hence, F0 ≥ supF .
So we have

F0 = supF. (2.25)

From the definition of F , we get

f(xm) �→ f = supf . (2.26)

(2.17) and (2.24) imply that

f
(
(n+1)− 3

2
f
)
≤ 1
2
∆f ≤ ε(ε+F), (2.27)

and

f(xm)
(
(n+1)− 3

2
f(xm)

)
< ε2m+εmF(xm)≤ ε2m+εmF0 (2.28)
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letm �→∞, then εm �→ 0 and f(xm) �→ f0. Hence,

f0
(
(n+1)− 3

2
f0
)
≤ 0. (2.29)

(i) if f0 = 0, we have f = ‖h‖2 ≡ 0. Hence, M is totally geodesic.
(ii) if f0 > 0, we have (n+1)−3/2f0 ≤ 0 and f0 ≥ 2/3(n+1), that is, sup‖h‖2 ≥

2/3(n+1). Therefore, infr ≤ (3n+1)(n−2)/3. This completes the proof.

Acknowledgement. The author is grateful to the referee for the careful reading
and the very helpful comments on the earlier versions of this manuscript.

References

[1] L. An Min and L. Jimin, An intrinsic rigidity theorem for minimal submanifolds in a sphere,
Arch. Math. (Basel) 58 (1992), no. 6, 582–594. MR 93b:53050. Zbl 767.53042.

[2] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974),
257–266. MR 49 11433. Zbl 286.53019.

[3] S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second
fundamental form of constant length, Functional Analysis and Related Fields (Proc.
Conf. for M. Stone, Univ. Chicago, 1968) (New York), vol. Ill, Springer-Verlag, 1970,
pp. 59–75. MR 42#8424. Zbl 216.44001.

[4] G. D. Ludden, M. Okumura, and K. Yano, A totally real surface in CP2 that is not totally geo-
desic, Proc. Amer. Math. Soc. 53 (1975), no. 1, 186–190. MR 52 1580. Zbl 312.53043.

[5] Y. B. Shen, Scalar curvature for totally real minimal submanifolds, Chinese Ann. Math. Ser.
A 12 (1991), no. 5, 573–577 (Chinese). MR 93a:53052. Zbl 777.53055.

[6] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math.
28 (1975), 201–228. MR 55 4042. Zbl 297.31005.

Ximin: Department of Mathematics, Nankai University, Tianjin 300071, China
Current address: Department of Applied Mathematics, Dalian University of Technol-

ogy, Dalian 116024, China
E-mail address: xmliu@dlut.edu.cn

http://www.ams.org/mathscinet-getitem?mr=93b:53050
http://www.emis.de/cgi-bin/MATH-item?767.53042
http://www.ams.org/mathscinet-getitem?mr=49:11433
http://www.emis.de/cgi-bin/MATH-item?286.53019
http://www.ams.org/mathscinet-getitem?mr=42:8424
http://www.emis.de/cgi-bin/MATH-item?216.44001
http://www.ams.org/mathscinet-getitem?mr=52:1580
http://www.emis.de/cgi-bin/MATH-item?312.53043
http://www.ams.org/mathscinet-getitem?mr=93a:53052
http://www.emis.de/cgi-bin/MATH-item?777.53055
http://www.ams.org/mathscinet-getitem?mr=55:4042
http://www.emis.de/cgi-bin/MATH-item?297.31005
mailto:xmliu@dlut.edu.cn

