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Abstract. In this paper, we give a complete classification of real hypersurfaces in a quater-
nionic projective space QPm with �⊥-recurrent second fundamental tensor under certain
condition on the orthogonal distribution �.
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1. Introduction. Throughout this paper M denotes a connected real hypersurface
of the quaternionic projective space QPm, m ≥ 3, endowed with the metric g of con-
stant quaternionic sectional curvature 4. Let N be a unit local normal vector field on
M and Ui =−JiN , i= 1,2,3, where

{
Ji
}
i=1,2,3 is a local basis of the quaternionic struc-

ture of QPm, [5]. Several examples of such real hypersurfaces are well known. See, for
instance, [2, 1, 5, 8, 9, 13].
Now, let us define a distribution � by �(x) = {X ∈ TxM : X⊥Ui(x), i = 1,2,3

}
,

x ∈M , of a real hypersurface M in QPm, which is orthogonal to the structure vector
fields

{
U1,U2,U3

}
and invariant with respect to structure tensors

{
φ1,φ2,φ3

}
, and by

�⊥ = Span
{
U1,U2,U3

}
its orthogonal complement in TM .

There exist many studies about real hypersurfaces of quaternionic projective space
QPm. Among them, Martinez and Perez [9] have classified real hypersurfaces of QPm

with constant principal curvatures when the distribution � is invariant by the second
fundamental tensor, that is, the shape operator A. It was shown that these real hyper-
surfaces of QPm could be divided into three types which are said to be of type A1, A2,
and B, where a real hypersurface of type B denotes a tube over a complex projective
space CPm. Hereafter, let us say A-invariant when the distribution � is invariant by
the shape operator A.
Without the additional assumption of constant principal curvatures and as a further

improvement of this result, Berndt [2] showed recently that all real hypersurfaces of
QPm could be divided into the above three types when the distributions � and �⊥

satisfy g
(
A�,�⊥)= 0, that is, the distribution � is A-invariant.

On the other hand, in [7], Kobayashi and Nomizu have introduced the notion of
recurrent tensor field of type (r ,s) on a manifold M with a linear connection. That is,
a nonzero tensor field K of type (r ,s) on M is said to be recurrent if there exists a
1-form α such that ∇K = K⊗α. Moreover, they gave some geometric interpretations
of a manifold M with recurrent curvature tensor in terms of the holonomy group.
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Now, let us consider a real hypersurface M with recurrent second fundamental ten-
sor A in a quaternionic projective space QPm. Then from the definition, we have

∇A=A⊗α, (1.1)

where ∇ denotes the induced connection defined on M . Then (1.1) means

[∇XA, A
]=α(X)[A, A]= 0 (1.2)

for any tangent vector field X defined onM . We can interpret its geometrical meaning
in such a way that the eigen spaces of the shape operator A ofM are parallel along any
curve γ in M . Here, the eigenspaces of the shape operator A are said to be parallel
along γ if they are invariant with respect to parallel translation along γ.
Recently, Hamada [4] has applied this notion to real hypersurfaces in a complex

projective space PnC and asserted that there did not exist any real hypersurface in
PnC which had recurrent second fundamental tensor. Moreover, in [4] he defined the
notion of η-recurrent second fundamental form.
Now, in this paper, let us introduce the notion of �⊥-recurrent second fundamental

form defined by

g
((∇XA

)
Y ,Z

)=α(X)g(AY ,Z) (1.3)

for a certain 1-form α defined on the distribution � and any vector fields X,Y ,Z in �.
Then the geometrical meaning of �⊥-recurrency can be interpreted as the eigen spaces
of the shape operator A are parallel along the curve γ orthogonal to the distribution
�⊥ = Span

{
U1,U2,U3

}
.

In this paper, let us consider another condition on the distribution � defined by

g
((
Aφi−φiA

)
X,Y

)= 0 (1.4)

for any X and Y in �, which is weaker than the condition that the structure tensors
φi and the second fundamental tensor A commute with each other. Then under this
condition (1.4), we can give a complete classification of �⊥-recurrency of the second
fundamental tensor. That is, we have the following.

Theorem. Let M be a real hypersurface in QPm, m≥3, with �⊥-recurrent second
fundamental tensor. If it satisfies (1.4), then M is congruent to one of the following
spaces:
(A1) a tube of radius r over a hyperplane QPm−1, where 0< r <π/2,
(A2) a tube of radius r over a totally geodesic QPk(1≤ k≤m−2), where 0< r <π/2.
(R) a ruled real hypersurface foliated by totally geodesic quaternionic hyperplanes

QPm−1.

When the above 1-form α in (1.3) vanishes, that is, for any X, Y and Z in �

g
((∇XA

)
Y ,Z

)= 0, (1.5)

then the second fundamental form A is said to be �⊥-parallel. About a ruled real
hypersurface of QPm some properties are investigated by Martinez [8] and Perez [10].
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It is shown in Section 3 that the second fundamental form of a ruled real hypersurface
is �⊥-parallel. Moreover, for real hypersurfaces of type A1,A2, and B in QPm, it can
be easily seen that its second fundamental tensors are �⊥-parallel. Thus, by virtue of
the Theorem, we can, also, give the following (see [12]).

Corollary. Let M be a real hypersurface in QPm, m≥3, with �⊥-parallel second
fundamental tensor. If it satisfies (1.4), then M is congruent to one of the following
spaces:
(A1) a tube of radius r over a hyperplane QPm−1, where 0< r <π/2,
(A2) a tube of radius r over a totally geodesic QPk(1≤ k≤m−2), where 0< r <π/2.
(R) a ruled real hypersurface foliated by totally geodesic quaternionic hyperplanes

QPm−1.

Under the condition g
(
(Aφi−φiA)X,Y

)= 0, X, Y ∈�, we know that �⊥-recurrent
implies �⊥-parallel. That is, by virtue of the above Theorem and Corollary, it can
be seen that there do not exist real hypersurfaces satisfying (1.4) in QPm with their
second fundamental tensors �⊥-recurrent but not �⊥-parallel.

2. Preliminaries. Let X be a tangent field to M . We write JiX = φiX+fi(X)N,i =
1,2,3, where φiX is the tangent component of JiX and fi(X)= g(X,Ui),i= 1,2,3. As
J2i =− id, i= 1,2,3, where id denotes the identity endomorphism on TQPm, we get

φ2
i X =−X+fi(X)Ui, fi

(
φiX

)= 0, φiUi = 0, i= 1,2,3 (2.1)

for any X tangent to M . As JiJj =−JjJi = Jk, where (i,j,k) is a cyclic permutation of
(1,2,3), we obtain

φiX =φjφkX−fk(X)Uj =−φkφjX+fj(X)Uk (2.2)

and

fi(X)= fj
(
φkX

)=−fk
(
φjX

)
(2.3)

for any vector field X tangent to M , where (i,j,k) is a cyclic permutation of (1,2,3).
It is, also, easy to see that, for any X,Y tangent to M and i= 1,2,3,

g
(
φiX,Y

)+g
(
X,φiY

)= 0, g
(
φiX,φiY

)= g(X,Y)−fi(X)fi(Y) (2.4)

and

φiUj =−φjUi =Uk, (2.5)

(i,j,k) being a cyclic permutation of (1,2,3). From the expression of the curvature
tensor of QPm,m≥2, we have the equations of Gauss and Codazzi, respectively, given
by

R(X,Y)Z = g(Y ,Z)X−g(X,Z)Y

+
∑3

i=1
{
g
(
φiY ,Z

)
φiX−g

(
φiX,Z

)
φiY +2g

(
X,φiY

)
φiZ

}

+g(AY ,Z)AX−g(AX,Z)AY ,

(2.6)
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and

(∇XA
)
Y −(∇YA

)
X =

3∑

i=1

{
fi(X)φiY −fi(Y)φiX+2g

(
X,φiY

)
Ui

}
(2.7)

for any X,Y ,Z tangent to M , where R denotes the curvature tensor of M . See [9].
From the expressions of the covariant derivatives of Ji, i = 1,2,3, it is easy to see

that

∇XUi =−pj(X)Uk+pk(X)Uj+φiAX (2.8)

and

(∇Xφi
)
Y =−pj(X)φkY +pk(X)φjY +fi(Y)AX−g(AX,Y)Ui (2.9)

for any X,Y tangent to M, (i,j,k) being a cyclic permutation of (1,2,3) and pi, i =
1,2,3, local 1-forms on QPm.

3. �⊥-recurrent second fundamental form. LetM be a real hypersurface in a qua-
ternionic projective space QPm and let � be a distribution defined by �(x) = {X ∈
TxM : X⊥Ui(x), i = 1,2,3

}
. Then a real hypersurface M in QPm is said to be �⊥-

recurrent if there is a 1-form α such that

g
((∇XA

)
Y ,Z

)=α(X)g(AY ,Z) (3.1)

for any X,Y and Z ∈�.
The second fundamental tensor A of real hypersurfaces of type A1 or A2 in QPm

must satisfy

(∇XA
)
Y =−

∑3

i=1
{
fi(Y)φiX+g

(
φiX,Y

)
Ui

}
(3.2)

for any tangent vector fields X and Y of M (see [12]). From this expression, we know
that its second fundamental form is �⊥-recurrent, in particular, �⊥-parallel. Moreover,
also in [12], we have proved that the second fundamental tensor of real hypersurfaces
of type B in QPm is �⊥-parallel. Then, naturally, we say �⊥-recurrent.
As another example which has �⊥-recurrent second fundamental form, we have

consructed ruled real hypersurfaces of QPm in [12]. Then from the construction, its
expression of the shape operator A can be given by

AUi = ΣjαijUj+εiXi, AXi = ΣjεjgijUj, AX = 0 (3.3)

for any vector X orthogonal to Ui and Xi, where gij = g(Xi,Xj) and Xi,i = 1,2,3,
denote unit vector fields in �, and εi (εi �= 0), αij are smooth functions on M . By
investigating some fundamental properties of these ruled real hypersurfaces and the
formula (3.3), we have, also, proved in [12] that their second fundamental forms are
�⊥-parallel. Then, naturally, it should be �⊥-recurrent.
Now, in order to prove our theorem in the introduction, we need the following lemma

which was proved in [6].
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Lemma 3.1. Let M be a real hypersurface of QPm. If it satisfies the condition (1.4)
for any i= 1,2,3 and for any vector fields X,Y in �, then we have

g
((∇XA

)
Y ,Z

)= Sg(AX,Y)g
(
Z,Vi

)
, i= 1,2,3, (3.4)

where S denotes the cyclic sum with respect to X,Y and Z in � and Vi stands for the
vector field defined by φiAUi.

Remark 3.2. For real hypersurfaces of type B in QPm, it can be easily seen that
they do not satisfy the condition (1.4). In fact, when i= 2, we have

Aφ2ek−φ2Aek =−(tan r +cot r)φ2ek, (3.5)

so that g
(
Aφ2ek−φ2Aek,φ2ek

)=−(tan r+cot r) �= 0 for 0< r <π/4 or π/4< r <
π/2.

4. Proof of the Theorem. Now, we prove the theorem in the introduction. In this
section, we give a complete classification of real hypersurfaces in QPm, m≥3, with
�⊥-recurrent second fundamental tensor under condition (1.4) on the distribution �,
where �⊥ = Span

{
U1,U2,U3

}
. From (3.4) and the �⊥-recurrency of the second funda-

mental form, it follows that

g(AX,Y)g
(
Z,V1

)+{g(X,V1
)−α(X)

}
g(AY ,Z)+g(AZ,X)g

(
Y ,V1

)= 0 (4.1)

for any X,Y ,Z in �, where we have put V1 =φ1AU1.
Putting Z = V1 in (4.1), we get

g(AX,Y)g
(
V1,V1

)+{g(X,V1
)−α(X)

}
g
(
AY,V1

)+g
(
AV1,X

)
g
(
Y ,V1

)= 0. (4.2)

From this and, also, by putting Y = V1, we get

2g
(
AX,V1

)
g
(
V1,V1

)+{g(X,V1
)−α(X)

}
g
(
AV1,V1

)= 0. (4.3)

So taking X = V1, we get

{
3g
(
V1,V1

)−α
(
V1
)}
g
(
AV1,V1

)= 0. (4.4)

Similarly, we can, also, find

{
3g
(
Vi,Vi

)−α
(
Vi
)}
g
(
AVi,Vi

)= 0, i= 1,2,3. (4.5)

If the structure vector fields U1,U2, and U3 are principal on M , then, g
(
A�,�⊥) = 0.

Then by a theorem of Berndt [2], M is locally congruent to one of either type A1,A2

or B.
Now, let us consider the case where at least one of them is not principal. For conve-

nience sake, let us say U1 is not principal. Then there exists an open subset ofM such
that

�1 =
{
p ∈M |AU1−g

(
AU1,U1

)
U1 �= 0

}
, (4.6)
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on which AU1 can be expressed in such a way that

AU1 =α1U1+β1X1, (4.7)

for some vector field X1 in �. Moreover, on this �1, we know that

V1 =φ1AU1 = β1φ1X1. (4.8)

Now, let us consider the following cases
Case (1). Let �= {p ∈�1 : 3g(V1,V1) �=α(V1)

}
. Then, on this open subset � of �1,

formula (4.4) gives

g
(
AV1,V1

)= 0. (4.9)

From this together with (4.3), it follows that g(AX,V1)= 0 for any X ∈�. Thus, (4.2)
implies g(AX,Y)= 0 for any X,Y ∈�.

Case (2). Let �= Int(�1−�). Then, on �, we have

3g
(
V1,V1

)=α
(
V1
)
. (4.10)

Unless otherwise stated, let us continue our discussion on �. Now, formula (3.4)
gives

(∇XA
)
Y = g(AX,Y)V1+g

(
X,V1

)
AY +g

(
Y ,V1

)
AX+

∑
j
kj(X,Y)Uj, (4.11)

where kj denotes a certain real valued function defined on the product distribution
�×�.
On the other hand, from the �⊥-recurrency of the second fundamental form, we

have

(∇XA
)
Y =α(X)AY +

∑
j
hj(X,Y)Uj, (4.12)

where hj , also, denotes a real valued function defined on �×�.
Putting X = Y = V1 in (4.11) and (4.12) and using (4.10), we get

g
(
AV1,V1

)
V1+

∑

j
kj
(
V1,V1

)
Uj = g

(
V1,V1

)
AV1+

∑

j
hj
(
V1,V1

)
Uj. (4.13)

Thus, by virtue of V1 = β1φ1X1, (4.13) can be written as follows.

Aφ1X1 = γφ1X1+
∑

i
δiUi. (4.14)

From this, taking the inner product with φ1Y for any Y ∈� and using the condition
(1.4), we get g(AX1,Y )= γg(X1,Y ), so that

AX1 = γX1+
∑

i
εiUi. (4.15)

Putting X = V1 in (4.1), we have, for any Y and Z in �,

g
(
AV1,Y

)
g
(
Z,V1

)+{g(V1,V1
)−α

(
V1
)}
g(AY ,Z)+g

(
AZ,V1

)
g
(
Y ,V1

)= 0. (4.16)
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From this together with the fact 3g(V1,V1)=α(V1) and (4.14), it follows that

g(AY ,Z)= γg
(
φ1X1,Y

)
g
(
φ1X1,Z

)
. (4.17)

Thus, for any Y ,Z ∈� and orthogonal to φ1X1, we have

g(AY ,Z)= 0. (4.18)

Now, let us show that the function γ in (4.17) identically vanishes. For this, let us
combine (4.11) and (4.12). Then, for any X,Y ∈�,

g(AX,Y)V1+
{
g
(
X,V1

)−α(X)
}
AY +g

(
Y ,V1

)
AX

+
∑

j

{
fj(X,Y)−hj(X,Y)

}
Uj = 0. (4.19)

From this, putting X =φ1X1 and using (4.10) and (4.14), we get

2β1γg
(
φ1X1,Y

)
φ1X1−2β1AY +

∑
j
g
(
Y ,β1φ1X1

)
δjUj

+
∑

j

{
kj
(
φ1X1,Y

)−hj
(
φ1X1,Y

)}
Uj = 0, (4.20)

where we have used the fact 3β1 = α(φ1X1). From this together with (4.15) and by
putting Y =X1, we get

β1γX1 = 0. (4.21)

This implies that γ = 0 on �. On this open set �, we can, also, assert that g(AX,Y)= 0
for any X,Y in �. Thus, summing up the above two Cases (1) and (2) and using the
continuity of the above functions, we can assert the following.

g(AX,Y)= 0 (4.22)

for any X,Y in � defined on �1. If there exist open subsets such that �2 =
{
p ∈M |

β2(p) �= 0
}
and �3 =

{
p ∈ M | β3(p) �= 0

}
, then on these open subsets we can, also,

apply the same method. Thus, on �1∪�2∪�3, we can assert that g(AX,Y)= 0.
Now, let us suppose �= Int

{
M−(�1∪�2∪�3

)}
is not empty. Then almost contact 3

structure vector fields U1,U2 and U3 are principal on �. This implies that g
(
A�,�⊥)=

0 on �. So, by a theorem of Berndt [2], the open subset � is congruent to an open part
of real hypersurfaces of type A1,A2 or B in a quaternionic projective space QPm.
Now, let us consider the case of � being congruent to real hypersurfaces of type B

in a quaternionic projective space QPm. Then the principal curvatures on the distri-
butions �⊥ and � of such a tube are given by

α1 = 2cot 2r , α2 =α3 =−2tan 2r , λ= cot r and µ =−tan r , (4.23)

with multiplicities 1, 2, 2(m-1), and 2(m-1), respectively. Moreover, it is, also, known
that

AφiX = λαi+2
2λ−αi

φiX, i= 1,2,3, (4.24)



116 YOUNG JIN SUH AND JUAN DE DIOS PÉREZ

for a principal vector X in � with principal curvature λ.
When we consider the case where α2 =α3 =−2tan 2r , we have

(
Aφi−φiA

)
X =−(cot r +tan r)φiX, i= 2,3, (4.25)

for anyX in�with principal curvatures cot r . Then from (1.4), we have−cot r−tan r =
0. This implies that cot2 r =−1, which is impossible. Thus, real hypersurfaces of type
B cannot occur. But among them, real hypersurfaces of type A1 and A2 satisfy Aφi−
φiA = 0 on �. Moreover, for real hypersurfaces of these types all of their principal
curvatures are nonzero constant on �. By continuity of principal curvatures again,
M −� = M and then the subset � is empty. That is, structure vector fields U1,U2

and U3 are principal on M . This implies that g
(
A�,�⊥) = 0 on M . Thus, M is locally

congruent to real hypersurfaces of type A1 and A2.
When we suppose that the open set � = Int

{
M−�1∪�2∪�3

}
is empty, then the

open subset �1∪�2∪�3 becomes a dense subset of M . By continuity of principal
curvatures, the shape operator satisfies

g(AX,Y)= 0 (4.26)

on the whole set M . From this, we know that the distribution � is integrable on M .
In fact, for any X,Y ∈�, we have [X,Y]=∇XY −∇YX ∈�, because

g
(∇XY ,Ui

)=−g(Y ,∇XUi
)=−g(Y ,−pj(X)Uk+pk(X)Uj+φiAX

)= 0. (4.27)

Thus, its integral manifold can be regarded as the submanifold of codimension 4 in

QPm whose normal vectors are U1,U2,U3 and C . Moreover, the integral manifold of �

is totally geodesic in QPm. In fact, for any X,Y ∈�, if we put

DXY =∇′XY +
∑

i
σi(X,Y)Ui+ρ(X,Y)N, (4.28)

where D and ∇′ denote the connection of QPm and the induced connection from ∇
defined on an integral manifold of the distribution �, respectively.
For this, if we take the inner product with Ui, we get

ḡ
(
DXY ,Ui

)= g
(∇XY ,Ui

)=−g(Y ,φiAX
)= 0. (4.29)

This means that
∑

i σi(X,Y) = 0. Also, taking an inner product with the unit normal
N , we obtain ρ(X,Y) = 0. Moreover, it can be easily verified that � is Ji-invariant,
i = 1,2, and 3, and its integral manifold is a quaternionic manifold and, therefore, a
quaternionic hyperplane QPm−1 of QPm. Thus, M is locally congruent to a ruled real
hypersurface. From this, we complete the proof of our theorem.
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Cuza” Iaşi Seçt. I a Mat. 34 (1988), no. 1, 73–78. MR 89k:53052. Zbl 659.53042.

[9] A. Martinez and J. D. Pérez, Real hypersurfaces in quaternionic projective space, Ann.
Mat. Pura Appl. (4) 145 (1986), 355–384. MR 89a:53062. Zbl 615.53012.

[10] J. D. Pérez, A characterization of real hypersurfaces of quaternionic projective space,
Tsukuba J. Math. 15 (1991), no. 2, 315–323. MR 93d:53075. Zbl 766.53005.

[11] , Real hypersurfaces of quaternionic projective space satisfying∇UiA= 0, J. Geom.
49 (1994), no. 1-2, 166–177. MR 94j:53068. Zbl 799.53018.

[12] J. D. Pérez and Y. J. Suh, On real hypersurfaces in quaternionic projective space with
�⊥-parallel second fundamental form, Nihonkai Math. J. 7 (1996), no. 2, 185–195.
MR 97i:53068.

[13] , Real hypersurfaces of quaternionic projective space satisfying ∇UiR = 0, Differ.
Geom. Appl. 7 (1997), no. 3, 211–217. Zbl 980.26709.

Suh: Department of Mathematics, Kyungpook University, Taegu 702-701, Republic of
Korea
E-mail address: yjsuh@bh.kyungpook.ac.kr

Pérez: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad
de Granada, 18071-Granada, Spain
E-mail address: jdperez@goliat.ugr.es

http://www.ams.org/mathscinet-getitem?mr=92i:53048
http://www.emis.de/cgi-bin/MATH-item?718.53017
http://www.ams.org/mathscinet-getitem?mr=83b:53049
http://www.emis.de/cgi-bin/MATH-item?492.53039
http://www.ams.org/mathscinet-getitem?mr=96k:53083
http://www.ams.org/mathscinet-getitem?mr=50:1184
http://www.emis.de/cgi-bin/MATH-item?297.53014
http://www.emis.de/cgi-bin/MATH-item?878.53018
http://www.ams.org/mathscinet-getitem?mr=27:2945
http://www.ams.org/mathscinet-getitem?mr=89k:53052
http://www.emis.de/cgi-bin/MATH-item?659.53042
http://www.ams.org/mathscinet-getitem?mr=89a:53062
http://www.emis.de/cgi-bin/MATH-item?615.53012
http://www.ams.org/mathscinet-getitem?mr=93d:53075
http://www.emis.de/cgi-bin/MATH-item?766.53005
http://www.ams.org/mathscinet-getitem?mr=94j:53068
http://www.emis.de/cgi-bin/MATH-item?799.53018
http://www.ams.org/mathscinet-getitem?mr=97i:53068
http://www.emis.de/cgi-bin/MATH-item?980.26709
mailto:yjsuh@bh.kyungpook.ac.kr
mailto:jdperez@goliat.ugr.es

