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Abstract. By using the method of successive approximation, we prove the existence and
uniqueness of a solution of the fuzzy differential equation x′(t)= f(t,x(t)), x(t0)= x0.
We also consider an ε-approximate solution of the above fuzzy differential equation.
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1. Introduction. The differential equation

x′(t)= f
(
t,x(t)

)
, x(t0)= x0 (1.1)

has a solution provided f is continuous and satisfies a Lipschitz condition by C.
Corduneanu [2]. The definition given here generalizes that of Aumann [1] for set-
valuedmappings. Kaleva [3] discussed the properties of differentiable fuzzy set-valued
mappings and gave the existence and uniqueness theorem for a solution of the fuzzy
differential equation x′(t)= f(t,x(t)) when f satisfies the Lipschitz condition. Also,
in [4], he dealt with fuzzy differential equations on locally compact spaces. Park [6, 7]
showed existence of solutions for fuzzy integral equations and a fixed point theorem
for a pair of generalized nonexpansive fuzzy mappings.
In this paper, we prove the existence and uniqueness theorem of a solution to the

fuzzy differential equation (1.1), where f : I ×En → En is levelwise continuous and
satisfies a generalized Lipschitz condition.
Under some hypotheses, we consider an ε-approximate solution of the above fuzzy

differential equation.

2. Preliminaries. Let PK(Rn) denote the family of all nonempty compact convex
subsets of Rn and define the addition and scalar multiplication in PK(Rn) as usual.
Let A and B be two nonempty bounded subsets of Rn. The distance between A and B
is defined by the Hausdorff metric

d(A,B)=max

{
sup
a∈A

inf
b∈B
‖a−b‖, sup

b∈B
inf
a∈A

‖a−b‖
}
, (2.1)

where ‖·‖ denotes the usual Euclidean norm in Rn. Then it is clear that (PK(Rn),d)
becomes a metric space.

Theorem 2.1 [8]. The metric space (PK(Rn),d) is complete and separable.
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Let T = [c,d]⊂ R be a compact interval and denote

En = {u : Rn �→ [0,1] |u satisfies (i)–(iv) below
}
, (2.2)

where
(i) u is normal, i.e., there exists an x0 ∈ Rn such that u(x0)= 1,
(ii) u is fuzzy convex,
(iii) u is upper semicontinuous,
(iv) [u]0 = cl{x ∈ Rn |u(x) > 0} is compact.

For 0 < α ≤ 1, denote [u]α = {x ∈ Rn | u(x) ≥ α}, then from (i)–(iv), it follows that
the α-level set [u]α ∈ PK(Rn) for all 0≤α≤ 1.
If g : Rn×Rn→ Rn is a function, then, according to Zadeh’s extension principle, we

can extend g to En×En→ En by the equation

g(u,v)(z)= sup
z=g(x,y)

min
{
u(x),v(y)

}
. (2.3)

It is well known that [
g(u,v)

]α = g
(
[u]α,[v]α

)
(2.4)

for all u,v ∈ En, 0 ≤ α ≤ 1 and g is continuous. Especially for addition and scalar
multiplication, we have

[u+v]α = [u]α+[v]α, [ku]α = k[u]α, (2.5)

where u, v ∈ En, k∈ R, 0≤α≤ 1.

Theorem 2.2 [5]. If u∈ En, then
(1) [u]α ∈ PK(Rn) for all 0≤α≤ 1,
(2) [u]α ⊂ [u]α1 for all 0≤α1 ≤α2 ≤ 1,
(3) if {αk} ⊂ [0,1] is a nondecreasing sequence converging to α> 0, then

[u]α =
⋂
k≥1

[u]αk . (2.6)

Conversely, if {Aα | 0≤α≤ 1} is a family of subsets of Rn satisfying (1)–(3), then there
exists u∈ En such that

[u]α =Aα for 0<α≤ 1 (2.7)

and

[u]0 =
⋃

0<α≤1
Aα ⊂A0. (2.8)

Define D : En×En→ R+∪{0} by the equation

D(u,v)= sup
0≤α≤1

d
(
[u]α,[v]α

)
, (2.9)

where d is the Hausdorff metric defined in PK(Rn).
The following definitions and theorems are given in [3].

Definition 2.1. A mapping F : T → En is strongly measurable if, for all α∈ [0,1],
the set-valued mapping Fα : T → PK(Rn) defined by

Fα(t)= [F(t)]α (2.10)
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is Lebesgue measurable, when PK(Rn) is endowed with the topology generated by the
Hausdorff metric d.

Definition 2.2. A mapping F : T → En is called levelwise continuous at t0 ∈ T if
the set-valued mapping Fα(t) = [F(t)]α is continuous at t = t0 with respect to the
Hausdorff metric d for all α∈ [0,1].
A mapping F : T → En is called integrably bounded if there exists an integrable

function h such that ‖x‖ ≤ h(t) for all x ∈ F0(t).

Definition 2.3. Let F : T → En. The integral of F over T , denoted by
∫
T F(t) or∫ d

c F(t)dt, is defined levelwise by the equation

(∫
T
F(t)dt

)α
=
∫
T
Fα(t)dt

=
{∫

T
f (t)dt | f : T → Rn is a measurable selection for Fα

} (2.11)

for all 0<α≤ 1.
A strongly measurable and integrably bounded mapping F : T → En is said to be

integrable over T if
∫
T F(t)dt ∈ En.

Theorem 2.3. If F : T → En is strongly measurable and integrably bounded, then F
is integrable.

It is known that [
∫
T F(t)dt]0 =

∫
T F0(t)dt.

Theorem 2.4. Let F,G : T → En be integrable, and λ∈ R. Then
(i)

∫
T (F(t)+G(t))dt =

∫
T F(t)dt+

∫
T G(t)dt.

(ii)
∫
T λF(t)dt = λ

∫
T F(t)dt.

(iii) D(F,G) is integrable.
(iv) D

(∫
T F(t)dt,

∫
T G(t)dt

)≤ ∫T D(F,G)(t)dt.
Definition 2.4. A mapping F : T → En is called differentiable at t0 ∈ T if, for

any α ∈ [0,1], the set-valued mapping Fα(t) = [F(t)]α is Hukuhara differentiable at
point t0 with DFα(t0) and the family

{
DFα(t0) | α ∈ [0,1]

}
define a fuzzy number

F(t0)∈ En.

If F : T → En is differentiable at t0 ∈ T , then we say that F ′(t0) is the fuzzy derivative
of F(t) at the point t0.

Theorem 2.5. Let F : T → E1 be differentiable. Denote Fα(t)=
[
fα(t), gα(t)

]
. Then

fα and gα are differentiable and [F ′(t)]α = [f ′α(t), g′α(t)].

Theorem 2.6. Let F : T → En be differentiable and assume that the derivative F ′ is
integrable over T . Then, for each s ∈ T , we have

F(s)= F(a)+
∫ s

a
F ′(t)dt. (2.12)

Definition 2.5. A mapping f : T ×En→ En is called levelwise continuous at point
(t0,x0) ∈ T ×En provided, for any fixed α ∈ [0,1] and arbitrary ε > 0, there exists a
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δ(ε,α) > 0 such that

d
([
f(t,x)

]α,[f(t0,x0)
]α)< ε (2.13)

whenever |t−t0|< δ(ε,α) and d([x]α,[x0]α) < δ(ε,α) for all t ∈ T , x ∈ En.

3. Fuzzy differential equations. Assume that f : I×En → En is levelwise contin-
uous, where the interval I = {t : |t − t0| ≤ δ ≤ a}. Consider the fuzzy differential
equation (1.1) where x0 ∈ En. We denote J0 = I×B(x0,b), where a> 0, b > 0, x0 ∈ En,

B(x0,b)=
{
x ∈ En |D(x,x0)≤ b

}
. (3.1)

Definition 3.1. A mapping x : I → En is a solution to the problem (1.1) if it is
levelwise continuous and satisfies the integral equation

x(t)= x0+
∫ t

t0
f
(
s,x(s)

)
ds for all t ∈ I. (3.2)

According to the method of successive approximation, let us consider the sequence
{xn(t)} such that

xn(t)= x0+
∫ t

t0
f
(
s,xn−1(s)

)
ds, n= 1,2, . . . , (3.3)

where x0(t)≡ x0, t ∈ I.

Theorem 3.1. Assume that
(i) a mapping f : J0→ En is levelwise continuous,
(ii) for any pair (t,x),(t,y)∈ J0, we have

d
([
f(t,x)

]α,[f(t,y)]α)≤ Ld
(
[x]α,[y]α

)
, (3.4)

where L > 0 is a given constant and for any α∈ [0,1].
Then there exists a unique solution x = x(t) of (1.1) defined on the interval

|t−t0| ≤ δ=min
{
a,

b
M

}
, (3.5)

where M = D(f(t,x), ô), ô ∈ En such that ô(t) = 1 for t = 0 and 0 otherwise and for
any (t,x)∈ J0.
Moreover, there exists a fuzzy set-valuedmapping x : I → En such thatD(xn(t),x(t))

→ 0 on |t−t0| ≤ δ as n→∞.

Proof. Let t ∈ I, from (3.3), it follows that, for n= 1,

x1(t)= x0+
∫ t

t0
f(s,x0)ds (3.6)

which proves that x(t) is levelwise continuous on |t−t0| ≤ a and, hence on |t−t0| ≤ δ.
Moreover, for any α∈ [0,1], we have

d
(
[x1(t)]α,[x0]α

)= d
([∫ t

t0
f(s,x0)ds

]α
,0
)
≤
∫ t

t0
d
([
f(s,x0)

]α,0)ds (3.7)

and by the definition of D, we get

D
(
x1(t),x0

)≤M|t−t0| ≤Mδ= b (3.8)
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if |t−t0| ≤ δ, where M =D(f(t,x), ô), ô ∈ En and for any (t,x)∈ J0.
Now, assume that xn−1(t) is levelwise continuous on |t−t0| ≤ δ and that

D
(
xn−1(t),x0

)≤M|t−t0| ≤Mδ= b (3.9)

if |t−t0| ≤ δ, where M =D(f(t,x), ô), ô ∈ En and for any (t,x)∈ J0.
From (3.3), we deduce that xn(t) is levelwise continuous on |t−t0| ≤ δ and that

D
(
xn(t),x0

)≤M|t−t0| ≤Mδ= b (3.10)

if |t−t0| ≤ δ, where M =D(f(t,x), ô), ô ∈ En and for any (t,y)∈ J0.
Consequently, we conclude that {xn(t)} consists of levelwise continuous mappings

on |t−t0| ≤ δ and that

(
t,xn(t)

)∈ J0, |t−t0| ≤ δ, n= 1,2, . . . . (3.11)

Let us prove that there exists a fuzzy set-valuedmappingx : I → En such thatD(xn(t),
x(t))→ 0 uniformly on |t−t0| ≤ δ as n→∞. For n= 2, from (3.3),

x2(t)= x0+
∫ t

t0
f
(
s,x1(s)

)
ds. (3.12)

From (3.6) and (3.12), we have

d
([
x2(t)

]α,[x1(t)
]α)= d

([∫ t

t0
f
(
s,x1(s)

)
ds
]α
,
[∫ t

t0
f(s,x0)ds

]α)

≤
∫ t

t0
d
([
f
(
s,x1(s)

)]α ,[f(s,x0)
]α)ds (3.13)

for any α∈ [0,1].
According to the condition (3.4), we obtain

d
(
[x2(t)]α ,[x1(t)]α

)≤ ∫ t

t0
Ld
(
[x1(s)]α ,[x0]α

)
ds (3.14)

and by the definition of D, we obtain

D
(
x2(t),x1(t)

)≤ L
∫ t

t0
D
(
x1(s),x0(s)

)
ds. (3.15)

Now, we can apply the first inequality (3.8) in the right-hand side of (3.15) to get

D
(
x2(t),x1(t)

)≤ML
|t−t0|2

2!
≤ML

δ2

2!
. (3.16)

Starting from (3.8) and (3.16), assume that

D
(
xn(t),xn−1(t)

)≤MLn−1
|t−t0|n

n!
≤MLn−1

δn

n!
(3.17)

and let us prove that such an inequality holds for D(xn+1(t),xn(t)).
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Indeed, from (3.3) and condition (3.4), it follows that

d
([
xn+1(t)

]α,[xn(t)]α)= d
([∫ t

t0
f
(
s,xn(s)

)
ds
]α
,
[∫ t

t0
f
(
s,xn−1(s)

)
ds
]α)

≤
∫ t

t0
d
([
f
(
s,xn(s)

)]α,[f (s,xn−1(s))]α)ds
≤
∫ t

t0
Ld
([
xn(s)

]α,[xn−1(s)]α)ds
(3.18)

for any α∈ [0,1] and from the definition of D, we have

D
(
xn+1(t),xn(t)

)≤ L
∫ t

t0
D
(
xn(s),xn−1(s)

)
ds. (3.19)

According to (3.17), we get

D
(
xn+1(t),xn(t)

)≤MLn
∫ t

t0

|s−t0|n
n!

ds =MLn
|t−t0|n+1
(n+1)! ≤MLn

δn+1

(n+1)! . (3.20)

Consequently, inequality (3.17) holds for n= 1,2, . . . . We can also write

D
(
xn(t),xn−1(t)

)≤ M
L
(Lδ)n

n!
(3.21)

for n= 1,2, . . . , and |t−t0| ≤ δ.
Let us mention now that

xn(t)= x0+[x1(t)−x0]+···+[xn(t)−xn−1(t)], (3.22)

which implies that the sequence {xn(t)} and the series

x0+
∞∑
n=1

[
xn(t)−xn−1(t)

]
(3.23)

have the same convergence properties.
From (3.21), according to the convergence criterion of Weierstrass, it follows that the

series having the general term xn(t)−xn−1(t), soD(xn(t),xn−1(t))→ 0 uniformly on
|t−t0| ≤ δ as n→∞.
Hence, there exists a fuzzy set-valuedmappingx : I → En such thatD(xn(t),x(t))→

0 uniformly on |t−t0| ≤ δ as n→∞.
From (3.4), we get

d
([
f
(
t,xn(t)

)]α ,[f (t,x(t))]α)≤ Ld
([
xn(t)

]α,[x(t)]α) (3.24)

for any α∈ [0,1]. By the definition of D,

D
(
f
(
t,xn(t)

)
,f
(
t,x(t)

))≤ LD
(
xn(t),x(t)

)
�→ 0 (3.25)

uniformly on |t−t0| ≤ δ as n→∞.
Taking (3.25) into account, from (3.3), we obtain, for n→∞,

x(t)= x0+
∫ t

t0
f
(
s,x(s)

)
ds. (3.26)
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Consequently, there is at least one levelwise continuous solution of (1.1).
We want to prove now that this solution is unique, that is, from

y(t)= x0+
∫ t

t0
f
(
s,y(s)

)
ds (3.27)

on |t − t0| ≤ δ, it follows that D(x(t),y(t)) ≡ 0. Indeed, from (3.3) and (3.27), we
obtain

d
([
y(t)

]α,[xn(t)]α)= d
([∫ t

t0
f
(
s,y(s)

)
ds
]α
,
[∫ t

t0
f
(
s,xn−1(s)

)
ds
]α)

≤
∫ t

t0
d
([
f
(
s,y(s)

)]α ,[f (s,xn−1(s))]α)ds
≤
∫ t

t0
Ld
([
y(s)

]α,[xn−1(s)]α)ds
(3.28)

for any α∈ [0,1], n= 1,2, . . . .
By the definition of D, we obtain

D
(
y(t),xn(t)

)≤ L
∫ t

t0
D
(
y(s),xn−1(s)

)
ds, n= 1,2, . . . . (3.29)

But D(y(t),x0) ≤ b on |t− t0| ≤ δ, y(t) being a solution of (3.27). It follows from
(3.29) that

D
(
y(t),x1(t)

)≤ bL|t−t0| (3.30)

on |t−t0| ≤ δ. Now, assume that

D
(
y(t),xn(t)

)≤ bLn
|t−t0|n

n!
(3.31)

on the interval |t−t0| ≤ δ. From

D
(
y(t),xn+1(t)

)≤ L
∫ t

t0
D
(
y(s),xn(s)

)
ds (3.32)

and (3.31), one obtains

D
(
y(t),xn+1(t)

)≤ bLn+1
|t−t0|n+1
(n+1)! . (3.33)

Consequently, (3.31) holds for any n, which leads to the conclusion

D
(
y(t),xn(t)

)=D
(
x(t),xn(t)

)
�→ 0 (3.34)

on the interval |t−t0| ≤ δ as n→∞.
This proves the uniqueness of the solution for (1.1).

Definition 3.2. A mapping x : L→ En is an ε-approximate solution of (1.1) if the
following properties hold
(a) x(t) is levelwise continuous on |t−t0| ≤ δ,
(b) the derivative x′(t) exists and it is levelwise continuous,
(c) for all t for which x′(t) is defined, we have

D
(
x′(t),f

(
t,x(t)

))
< ε. (3.35)
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Theorem 3.2. A mapping f : J0 → En is levelwise continuous, and let ε > 0 be
arbitrary. Then there exists at least one ε-approximate solution of (1.1), defined on
|t−t0| ≤ δ=min{a,b/M}, where M =D(f(t,x), ô), ô ∈ En and for any (t,x)∈ J0.

Proof. In as much as amapping f : J0→ En is a levelwise continuous on a compact
set J0, it follows that f(t,x) is uniformly levelwise continuous.
Consequently, for anyα∈ [0,1], we can find δ>0 such that d([f(t,x)]α,[f (s,y)]α)

< ε.
Now, we construct the approximate solution for t ∈ [t0, t0 +δ], the construction

being completely similar for t ∈ [t0−δ,t0].
Let us consider a division

t0 < t1 < ···< tn = t0+δ (3.36)

of [t0, t0+δ] such that

max
k

(
tk−tk−1

)
< λ=min

{
δ,

δ
M

}
. (3.37)

We define a mapping x : I → En as follows

x(t0)= x0, (3.38)

x(t)= x(tk)+f
(
tk,x(tk)

)
(t−tk) (3.39)

on tk < t ≤ tk+1, k= 0,1, . . . ,n−1.
It is obvious that a mapping x : I → En satisfies the first two properties from the

definition of an ε-approximate solution.
Now, we want to prove that the last property is also fulfilled. Indeed, x′(t) = f(tk,

x(tk)) on (tk,tk+1) and for any α∈ [0,1],

d
([
x′(t)

]α,[f (t,x(t))]α)= d
([
f
(
tk,x(tk)

)]α ,[f (t,x(t))]α)< ε (3.40)

since |t−tk|< λ≤ δ,

d
(
[x(t)]α ,[x(tk)]α

)≤ d
([
f
(
tk,x(tk)

)]α ,0)|t−tk|<Mλ≤ δ. (3.41)

Thus, by the definition of D, we have

D
(
x′(t),f

(
t,x(t)

))
< ε (3.42)

on |t−t0|< δ and (t,x)∈ J0.
Theorem 3.2 is completely proved.
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