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SECTIONS OF SIMPLICES

NAGABHUSHANA PRABHU
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Abstract. We show that for �d/2� ≤ k ≤ d, the relative interior of every k-face of a
d-simplex ∆d can be intersected by a 2(d−k)-dimensional affine flat. Bezdek, Bisztriczky,
and Connelly’s results [2] show that the condition k ≥ �d/2� above cannot be dropped
and hence raise the question of determining, for all 0 ≤ k, j < d, an upper bound on the
function c(j,k;d), defined as the smallest number of j-flats, j < d, needed to intersect the
relative interiors of all the k-faces of ∆d. Using probabilistic arguments, we show that

C(j,k;d)≤

(d+1
k+1

)
(w+1
k+1

) log
(d+1
k+1

)
, where w =min

(
max

(⌊
j
2

⌋
+k,j

)
,d
)
. (∗)

Finally, we consider the function M(j,k;d), defined as the largest number of k-faces of
∆d whose relative interiors can be intersected by a j-flat. We show that, for large d and
for all k such that k+j ≥ d, M(j,k;d)≤ f�3j/4�−1(d+1,j), where fm(n,q) is the number
of m-faces in a cyclic q-polytope with n-vertices. Our results suggest a conjecture about
face-lattices of polytopes that if proved, would play a useful role in further studies on
sections of polytopes.
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1. Introduction. A class of problems of continuing interest concerns studying the
intersection of an affine flat with the boundary complex of a d-polytope (hereafter
called a section of the d-polytope). A diverse body of results about this class of prob-
lems has been reported in the literature. O’Neil studied the popular problem of de-
termining the maximum number of edges of a d-cube that a hyperplane of Rd can
cut and proved a lower bound of (d−�d/2�)

(
d

�d/2�
)
[7] (see [3] for follow-up work on

this problem). Khovanskii [5] showed that if a hyperplane H intersects a d-polytope P
(and H+ and H− are the two closed halfspaces of H), then there exists two faces of P ,
F1 ∈H+ and F2 ∈H− such that dim(F1)+dim(F2)≥ d−1. Bezdek et al. showed that a
hyperplane can intersect the relative interiors of all the k-faces of d-polytope only if
�d/2� ≤ k [2]. For other results, see [1, 4, 6, 8].
The most important problems in the above class concern, however, the properties

of sections of d-simplices. The importance of sections of simplices stems from the
fact that any polytope can be realized as a section of a simplex of suitable dimension.
Since a section of a section of a simplex is just another section of the simplex, sections
of arbitrary polytopes are (in a certain sense) subsumed under the study of sections of
simplices. We also note that linear Programs in standard form (or Karmarkar’s form)
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are represented as sections of standard simplices. Yet, surprisingly, little is known
about the geometric and combinatorial properties of sections of simplices.
In this paper, we study sections of simplices. Specifically, we show that the relative

interiors of all the k-dimensional faces of a d-dimensional simplex, k≥ �d/2�, can be
intersected by an affine flat of dimension 2(d−k) (hereafter, whenever we talk of a flat
intersecting a face, wemean that the flat intersects the relative interior of the face even
when the term relative interior is dropped). The result yields a counter-intuitive fact
that the relative interiors of all the facets of any d-simplex can be intersected by a 2-
dimensional plane. Bezdek, Bistriczky, and Connelly’s result (mentioned above) shows
that the restriction k ≥ �d/2� cannot be dropped from our result. In light of Bezdek,
Bisztriczky, and Connelly’s lower bound and our result, an important problem is to
determine, for all 1≤ j, k < d, the function C(j,k;d), defined as the smallest number
of j-flats needed to intersect the relative interiors of all the k-faces of a d-simplex.
Using probabilistic arguments, we prove the following fairly nontrivial upper bound
on C(j,k;d). Let

w =min
(
max

(⌊
j
2

⌋
+k,j

)
,d
)
. (1)

Then for 1≤ k,j < d,

C(j,k;d)≤

(d+1
k+1

)
(w+1
k+1

) log
(d+1
k+1

)
. (2)

Another important problem is to determine, for all 1≤ k, j < d, the functionM(j,k;d),
defined as the largest number of k-faces of a d-simplex whose relative interiors can
be intersected by a j-flat. Using the above definition ofw, one easily obtains the lower
bound (w+1

k+1
)
≤M(j,k;d) (3)

on M(j,k;d). More interestingly, though, for large d(d > d0) and k+j ≥ d, we show
that the following is a tight upper bound on M(j,k;d).

M(j,k;d)≤ f⌈
3j/4

⌉
−1(d+1,j), (4)

where fm(n,q) is the number ofm-faces in a cyclic q-polytope withn-vertices. A tight
upper bound for M(j,k;d) when k+j < d is less tractable. We discuss the source of
difficulty when k+j < d and conclude the paper with some observations about this
case and a conjecture about face lattices of polytopes, that if true, would play a useful
role in the study of sections of polytopes.

2. Cutting faces of a fixed dimension. For a discussion of the properties of a cyclic
polytope used in the proof of the following theorem, the reader is referred to [4].

Theorem 1. For
⌊
d/2

⌋≤ k≤ d, the relative interiors of every k-face of a d-simplex
can be intersected by a 2(d−k)-dimensional affine flat.
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Proof. Let Td be the standard d-simplex,

∆d =
{(
Y1, . . . ,Yd+1

)∈ Rd+1
∣∣∣∣∣
d+1∑
i=1
Yi = 1,Yi ≥ 0, i= 1, . . . ,d+1

}
(5)

and P ⊂ Rn any n-dimensional polytope with d+1 facets (n < d+1) that is repre-
sented as

P = {X ∈ Rn∣∣〈X,Ni〉 ≤ 1; i= 1, . . . ,d+1} , (6)

where Ni’s are the normals to the facets and 〈 ,〉 denotes dot product.
A classic theorem on sections [8, Thm. 12, p. 58] states that there exists an n-

dimensional affine flat L⊂ Rd+1 such that P is projectively and hence combinatorially
equivalent to the polytope L∩Td. In fact, L is the image of Rn under the following
map Tp : Rn→ Rd+1,

Tp(X)=
(
(1−〈N1,X〉), . . . ,(1−〈Nd+1,X〉)

)
(d+1)−

〈∑d+1
i=1 Ni,X

〉 =



1 −N1
...

...
1 −Nd+1







1
X1
...
Xn




(d+1)−
〈∑d+1

i=1 Ni,X
〉 , (7)

where Ni’s are treated as row vectors.
Now, take P to be a 2m-polytope combinatorially isomorphic to a dual-cyclic 2m-

polytope with d+1 facets. A cyclic 2m-polytope is m-neighborly, i.e., every subset
ofm vertices of a cyclic 2m-polytope forms a face. Therefore, in the dual-cyclic 2m-
polytope, every subset of m facets intersects in a face. Further, in a dual-cyclic 2m-
polytope, the intersection of every k facets, 1 ≤ k ≤ m, is a (2m− k)-face. Thus,
every subset of j facets of the dual-cyclic 2m-polytope P , 1 ≤ j ≤m, intersects in a
(2m−j)-dimensional face of P . Since P is assumed to have d+1 facets, the number
of (2m−j)-faces of P , 1≤ j ≤m, is

(
d+1
j

)
.

Observe that TP maps the relative interior of every (2m−j)-face of P into the relative
interior of a (d−j)-face of ∆d. If F is a (2m−j)-face of P that is the intersection of
facets with normals N1, . . . ,Nj say, then in TP(F),Y1 = ··· = Yj = 0. Hence, TP(F) is
contained in the (d−j)-face of ∆d that is the intersection of the facets Y1 = 0, . . . ,Yj =
0. The foregoing argument also shows that the relative interiors of any two distinct
(2m−j)-faces of P are mapped into the relative interiors of two distinct (d−j)-faces
of ∆d.
Since the number of (2m−j)-faces of P equals the number of (d−j)-faces of ∆d for

1≤ j ≤m, we conclude that the 2m-flat L= TP(R2m) intersects the relative interiors
of all the (d−j)-faces of ∆d for 1≤ j ≤m.
Now, if we setm= d−k, then 1≤ j ≤m implies that d−j ≥ k. Hence, the 2(d−k)-

flat L intersects the relative interiors of all the faces of dimension k and higher in ∆d,
which proves the theorem for the standard simplex ∆d.
But any d-simplex is an affine image of the standard d-simplex ∆d. Further, affine

transformations map affine flats to affine flats and preserve incidence relations. Thus,
the theorem is true for any d-simplex.
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As mentioned earlier, for k ≤ �d/2�, it follows from Bezdek, Bisztriczky, and
Connelly’s result [2] that no proper affine subspace of Rd can intersect the relative
interiors of all the k-faces of a d-simplex. Therefore, an important problem is to de-
termine for all 0≤ k, j < d, the function C(j,k;d), defined as the smallest number of
j-flats, j < d, needed to intersect the relative interiors of all the k-faces of ∆d. Using
probabilistic arguments, we prove

Theorem 2.

C(j,k;d)≤

(d+1
k+1

)
(w+1
k+1

) log
(d+1
k+1

)
, (8)

where

w =min
(
max

(⌊
j
2

⌋
+k,j

)
,d
)
. (9)

Proof. From Theorem 1, we see that forw as defined above, the relative interiors
of all the k-faces contained in aw-face of ∆d can be intersected by a j-flat. Since every
k-face in any w-face of ∆d can be intersected by one j-flat, an upper bound on the
number ofw-faces needed to cover all the k-faces of ∆d yields an upper bound on the
number of j-flats needed to intersect all the k-faces of ∆d. In the following, we show
that

((
d+1
k+1

)/(
w+1
k+1

))
log

(
d+1
k+1

)
w-faces suffice to cover all the k-faces of ∆d thereby

proving the theorem.
Let V = {v0, . . . ,vd} be the vertex-set of ∆d. Every subset ofw+1 of the d+1 vertices

of V determines aw-faceW which contains
(
w+1
k+1

)
k-faces of ∆d. Let�= {W1, . . . ,Wr}

be an r -collection of w-faces of ∆d, where Wi,1 ≤ i ≤ r , are chosen randomly and
independently from among the

(
d+1
w+1

)
w-faces of∆d;W1, . . . ,Wr need not all be distinct.

Consider an arbitrary k-face of K of ∆d. Let W̃ be an arbitrary w-face of ∆d (W̃ need
not necessarily belong to �). Then the probability that the w-face W̃ contains the
k-face K is

p
[
k⊂ W̃]=

(d−k
w−k

)
(d+1
w+1

) = (d−k)!(d−w)!(w+1)!(w−k)!(d−w)!(d+1)!

= (d−k)!(w+1)!(k+1)!
(w−k)!(d+1)!(k+1)! =

(w+1
k+1

)
(d+1
k+1

) .
(10)

Therefore,

P
[
K �⊂ W̃]= 1−

(w+1
k+1

)
(d+1
k+1

) . (11)

The probability that none of the randomly chosen w-faces of �, namely, W1, . . . ,Wr ,
contains K is hence



SECTIONS OF SIMPLICES 405

P
[
(K �⊂W1)∧···∧(K �⊂Wr)

]=

1−

(w+1
k+1

)
(d+1
k+1

)



r

. (12)

Label the k-faces of ∆d, K1, . . . ,K(d+1
k+1

). Let Ai be the event that Ki does not belong to
any of the w-faces of �, 1≤ i≤

(
d+1
k+1

)
. Then the probability that a randomly chosen

r -collection of w- faces � does not contain at least one k-face is

P
[
A1∨···∨A(d+1

k+1
)
]
≤
(d+1
k+1

)

1−

(w+1
k+1

)
(d+1
k+1

)



r

. (13)

Therefore, if P
[
A1∨···∨A(d+1

k+1
)]< 1, then P[Ā1∧···∧Ā(d+1

k+1
)]> 0 and hence some

r -collection of w-faces must cover all the k-faces of ∆d. Āi denotes the complement
of the event Ai. Thus, we want

(d+1
k+1

)

1−

(w+1
k+1

)
(d+1
k+1

)



r

< 1 or r ln


1−

(w+1
k+1

)
(d+1
k+1

)

+ ln

(d+1
k+1

)
< 0 (14)

or

r >
− ln

(d+1
k+1

)

ln
(
1−

(w+1
k+1

)/(d+1
k+1

)) . (15)

The direction of the inequality is changed in equation (15) since, forw <d,
(
w+1
k+1

)
<(

d+1
k+1

)
and hence

ln


1−

(w+1
k+1

)
(d+1
k+1

)

< 0. (16)

For 0<x < 1, − ln(1−x)≥ x since f(x)= e−x−1+x ≥ 0 for 0<x < 1 (f (0)= 0 and
f ′(x) > 0 for 0<x < 1). Hence,

r >
ln
(d+1
k+1

)
(w+1
k+1

)/(d+1
k+1

) �⇒ r >
− ln

(d+1
k+1

)

ln
(
1−

(w+1
k+1

)/(d+1
k+1

)) . (17)
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Therefore, for any r >
((
d+1
k+1

)/(
w+1
k+1

))
ln
(
d+1
k+1

)
, P
[
Ā1∧···∧ Ā(d+1

k+1
)
]
> 0 and hence

there exists a collection of
((
d+1
k+1

)/(
w+1
k+1

))
ln
(
d+1
k+1

)
w-faces of ∆d which covers all the

k-faces of ∆d whose relative interiors can be intersected by a j-flat.

From the discussion at the beginning of the proof of Theorem 2, we obtain the lower
bound (w+1

k+1
)
≤M(j,k;d), (18)

(see the statement of Theorem 2 for the definition of w). In the following, we prove
a nontrivial upper bound on M(j,k;d). For k+ j ≥ d (and only when k+ j ≥ d), we
can assume, without loss of generality, that any j-flat J intersecting the k-faces of ∆d

actually intersects the k-faces in general position. That is

Lemma 1. For every j-flat J, 1 ≤ j < d, there exists another j-flat J̃ (obtained by
perturbing J) such that for k≥ (d−j),
(1) J̃ intersects the relative interiors of a k-face of ∆d if and only if J does.
(2) If J̃ intersects the relative interiors of a k-face K, then dim(̃J∩K)= k+j−d.
Proof. The j-flat J can be represented as the solution set of a system of d− j

equations in d variables, i.e.,

j =
{
x ∈ Rd |Ax = b;A : (d−j)×d matrix; rank(A= d−j)

}
. (19)

Let {K1, . . . ,Kr} be the set of all the k-faces whose relative interiors are intersected by
J. Let Si be the affine span of Ki, 1≤ i≤ r . Then Si can be represented as a system of
d−k linear equation in d variables. Let

Si =
{
x ∈ Rd | Cix =αi

}
, (20)

where Ci is a (d−k)×d matrix and rank(Ci)= d−k.
Since J ∩ Si =

{
x ∈ Rd | Ax = b; Cix = αi}, dim(J ∩ Si) = d− rank

[(
A
Ci

)]
. Hence,

dim(J∩Si)= dim(J∩Ki)= k+j−d if and only if the rank of the matrix Mi =
(
A
Ci

)
=

(d−k)+(d−j)= the number of rows in Mi.
Clearly, by an infinitesimal perturbation δA, one can ensure that M̃ =

(
A+δA
Ci

)
has

rank(d−j)+(d−k) for all 1≤ i≤ r . Further, since the solution set J depends contin-
uously on the entries in A, if the absolute value of each element of δA is bounded by
a sufficiently small ε > 0 and

J̃= {x ∈ Rd | (A+δA)x = b}, (21)

then J̃∩ relative interior (Ki) �= ∅ for 1≤ i≤ r .

The restriction k+ j−d ≥ 0 in the statement of the lemma cannot be done away
with because if k+j < d, then the (2d−k−j)×d matrix Mi (see above) would have
more rows than columns. Therefore, in the system of equations

Ax = b, Cix =αi, (22)
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if the rows of A are perturbed to include full row-rank in the matrix M , the resulting
system could become inconsistent. In order to make an inconsistent system consis-
tent, the right-hand side constants need to be perturbed and the required perturba-
tions of the right-hand side constants may not be small enough to ensure that J̃ will
continue to intersect the relative interior of every k-face that is intersected by J. The
restriction k+j−d≥ 0 in Lemma 1 carries over to the following Theorem 3. The prob-
lem of proving Theorem 3 when k+j < d is harder and we present some observations
about the following Theorem 3.

Theorem 3. For large d and for all k such that k+j ≥ d,
M(j,k;d)≤ f⌈

3j/4
⌉(d+1,j). (23)

Proof. To determine M(j,k;d), it is sufficient to restrict our attention to the j-
flats that intersect the interior of ∆d (if the j-flat does not intersect the interior of
∆d, then it intersects the relative interiors of only the k-faces that are contained in a
proper subface of ∆d. However, clearly, M(j,k;d1)≤M(j,k;d2) if d1 ≤ d2). Let J be a
j-flat intersecting the interior of ∆d. Then

P = J∩∆d (24)

is a j-polytope.
If the j-flat J intersects the relative interior of a k-face K of ∆d, then from Lemma 1,

we may assume, without loss of generality, that dim(K ∩ J) = k+ j −d. Therefore,
the number of k-faces of ∆d whose relative interiors are intersected by the j-flat J is
at most the number of (k+ j−d)-faces in P. Now, P has at most d+1 facets as the
following argument shows. If F is any facet of ∆d and H the hyperplane determined
by F , thenH∩P is a face of P (possibly empty). Hence,H can contain at most one facet
of P. Repeating this argument for the d+1 facets of ∆d, the claim follows. Therefore,
we conclude that M(j,k;d) is at most the number of (k+j−d)-faces in a j-polytope
with d+ 1 facets. Dually, M(j,k;d) is at most the number of (d−k− 1)-faces in a
j-polytope with d+1 vertices. By the Upper Bound Theorem, we conclude that

M(j,k;d)≤ fd−k−1(d+1,j), (25)

where fd−k−1(d+1,j) is the number of (d−k−1)-faces in a cyclic j-polytope with
d+1 vertices. In order to determine an upper bound valid for all k (i.e., independent of
k), we need to maximize the function fd−k−1(d+1,j) with respect to k. Unfortunately,
even though explicit formulae are known for fm(n,j) for all values ofm, n, and j, the
problem of maximizing fd−k−1(d+1,j) with respect to k is not tractable. However, in
the large d limit, we can determine the maximum of fd−k−1(d+1,j) with respect to k
as follows.
We have

ft(n,2m)=
m∑
r=1

n
n−4

(n−r
r

)( r
t+1−r

)

=
m∑
r=1

n(n−r −1)(n−r −2)···(n−2r +1)
r !

( r
t+1−r

)
, 0≤ t ≤ 2m−1,

(26)
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ft(n,2m+1)=
m∑
r=0

t+2
n−4

(n−r
r +1

)( r +1
t+1−r

)

=
m∑
r=0

(t+2)(n−r −1)(n−r −2)···(n−2r)
(r +1)!

( r +1
t+1−r

)
, 0≤ t ≤ 2m.

(27)

Both ft(n,2m) and ft(n,2m+1) can be viewed as polynomials ofnwhose coefficients
are functions of t andm. In order to determine the t at which ft(n,2m) and ft(n,2m+
1) are maximized for large n, we need to maximize the coefficient of the leading term
in the polynomials with respect to t.
The coefficient of the leading term in ft(n,2m) is

1
m!

(
m

t+1−m

)
, (28)

which is maximized at t+1−m= �m/2� or at t =m−1+�m/2�. On the other hand,
the coefficient of the leading term in ft(n,2m+1) is

(t+2)
(m+1)!

(
m+1
t+1−m

)
= (t+2)
(m+1)!

(
m+1

(t+2)−(m+1)

)
, (29)

which is maximized at (t+2)−(m+1)= �(m+1)/2� or t =m−1+�(m+1)/2� (it is
easy to verify that x

(
y
x−y

)
is maximized at x =y−�y/2�). To summarize, if for large

n, ftmax(n,s)≥ fi(n,s), 0≤ i≤ s−1, then

tmax =



m−1+

⌈
m
2

⌉
, if s = 2m,

m−1+
⌈
m+1
2

⌉
, if s = 2m+1.

(30)

Table 1 expresses tmax in terms of the dimension s.

Table 1.

s = 2m s = 2m+1
m

tmax =m−1+
⌊
m
2

⌋
tmax =m−1+

⌊
m+1
2

⌋

s = 4l s = 4l+1
2l

tmax =
⌈
3s
4

⌉
−1 tmax =

⌈
3s
4

⌉
−1

s = 4l+2 s = 4l+1
2l+1

tmax =
⌈
3s
4

⌉
−1 tmax =

⌊
3s
4

⌋
−1

In the following discussion, we use a loose summary of the above table by assuming
that ft(n,s) is maximized at t ∼ (3s/4)−1 for large n. The reader can refer back to
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the above table for precision.
Recall from an earlier discussion that M(j,k;d) ≤ fd−k−1(d+1,j). The above argu-

ment shows that fd−k−1(d+1,j) is maximized for d−k−1∼ (3j/4)−1 for large d,
M(j,k;d)≤ f(3j/4)−1(d+1,j). (31)

Given a j < d, one can find a k such that M(j,k;d) attains the upper bound in (31) as
follows. Consider a dual-cyclic j-polytope with d+1 facets C∗(d+1,j). From the proof
of Theorem 1, we see that when C∗(d+1,j) is realized as the intersection of a j-flat
J with ∆d, the ((3j/4)−1)-faces of C∗(d+1,j) are realized as the intersections of J
with the (d−(j/4)−1)-faces of ∆d. Setting k = d−(j/4)−1, we see that J intersects
f(3j/4)−1(d+1,j) k-faces of ∆d, which proves the tightness of the bound in (31).
The requirement that k+j ≥ d is crucial in the proof of Theorem 3. When k+j < d,

if K1 and K2 are two k-faces of ∆d intersected by a j-flat J, then observe that although
J ∩K1 and J ∩K2 are not in general (k+ j −d)-faces of the j-polytope P = J ∩∆d
(see the discussion following Lemma 1), they are incomparable faces of P (recall that
two faces of a polytope are said to be incomparable if neither is contained in the
other). Hence, we conclude that M(j,k;d) is bounded above by the size of the largest
set of incomparable faces in a j-polytope with at most d+ 1 facets. In the lattice
terminology, a set of incomparable elements in a lattice is called an antichain. Thus,
stated differently,M(j,k;d) is bounded by the size of the largest antichain in the face
lattice of a j-polytope with at most d+1 facets. If Q is an n-polytope with f -vector
f(Q)= (f0, . . . ,fn−1), then define fmax(Q)=max{fi(Q) | 0≤ i≤n−1}.

Conjecture 1. The size of the largest antichain in the face lattice of an n-polytope
with v vertices is at most fmax(C(v,n)), where C(v,n) is the cyclic n-polytope with v
vertices.

The conjecture, if proved, would imply (together with the asymptotic value of
fmax(C(v,n)) computed in the proof of Theorem 3) that M(k,j;d) ≤ f(3j/4)−1(C(d+
1,j)) for large d even when k+j < d.

3. Unresolved problems. In conclusion, we summarize some of the unresolved
problems concerning the sections of simplices. We do not believe that the upper bound
on C(j,k;d) is tight. Obtaining tight upper and lower bounds on C(j,k;d) appear
to be very interesting problems geometrically. Apart from the conjecture mentioned
above, the problem of obtaining a tight upper bound on M(j,k;d) which is valid for
all d remains open. Finally, while the f -vector of a cyclic d-polytope is shown to peak
around (3d/4)−1 when the number of vertices is large, location of the maximum in
the f -vector for small vertex-numbers is not well known although explicit formulae
are available for the numbers of faces of every dimension in a cyclic polytope.
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