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ABSTRACT. In this paper, we study a mixed problem with a nonlocal condition for a class
of second order singular hyperbolic equations. We prove the existence and uniqueness of
a strong solution. The proof is based on a priori estimate and on the density of the range
of the operator generated by the studied problem.
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1. Position of the problem. In the domain Q = (0,R) x (0,T), with 0 < R < o and
0 < T < o, we consider a second order hyperbolic equation with the Bessel operator

Sffu:vtt—%w—vw =f(r,t), (r,t)€qQ. (L.1)

We adjoin to the above equation the initial conditions

Uv=v(r,0)=d1r), re(0,R),

Lov =vi(r,0)=Y(r), re(O,R), -2

and the boundary conditions

R
JO v tdr =m(t), te(,T), w3

vr(R, 1) =p(t), te(0,T),

where f(7,t),®(r),¥Y(r), m(t), and u(t) are known functions. We assume that the
data satisfies the following compatibility conditions:

R
JO r®(r)dr = m(0), ®, (R) = u(0), (1.4)

R
JO r¥(r)dr =m’(0), ¥, (R) = u’(0). (1.5)
Problem (1.1), (1.2), and (1.3) can be viewed as a nonlocal boundary problem for a
singular hyperbolic equation. This problem has not been studied previously. In the
case when in equation (1.1), instead of the Bessel operator, we have the operator
(a(r,t)vy),, with the Neumann condition and a linear constrain defined by fol v(r,t)dr
= 0, we refer the reader to Bouziani [2]. For other problems with integral conditions,
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we turn back to Bouziani [3, 1, 4] and references therein.

In this paper, we prove the existence, uniqueness and continuous dependence upon
the data of a strong solution of problem (1.1), (1.2), and (1.3). For this, we transform
problem (1.1), (1.2), and (1.3) with inhomogeneous boundary conditions (1.3) to an
equivalent problem with homogeneous conditions by introducing a new unknown
function u defined as follows:

ulr,t) =vr,t)-U(r,t), (1.6)

where

m(t). (1.7)

4(r —R)? 12(r —=R)?
Utr,t) =7 (r—R) () + =S

Then, the problem (1.1), (1.2), and (1.3) can be formulated in the following way.

$u = f(r,t)-2U =£(r,t), (1.8)

Hu=0r)-U=p), Lu=Yr)-0U=yk), (1.9)
R

Jo ru(r,t)dr =0, u,y(R,t) =0. (1.10)

Instead of searching for the function v, we search for the function u. So, the solution
of problem (1.1), (1.2), and (1.3) is given by v(r,t) = u(r,t) + U (7,t).

2. Function spaces. For the investigation of the posed problem, we need some
function spaces. Let Lf, (Q) be the weighted L2-space with finite norm

1/2
||u\|L%(Q) = (JQruzdrdt) ) (2.1)

The scalar product in L% (Q) is defined by
(W W)z () = (U, W)12(q)- (2.2)
Let Vpl‘O(Q) be the Hilbert space with scalar product
(W, V) 109y = (U W) 12 o) + (Ur, Wr) 13q), (2.3)
and with associated norm
||u||‘2/;~0(Q) = H”Hi%(Q) + ||uT||i%(Q)' (2.4)

Weighted function spaces on the interval (0,R), such as Lﬁ(O,R) and V;}(O,R), are
used. Their definitions are analogous to those defined on Q.
The problem (1.8), (1.9), and (1.10) can be written in the following operator form:

Lu=%. (2.5)

Lu = ($u,tiu,l>ru), F = (f,@,y). The operator L acts from E to F, where E is the
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Banach space of functions u € L%, (Q), satisfying conditions (1.10), with the finite norm
2 2 2
lually = sup ([ute (D3 0+ 1 g o)) (26

and F is the Hilbert space L5(Q) x V,(0,R) x L3(0,R), which consists of elements
F = (f, @, ) with finite norm

2 2 2 2
FIE = 1Lf 122 0) + 1Wllzz 0.p) + 1@1Va 00 - 2.7)

The domain of definition D (L) of an operator L is the set of all functions u € L2(Q)
for which u;, wsr, Uy, Uer, Uy € L2(Q) and satisfying conditions (1.10).
Let L be the closure of an operator L with domain of definition D (L).

DEFINITION. We call a strong solution of the problem (1.8), (1.9), and (1.10), the
solution of the operator equation

Lu=% forallueD(L). (2.8)

3. Energy inequality and its consequences

THEOREM 1. For any function u € D(L), we have the energy inequality
lullg < clliLullr, (3.1)

where c is a positive constant independent of the solution u.

PROOF. We consider the scalar product in L%(Q7) of the equation (1.8) and the
operator

Mu =7rus—7v32(puy), (3.2)
where Q7 = (0,R) x (0,T) with 0 < T < T, and 32(pu,) = [y J§ nucdndp, we get

(iu,Mu)Lz(Qr) =- (utt,TS$(put))L2(QT) + (urr,ng(Put))Lz(QU
+ (ur, Sg(put))LZ(QT) + (Uee, TUL) 12 (gr) (3.3)
- (u’l’Vyrut)LZ(QT) - (uT!ut)LZ(QT)-

Using conditions (1.9) and (1.10), and integrating by parts each integral term of the
right-hand side of (3.3) gives

1 2 1 2
— (U, ¥ 37 (pur)) 2y = EHSV(put('!T))HLZ(O,R) - E”SV(pW)HLZ(O,R)’ (3.4)
(Urr, 32 (pUt)) 12 0r) = — (Ur, 7T (PUL)) 120y — (U, T2 (PUL)) 207, (3.5)
1 2 1 2
(utt,rut)LZ(Q-r) = EHut (T’T)HL%(O,R) - EHWHL%(O,R)’ (36)

1 2 1 2
—(Urr, ) 2 (gry = §||”V(T'T)||L,%<0,R> - EH(pTHL,Z;(O,R) +(ur,ue) 2. B.7)
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Substituting (3.4), (3.5), (3.6), and (3.7) into (3.3), we obtain
1 2 1 2 1 2
§||Sr(Put('aT))||L2(o,R) + E”ut('sT)HL,%(o,R) + §||”r('sT)HL,2,(o,R)

1 2 1 2 1
= EHSV(pW)HLZ(o,R) + EHWHL%(O,R) + EH(pV”IZ_I%(O,R) + (urﬂ’sr (put))LZ(QT)

+ (Lu,vu) 2 gry — (LU, ¥ I3 (rue)) 2 gry-

(3.8)

Using the Cauchy inequality, the last three terms on the right-hand side of (3.8) can

be estimated as follows:

1 2 R 2
(uh”sr(Put))LZ(QT) = §||u7||L%(QT) + §||Sr(put)||L2(QT)!
1 2 1
(EBu,Tut)Lz(QT) < E||§Bu||L%(QT) + EHutHL‘ZJ(QT),
2 1 2 R3 2
—(Pu,r37(put))2(gr) < §||55u||Lg(QT) + ZHST(put)HLZ(QT)'

Substitution of (3.9), (3.10), and (3.11) in (3.8) gives the following inequality:
2 2 2
||Sr(Put('yT))||L2(o,R> +||”t(':T)||L§,(o,R) +||ur('sT)HL,2,(o,R)
2 2 R* 2
< 2ljullE3 gr, + 130 + (5 + 1) 1912 0
R R? 1 g 2 2 2
+ ?+ -l r(Put)HLZ(QT)+Hut”L5(QT)+||ur”L5(QT)-
By virtue of the elementary inequality,
2 2 2 2
||u(7’sT)||L,%(0,R) = ||uHL§,(QT) + H”tHL'f,(QT) + |’(p||L%(0,R)’
and (3.12), we have
2 2 2
||Sr(P”t(TvT))||L2(0,R> +||7/£(7"T)||v,}(0,12) +Hut(7’sT)HL,2,(o,R)
2 2 2
=cC1 (||££u||L%,(QT) + ||W||L,2,(0,R) +lolln (0,R)>

2 2
+C2 (HuHV‘l‘O(QT) + HutHL,Z;(QT)>’
4
c :max(<%+1>,2>

2
Co =max(1,R(1+ %))

Applying [2, Lem. 1], to the above inequality, we get

where

and

2 2 2
||5r(Put(T,T))||L2(0,R) + ||u(T:T)||v3(o,R) + H”t(VsT)HLf,(o,R)
. 2 2 2
< e (|Lf Iz om) +1@lEy 00 + 191172 0)

; 2 2 2
< c1e (|| FllF2i0) + 121 0 + 1117200, )-

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Since the first term on the left-hand side of (3.17) is positive, we have

2 2 2 2 2
||u(7’,T)||Vg(o,R) + H”t(T’T)HL%(o,R) = CleczT(HfHLg(Q) + ||(PHVP1(0,R) + ||W||L§(0,R))-
(3.18)

The right-hand side of the above inequality does not depend on T. By taking the
supremum with respect to T over 0 to T, we get the desired inequality (3.1) with
c=cjl?ecTl2, O

PROPOSITION 1. The operator L acting on E into F is closable.

PROOF. Let u, € D(L) be a sequence such that

unHO inE (3.19)
and
Luy ——F = (f,@,¥) inF, (3.20)

we then must show that f =0, p =0, ¢ =0.
Since (3.19) holds, then we have

Un——0 in%(Q), (3.21)

n—oo

where %' (Q) is the space of distributions on Q.
By virtue of the continuity of derivation of %' (Q) in %' (Q), (3.21) implies that

Fuy — 0 in%'(Q). (3.22)
According to (3.20), we have

Fun—— f in L3(Q). (3.23)
Then

§£unmf in %' (Q). (3.24)

By virtue of the uniqueness of the limit in %’ (Q), we conclude that f = 0.
According to (3.20), we also conclude that

ﬂlunm(p in V,(0,R) (3.25)

and that the canonical injection from V‘} (0,R) into 9’ (0,R) is continuous. Hence, we
deduce that

Yrun, — @ in %' (0,R). (3.26)
Moreover, since (3.19) holds and
||€1un||vg(o,R> <|lunllg Vn, (3.27)

we have

Orun 0 inV,(0,R). (3.28)

Nn—o00

Hence,
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ﬂlunHO in @' (0,R). (3.29)

By virtue of the uniqueness of the limit in %’(0,R), we conclude, from (3.26) and
(3.29), that @ = 0. Using the same procedure, we can show that ¢ = 0. This proves
Proposition 1. O

The inequality (3.1) can be extended to strong solutions after passing to limit, that
is we have

[lu|lg < c||Lul|p for all D(L). (3.30)

The above inequality leads to the following results:

COROLLARY 1. If a strong solution of the problem (1.8), (1.9), and (1.10) exists, it is
unique and depends continuously upon the data % = (f, @, ) € F.

COROLLARY 2. The range R(L) of the operator L is closed and equals to R(L).

4. Existence of the solution

THEOREM 2. For each f € L3(Q), @ € V}(0,R), and ¢ € L5(0,R), there exists a
unique strong solution u = I'g=11% of the problem (1.8), (1.9), and (1.10) satisfying
the estimate

[lulle = eIl 4.1

where c is a positive constant independent of the solution u.

PROOF. From the inequality (3.1), it follows that the operator L has an inverse and,
from Corollary 2, we deduce that the range R(L) of the operator L is closed. Hence,
it suffices to prove the density of the set R(L) in F, thatis R(L) = F. First, we need to
prove the following proposition.

PROPOSITION 2. If, for any w € L>(Q) and for all u € Do(L) = {u | u € D(L) :
Y1u =tru =0}, we have

(1, )2, =0, 4.2)

then w vanishes almost everywhere in Q.

PROOF OF THE PROPOSITION. Relation (4.2) is given for any function u € Dy(L),
S0 we can express it in the following particular form:
Let u be the solution of the equation

e — 37 (puw) =Y (r,1), (4.3)
where
T
Y(r,t) = J w(r,T)dT. (4.4)
t

And let the function u be defined by



ON A CLASS OF SINGULAR HYPERBOLIC EQUATION ... 517

0, ifO<tx<s,
=t . (4.5)
Ji(t=T)U.rdT, ifs<t<T.
From relations (4.3) and (4.4), we have
W (¥, t) = (—up + 3% (pus)),- (4.6)

The function u defined by relations (4.3) and (4.5) which imply that u is in Dy (L), has
a high order of smoothness.

LEMMA. The function u defined by (4.3) and (4.5) has derivatives with respect to t
up to the third order and belongs to LE,(QS), where Qs = (0,R) X (s,T).

PROOF. For the proof, the reader should refer to [4]. O

To complete the proof of Proposition 2, we replace w in (4.2) by its representation
(4.6). We have

- (uttsuttt)L‘Zj(Qs) + (uttagg(puttt))L%(Qﬂ + (uﬁuttt)LZ(Qs) “7)
- (urygg(puttt))LZ(Qs) + (uTT!uttt)L%(Qs) - (uTTlsg(puttt))L%(Qs) =0. '

Conditions (1.10), the special form of u given by relations (4.3) and (4.5), and an
integration by parts for each term, give

1
_(utt,uttt)L%(QS) = EH”H(T’S)HiZ(o,R)’ (4.8)
1 2
(uttvgg(puttt))L%(Qs) = EHf;;%(putt(P,S))HLZ(O’R), (4.9)
(ur,uttt)LZ(Qs) = _(urt,utt)LZ(QS), (4.10)
1
(uw,um)L%(Qs) = EHurt (T'T)||i%,(0,R) + (uytyutt)LZ(QS); (4.11)

_(urryg;%(puttt))L%(Qx) = —(urt, 3r (PUL)) 130, + (Ur, 37 (PUL)) 200y (4.12)
Substituting (4.8), (4.9), (4.10), (4.11), and (4.12) into (4.7), we get

2 2 2
||utt(7’v3)||L;,<o,R)+||”rt(7”T)||L2(0,R) +[3 (puee (PaS))HLZ(o,R)

(4.13)
= 2(urt,5r(Putt))L§,<Q5)'

Using the Cauchy inequality, the right member of (4.13) can be bounded and results

2 2 2
e ()2 0,p) + e r, T[22 0,0) + 1137 (U (7, ) I120,) (414)
2 2 '

< R[urellr2(q,) + RIISr (Puee) [12(qs)-

We observe that the integrand in the second member of (4.14) is independent of s
while in the first member depends on it. In order to avoid this difficulty, we introduce
a new function ¢ defined by the formula

T
S(r,t) = L U AT. (4.15)
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Then

us(r,t) =9(r,s)—9(r,t) and  u.(r,T)=9(r,s). (4.16)
Thus, inequality (4.14) can be written as

||utt(7’us)”i%(0,R) +1|9, (Putt(V,S))HiZ(o,R) +(1 *ZR(T*5))||9r(7’:5)”i2(0,12)

) ) 4.17)
= 2R<||Sf(putt)||L2(Q5) + H9V||L2(QS))'
If 5o > O satisfies 2R(T —sg) = 1/2, then (4.17) implies that
||utt(7’,5)||i%(0’m + ||31’(putt(7”5))||l?:2(0,R) + ||9T(Tv5)”i2(0,R) 4.18)
b 4R|’57(Putt)”i2(Q§) + ||97’H12,2(Q5)
forall s € [T—so,T].
Making
h(s) = ||Sr(putt)||i2(QS)+H91’||I?:2(QS) (4.19)
in (4.18), we get
2 dh
||”tt(7”5)||L§,(o,R>_E <4Rh(s), (4.20)
from which we have,
_4 (h(s)e**s) <0. (4.21)
ds
Since h(T) = 0, an integration of (4.21) with respect to t over [s,T] gives
h(s)-e*®s <0. (4.22)

It follows from inequality (4.22) that w = 0 almost everywhere on Qr_,. Since the
length s is independent of the origin, we use the same procedure a finite number of
times to show that w = 0 in Q. This completes the proof of Proposition 2. O

Let W = (w, w1,w>) € R(L)*, such that
(Fu, ) 3 )+ (€11, 1) y1 o p) + (21, W2) 12 g ) = O (4.23)
Putting u € Do (L) into equation (4.23), we obtain
(%u, w)L%(Q) =0 forall uin Dy(L). (4.24)
Hence, by virtue of Proposition 2, we deduce that w = 0. Thus, equation (4.23) becomes
(ﬂlu,wl)vg(om + (32”'WZ)L§,(0,R> =0. (4.25)

{1u and f>u are independent, and the ranges of the operators £; and ¥, are every-
where dense in the Hilbert spaces V;(O,R) and L%(O,R), respectively. Hence, w; =0
and w> = 0. Consequently, W = 0. This completes the proof of Theorem 2. O
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