
Internat. J. Math. & Math. Sci.
Vol. 22, No. 3 (1999) 587–595

S 0161-1712〈99〉22587-2
© Electronic Publishing House

ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL
INCLUSION WITH NONMONOTONE DISCONTINUOUS

NONLINEAR TERM

GUO XINGMING

(Received 6 June 1998)
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1. Introduction. In the present paper, we investigate the initial boundary value
problem of the following degenerate multi-valued hyperbolic differential inclusion:

ü(t)+B(u)(t)+ϕ(u̇)(t)� f(t), a.e. t ∈ [0,T ],

u(x,t)= 0, a.e. (x,t)∈
∑
= ∂Ω×[0,T ], (1.1)

u(0)=u0, u̇(0)=u1,

where B is a linear and symmetric operator; ϕ is a discontinuous, nonmonotone, and
nonlinear set-valued mapping.

Physical motivations for studying equation (1.1) come partly from problems of con-
tinuum mechanics, where nonmonotone, nonlinear, discontinuous, and multi-valued
constitutive laws and boundary constraints lead to the above variational inequalities
(differential inclusions). For example, when elastobody is constrainted by boundary
friction, (1.1) denotes its control equation; if we study viscoelastical body and the
unilateral problem of plate, (1.1) is also their control equation, etc. [10, 8, 5].

When ϕ is a nonmonotone multi-valued mapping, generally, for such nonmonotone
and discontinuous multi-valued systems, usual monotonicity methods are not valid
[1, 6]. When ϕ degenerates into a class of single-valued mappings and satisfies ap-
propriate conditions, inequation (1.1) become an equation. Equation (1.1) and some of
its evolution equations with which it is associated have been investigated and applied
intensively [7, 3, 2, 9, 11].

In this paper, we investigate the existence and decay of the weak solutions of the
hyperbolic in equation (1.1), with ϕ and B satisfying adequate conditions under zero
boundary conditions.

2. Preliminaries. Let Ω be a bounded open set of Rn with regular boundary Γ . Let
T denote a positive real number, Q = Ω× [0,T ]. Suppose that b ∈ L∞loc(R). For every
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ρ > 0, set

bp
(
ξ
)= ess

|ξ1−ξ|<p
infb

(
ξ1
)
, bp

(
ξ
)= ess

|ξ1−ξ|<p
supb

(
ξ1
)
, (2.1)

and

b
(
ξ
)= lim

p→0+
bp
(
ξ
)
, b

(
ξ
)= lim

p→0+
bp
(
ξ
)
, ϕ

(
ξ
)= [b(ξ),b(ξ)]. (2.2)

Let J(ξ)= ∫ ξ0 b(t)dt. Then ∂cJ(ξ)⊆ϕ(ξ), where ∂cJ(ξ) denotes the Clarke-subdiff-
erential of J.

Remark. If b(ξ±) exists for every ξ ∈ R, then ϕ(ξ) = ∂cJ(ξ). Furthermore, if J is
convex, ϕ(ξ) is maximal monotone. If b is continuous at ξ, then ϕ(ξ) is single-valued
at ξ ([3]).

Let V = H1
0(Ω), 〈· ,·〉 denote the dual pair between V = H1

0(Ω) and V ′ = H−1(Ω),
and (· ,·) the inner product of L2(Ω) which is compatible with the dual pair. Let |x|X
denote the norm of an element x of a Banach space X.

Consider the following initial boundary value problem of a hyperbolic variational
inequation (inclusion):

ü(t)+Bu(t)+g(t)= f(t), a.e. t ∈ [0,T ],

g(x,t)∈ϕ
(
u̇(x,t)

)
, a.e. (x,t)∈QT =Ω×[0,T ], (2.3)

u(x,t)= 0, a.e. (x,t)∈
∑
= ∂Ω×[0,T ],

u(0)=u0, u̇(0)=u1,

where f , u0, and u1 are given.

3. Existence of solution

Theorem 1. Assume that f ∈ L2(0,T ;L2(Ω)),u0 ∈H1
0(Ω),u1 ∈ L2(Ω). If

(1) ∃c > 0,|b(ξ)| ≤ c(1+|ξ|), a.e. ξ ∈ R,

(2) B :H1
0(Ω)→H−1(Ω) is linear, continuous, symmetric, and semicoercive, i.e., ∃c1 >

0, c2 > 0, c3 ≥ 0,

|Bν|H−1(Ω) ≤ c1|ν|H1
0 (Ω)

,

〈Bu,ν〉 = 〈Bν,u〉 ∀u,ν ∈H1
0(Ω), (3.1)

〈Bν,ν〉+c3|ν|2L2(Ω) ≥ c2|ν|2H1
0 (Ω)

∀ν ∈H1
0(Ω),

then there exists a function u, defined in Ω×[0,T ], such that

u∈ L∞
(
0,T ;H1

0(Ω)
)∩ C

(
[0,T ];L2(Ω)

)
,

u̇∈ L∞
(
0,T ;L2(Ω)

)∩ C
(
[0,T ];H−1(Ω)

)
, (3.2)

ü∈ L2(0,T ;H−1(Ω)
)
,

and

ü(t)+Bu(t)+g(t)= f(t) in L2(0,T ;H−1(Ω)
)
,

g(t)∈ϕ
(
u̇(x,t)

)
, a.e. (x,t)∈Ω×[0,T ], (3.3)

u(0)=u0, u̇(0)=u1.
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Proof. Let {en}∞n=1 be a subset ofV =H1
0(Ω) satisfying span{en} = V,(ei,ej)= δij .

Moreover, let xn =
∑n

1 ω
1
i ei→u0 strongly in V,yn =

∑n
1 ω

2
i ei→u1 strongly in L2(Ω).

Consider the following regularized equation of inequation (1.1)

ξ̈n =Nn+h, ξn|t=0 =ω1n, ξ̇n|t=0 =ω2n, (3.4)

where

ξn = {ξni }1×n, ω1n = {ω1
i
}

1×n, ω2n = {ω2
i
}

1×n, h= {〈f ,ei〉}1×n,

Nn = {Nn
i
}

1×n, Nn
i =−

〈
B
( n∑

1

ξnj ej
)
,ei


−
〈
b
( n∑

1

ξ̇nj ej
)
,ei


,

(3.5)

where “·” denotes time derivate.
Equation (3.4) is a set of second-order ordinary differential equation and its local

solution ξn exists on In = [0,Tn],0< Tn ≤ T .
Set un(t)=

∑n
1 ξ

n
j ej (t ∈ In). Equation (3.4) is equivalent to

〈
ün,ei

〉=−〈Bun,ei
〉−〈b(u̇n

)
,ei
〉+〈f ,ei〉, i= 1,2, . . . ,n. (3.6)

Multiplying equation (3.6) by ξ̇ni , summing from i= 1 to i=n, and integrating over
[0, t] (t ≤ In), we get

∣∣u̇n(t)
∣∣2
L2(Ω)+

〈
Bun(t),un(t)

〉+2
∫ t

0

〈
b
(
u̇n
)
, u̇n

〉
dτ

= 2
∫ t

0

〈
f ,u̇n

〉
dτ+(yn,yn

)+〈Bxn,xn
〉
,

∣∣b(u̇n
)∣∣2

L2(0, t;L2(Ω)) =
∫ t

0

∣∣b(u̇n
)∣∣2

L2(Ω)dτ ≤ c
∫ t

0

∫
Ω

(
1+|u̇n|

)2dxdτ

≤ c
2

∫ t

0

(
|Ω|+∣∣u̇n(t)

∣∣2
L2(Ω)

)
dτ

≤ c4+ c
2

∫ t

0

∣∣u̇n(τ)
∣∣2
L2(Ω) dτ,

(3.7)

where |Ω| denotes the Lebesgue measure of domain Ω.
∫ t

0

〈
b
(
u̇n
)
, u̇n

〉
dτ ≤ ∣∣b(u̇n

)∣∣
L2(0, t;L2(Ω)) ·|u̇n|L2(0, t;L2(Ω))

≤ 1
2

(∣∣b(u̇n
)∣∣2

L2(0,t;L2(Ω))+|u̇n|2L2(0,t;L2(Ω))

)

≤ 1
2

{
c4+

(
c
2
+1
)∫ t

0

∣∣u̇n(τ)
∣∣2
L2(Ω)dτ

}
,

(3.8)

∫ t

0

〈
f ,u̇n

〉
dτ ≤ ∣∣f∣∣L2(0,T ;L2(Ω)) ·|u̇n|L2(0, t;L2(Ω))

≤ 1
2

(∣∣f∣∣2
L2(0,T ;L2(Ω))+|u̇n|2L2(0, t;L2(Ω))

)
.

(3.9)

From (3.7), ∃c5 > 0 such that
∣∣u̇n(t)

∣∣2
L2(Ω)+c2

∣∣un(t)
∣∣2
H1

0 (Ω)

≤ c5+c3
∣∣un(t)

∣∣2
L2(Ω)+

1
2

(
c
2
+1
)∫ t

0

∣∣un(τ)
∣∣2
L2(Ω)dτ.

(3.10)
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We note that

un(t)=un(0)+
∫ t

0
u̇ndτ,

∣∣un(t)
∣∣
L2(Ω) ≤

∣∣un(0)
∣∣
L2(Ω)+

∫ t

0
|u̇n|L2(Ω) dτ.

(3.11)

By Hölder inequality, ∃c6,c7 > 0 such that

∣∣un(t)
∣∣2
L2(Ω) ≤ c6+c7

∫ t

0

∣∣u̇n(τ)
∣∣2
L2(Ω)dτ. (3.12)

From (3.10) and (3.12), we obtain: ∃c8,c9 > 0 such that

∣∣u̇n(t)
∣∣2
L2(Ω)+c2

∣∣un(t)
∣∣2
H1

0 (Ω)
≤ c8+c9

∫ t

0

∣∣u̇n(τ)
∣∣2
L2(Ω)dτ,

(
t ∈ In

)
. (3.13)

Hence,

∣∣u̇n(t)
∣∣2
L2(Ω) ≤ c8+c9

∫ t

0

∣∣u̇n(τ)
∣∣2
L2(Ω)dτ,

(
t ∈ In

)
. (3.14)

By Gronwall’s inequality, we have

∣∣u̇n(t)
∣∣2
L2(Ω) ≤ c8 exp(c9t),

(
t ∈ In

)
. (3.15)

Therefore, from (3.12), (3.15), and (3.16), there exists c10 > 0 such that

∣∣u̇n(t)
∣∣
L2(Ω) ≤ C10,

∣∣un(t)
∣∣
L2(Ω) ≤ C10,

∣∣un(t)
∣∣
H1

0 (Ω)
≤ C10,

(
t ∈ In

)
,

(3.16)

where c4,c5,c6,c7,c8,c9,c10 are positive constants independent of n and Tn. The esti-
mate (3.16) implies that we can prolongate the solution of equation (3.4) to the interval
[0,T ], i.e., In = [0,T ] (∀n).

From (3.6), we see that, for every η∈ span{e1,e2, . . . ,en},
∣∣〈ün,η

〉∣∣≤ ∣∣f(t)∣∣L2(Ω) ·
∣∣η∣∣L2(Ω)+

∣∣b(u̇n
)∣∣

L2(Ω) ·
∣∣η∣∣L2(Ω)

+|B|·|un|H1
0 (Ω)

·∣∣η∣∣H1
0 (Ω)

,
(3.17)

where |B| is the norm of the linear continuous operator B.
∣∣ün(t)

∣∣
H−1(Ω) = sup

|η|V=1

∣∣〈ün(t),η
〉∣∣= sup

η∈span{e1,...,en}
|η|V=1

∣∣〈ün(t),η
〉∣∣

≤ c11

(∣∣f(t)∣∣L2(Ω)+
∣∣b(u̇n

)∣∣
L2(Ω)

)
+|B|·∣∣un(t)|H1

0 (Ω)
,

(3.18)

where c11 is the imbedding constant which H1
0(Ω) imbeds in L2(Ω).

∣∣b(u̇n
)
(t)
∣∣2
L2(Ω) ≤ c

∫
Ω

(
1+∣∣u̇n(t)

∣∣)2dx ≤ c
2

(
|Ω|+∣∣u̇n(t)

∣∣2
L2(Ω)

)
. (3.19)

This shows that {b(u̇n)} is also a bounded subset of L∞(0,T ;L2(Ω)). Hence, (3.18)
implies that {ün} is a bounded subset of L2(0,T ;H−1(Ω)).
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Therefore, there exists a subsequence of {un} (still denoted by itself) and a function
u such that u∈ L∞(0,T ;H1

0(Ω)),u̇∈ L∞(0,T ;L2(Ω)),ü∈ L2(0,T ;H−1(Ω)) satisfying

un �→u weakly-star in L∞
(
0,T ;H1

0(Ω)
)
,

u̇n �→ u̇ weakly-star in L∞
(
0,T ;L2(Ω)

)
,

ün �→ ü weakly in L2(0,T ;H−1(Ω)
)
,

b(u̇n) �→ g weakly-star in L∞
(
0,T ;L2(Ω)

)
.

(3.20)

Furthermore, u̇n(t,x)→ u̇(t,x), a.e. (t,x)∈ [0,T ]×Ω.
It is well known that the space W(V), defined by W(V) = {u ∈ L2(0,T ;V),u̇ ∈

L2(0,T ;V ′)} with the norm |u|W = |u|L2(0,T ;V) + |u̇|L2(0,T ;V ′), is continuously imbed-
ded in C([0,T ]; L2(Ω)). It is obvious that u ∈ C(0,T ;L2(Ω)), u̇ ∈ C(0,T ;H−1(Ω)).
Hence, u(0), u̇(0) make sense.

For λ∈ L2(0,T ), by (3.6), we have
∫ T

0

〈
ün,λei

〉
dt =−

∫ T

0

〈
B
(
un
)
,λei

〉
dt−

∫ T

0

〈
b
(
u̇n
)
,λei

〉
dt

+
∫ T

0

〈
f(t),λei

〉
dt, i= 1,2, . . . ,n.

(3.21)

For every given positive integer i, let n→∞ in (3.21). Then, it follows that
∫ T

0

〈
ü,λei

〉
dt =−

∫ T

0

〈
B(u),λei

〉
dt−

∫ T

0

〈
g,λei

〉
dt

+
∫ T

0

〈
f(t),λei

〉
dt, i= 1,2, . . . .

(3.22)

Therefore,

ü(t)+B(u)+g(t)= f(t) in L2(0,T ;H−1(Ω)
)
. (3.23)

In the following, we show that

g(x,t)∈ϕ
(
u̇(x,t)

)
, a.e. (x,t)∈QT =Ω×[0,T ]. (3.24)

Since u̇n(x,t)→ u̇(x,t), a.e. (x,t)∈QT , by Eropob’s theorem [12], for every δ > 0,
there exists a subset Qδ ⊆QT =Ω×[0,T ],|Qδ| ≤ δ,

u̇n(x,t) �→ u̇(x,t) uniformly in QT/Qδ. (3.25)

That is, for every ε > 0, there exists a positive integer N , when n≥N ,
∣∣u̇n(x,t)−u̇(x,t)

∣∣≤ ε ∀(x,t)∈QT/Qδ. (3.26)

It is obvious that

bε
(
u̇(x,t)

)≤ b
(
u̇n(x,t)

)≤ bε
(
u̇(x,t)

) ∀(x,t)∈QT/Qδ. (3.27)

For every µ ∈ L1(0,T ;L2(Ω)), µ ≥ 0∫
QT \Qδ

g(x,t)µ(x,t)dxdt = lim
n→∞

∫
QT \Qδ

b
(
u̇n(x,t)

)
µ(x,t)dxdt

≤
∫
QT \Qδ

bε
(
u̇(x,t)

)
µ(x,t)dxdt, (3.28)
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∫
QT \Qδ

g(x,t)µ(x,t)dxdt ≤ limsup
ε �→0+

∫
QT \Qδ

bε
(
u̇(x,t)

)
µ(x,t)dxdt

≤
∫
QT \Qδ

b
(
u̇(x,t)

)
µ(x,t)dxdt. (3.29)

Analogously, we can obtain
∫
QT \Qδ

g(x,t)µ(x,t)dxdt ≥
∫
QT \Qδ

b
(
u̇(x,t)

)
µ(x,t)dxdt. (3.30)

Hence,

g(x,t)∈ϕ
(
u̇(x,t)

)
, a.e. (x,t)∈QT/Qδ. (3.31)

Letting δ �→ 0+, we get

g(x,t)∈ϕ
(
u̇(x,t)

)
, a.e. (x,t)∈QT =Ω×[0,T ]. (3.32)

Let λ∈ C1[0,T ],λ(T)= 0. Integrating by parts the left-hand sides of equations (3.21)
and (3.22) gives

−〈u̇n(0),λ(0)ei
〉−
∫ T

0

〈
u̇n, λ̇ei

〉
dt = the right of (3.21),

−〈u̇(0),λ(0)ei〉−
∫ T

0

〈
u̇, λ̇ei

〉
dt = the right of (3.22).

(3.33)

Making a comparison between the two equations of (3.33), we get

lim
n→∞

〈
u̇n(0)−u̇(0),ei

〉= 0, i= 1,2, . . . . (3.34)

Therefore,

u̇n(0) �→ u̇(0) weakly in H−1(Ω). (3.35)

The uniqueness of the limit implies that u̇(0)=u1 (in H−1(Ω)).
Let λ∈ C2[0,T ], λ(T)= 0, λ̇(T)= 0. Analogously, integrating by parts the left-hand

sides of equations (3.33), and making a comparison with the obtained results again
gives: u(0)=u0(in L2(Ω)). This completes the proof.

Theorem 2. Let f ∈ L2(0,T ;L2(Ω)),u0∈H1
0(Ω),u1∈L2(Ω). Assume thatb satisfies

(1)′ b(ξ)ξ ≥ −δ for almost everywhere ξ ∈ R, and ∃c > 0,
∣∣b(ξ)∣∣ ≤ c

(
1+ ∣∣ξ∣∣p),

a.e. ξ ∈ R, if n > 2, 0 < p ≤ (2n)/(n−2); if n ≤ 2, 0 ≤ p < ∞, and condition (2) of
Theorem 1 is valid. Then there exists a function v , defined in Ω×[0,T ], satisfying

ν ∈ L∞
(
0,T ;H1

0(Ω)
)
, ν̇ ∈ L∞

(
0,T ;L2(Ω)

)
, (3.36)

and

ν̈+B(ν)+g(t)= f(t) in L1(0,T ;H−1(Ω)+L1(Ω)
)
,

g(x,t)∈ϕ
(
ν̇(x,t)

)
, a.e. (x,t)∈QT =Ω×[0,T ], (3.37)

ν(0)=u0, ν̇(0)=u1.
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Proof. Analogously to Theorem 1, we still may get (3.7), where {en}∞n=1 is a basis of

H1
0(Ω)∩L∞(Ω) satisfying (ei,ej)= δij . Under assumption (1)′,

∫ t
0〈b(u̇n),u̇n〉dτ ≥−δ.

From (3.7), we have

∣∣u̇n(t)
∣∣2
L2(Ω)+c2

∣∣un(t)
∣∣2
H1

0 (Ω)
≤ c4+c3

∣∣un(t)
∣∣2
L2(Ω)+2

∫ t

0

〈
f ,u̇n

〉
dτ. (3.38)

It is easy to see that equations (3.12), (3.13), (3.15), and (3.16) are still true and the
solution of equation (3.4) may still be extended to the interval [0,T ].

By Sobolev Imbedding Theorem, we have, for a.e. t ∈ [0,T ], if n> 2, then

H1
0(Ω)⊂ Lp

∗
(Ω)⊂ Lp(Ω), p∗ = 2n

n−2
, (3.39)

and if n= 2, then

H1
0(Ω)⊂ Lq(Ω) ∀1≤ q ≤∞, (3.40)

so
∣∣un(t)

∣∣
Lp(Ω) ≤ c11

∣∣un(t)
∣∣
H1

0 (Ω)
≤ c11c9; (3.41)

if n= 1, then

H1
0(Ω)⊂ C(Ω), and ditto,

∣∣un(t)
∣∣
C(Ω) =max

x∈Ω

∣∣un(x,t)
∣∣≤ c11c9, (3.42)

where Ω denotes the Closure of Ω and c11 is the imbedding constant which H1
0(Ω)

imbeds in Lp(Ω) or C(Ω). Everyway, we always have that b(u̇n)∈ L∞(0,T ;L1(Ω)) and
{b(u̇n)} is a bounded subset of L∞(0,T ;L1(Ω)).

Therefore, there exists a subsequence of {un}, still denoted by itself, and a function
v , such that ν ∈ L∞(0,T ;H1

0(Ω)), ν̇ ∈ L∞(0,T ;L2(Ω)), satisfying

un �→ ν weakly-star in L∞
(
0,T ;H1

0(Ω)
)
,

u̇n �→ ν̇ weakly-star in L∞
(
0,T ;L2(Ω)

)
,

b
(
u̇n
)
�→ g weakly-star in L∞

(
0,T ;L1(Ω)

)
.

(3.43)

Since the dual of the space H1
0(Ω)∩L∞(Ω) is the space H−1(Ω)+L1(Ω), by (3.6), it

is easy to obtain

ν̈(t)+B(ν)+g(t)= f(t) in L1(0,T ;H−1(Ω)+L1(Ω)
)
. (3.44)

The rest is analogous to that of Theorem 1.
This completes the proof.

4. Decay of solution

Theorem 3. Let T =+∞, f ≡ 0. Suppose that 〈Bw,w〉 ≥ 0,∀w ∈H1
0(Ω). If (b(w),

w) ≥ µ0|w|2L2(Ω), then, under the conditions of Theorem 2, the solution in Theorem 2,
obtained from the regularized equation (3.4), satisfies

∣∣u̇(t)∣∣2
L2(Ω) ≤ µ1 exp(−µ2t), a.e. t ≥ 0, (4.1)

where µ0, µ1, and µ2 are positive constants.
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Proof. Letun be a solution of (3.4), i.e.,un satisfies (3.6) and (3.7). Since (b(w),w)
≥ µ0|w|2L2(Ω), by (3.7), we have

∣∣u̇n(t)
∣∣2
L2(Ω)+

〈
Bun(t),un(t)

〉≤ c12−2µ0

∫ t

0

∣∣u̇n(τ)
∣∣2
L2(Ω)dτ, t ∈ [0,+∞), (4.2)

where c12 is a positive constant independent of n.
If 〈Bw,w〉 ≥ 0,∀w ∈H1

0(Ω) and 〈Bun(t),un(t)〉 ≥ 0, then, by Gronwall inequality,

∣∣u̇n(t)
∣∣2
L2(Ω) ≤ c12 exp(−2µ0t), a.e. t ≥ 0. (4.3)

Since
∣∣u̇n(t)

∣∣
L2(Ω) ≤ c9, u̇n �→ u̇ weakly-star in L∞

(
0,∞;L2(Ω)

)
, (4.4)

it is easy to obtain that u̇n(t)→ u̇(t) weakly in L2(Ω) for almost everywhere t ≥ 0. But
L2(Ω) is a real Hilbert space, hence, |u̇(t)|L2(Ω) ≤ limn→∞|u̇n(t)|L2(Ω), a.e. t ≥ 0 (see
[4]). Finally, we get

∣∣u̇(t)∣∣2
L2(Ω) ≤ c12 exp(−2δ0t), (a.e. t ≥ 0). (4.5)

Remark 1. If Bu = −∆u, ϕ(u) = |u|pu then (1.1) is the equation which was ever
considered by J. L. Lions [6]. J. L. Lions ever obtained the existence and uniqueness. But
at this case, the result of decay of solution is true since the conditions of Theorem 3
is satisfied.

Remark 2. When Bu = −∆u and ϕ denotes the friction potential, equation (1.1)
was considered by P. D. Panagiotopoulos under stronger conditions [8].
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