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ABSTRACT. Let {X,, :n =1,2,3,...} be asequence of i.i.d. random elements taking values in
a separable Banach space of type p and let {A;,;:1=1,2,3,...;n=1,2,3,...} be an array
of random variables. In this paper, under various assumptions of {A; ;}, the necessary
and sufficient conditions for X.;” | A, ; X; — 0 a.s. are obtained. Also, the necessity of the
assumptions of {Ay ;} is discussed.
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1. Introduction. Let {X, :n =1,2,3,...} be a sequence of independent identically
distributed (i.i.d.) random variables and let {a,;:i = 1,2,...,n;n = 1,2,3,...} be a
triangular array of constants. Many papers were devoted to extending various types of
convergence modes to weighted sums W, = > /-, a,; X; in the literature. However, we
are only interested in the work of almost sure convergence. The sequence {Z’f:l an,i}
converging to O at a certain rate as n — o is a traditional assumption. For example,
under the assumption Y[, afm =0m27), W, - 0as.if E|X;|" <o and EX; =0
(See Chow and Lia [3] and Choi and Sung [2]). On the other hand, Padgett and Taylor
[4] extended the usual convergence theorems to weighted sums of random elements
in a separable Banach space. It would be interesting to extend the results with random
weights.

Let {Ap;:i=1,2,...,m;m = 1,2,3,...} be a triangular array of random variables
such that Y1, Afm = O(n=?/") as., Ahmad [1] obtained W,, = >1*; A, X; — 0 a.s.
if E||IX1||" < o0 and EX; = 0. We note that, for the Marcinkiewicz-Zygmund law of
large numbers, we take the uniform weight a,; = n~!/" but the condition > [- , afu- =
O(n~2/") cannot be satisfied. The purpose of this paper is to extend the randomly
weighted sums of a triangular array of random variables to that of an infinite array of
random elements such that the Marcinkiewicz-Zygmund law of large numbers can be
obtained as a corollary.

In Section 2, we establish the Marcinkiewicz-Zygmund law of large numbers in a
separable Banach space of Type p.In Section 3, we consider an infinite array of random
variables {A,;:n,i=1,2,3,...} as the weight under various assumptions of {4},
we obtain that W,, = 3771 A,; X; — 0 as. if and only if EX; = 0 (when it exists) and
EIX1 " < co.
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2. The Marcinkiewicz law in a space of type p. Let (O, F,P) be a probability space
and B be a real separable Banach space with norm || ¢ ||. A random element is defined
to be an F-measurable mapping of Q into B with the Borel o-field. The concept of
independent random elements is a direct extension of the concept of independent
random variables. A detailed account of basic properties of random elements in real
Banach spaces can be found in Taylor [6].

In this section, we prove the Marcinkiewicz-Zygmund law of large numbers in a space
of type p. First, we introduce a space of type p.

DEFINITION 1. Let1 <p <2and {r;:i=1,2,3,...} be a sequence of independent
random variables with Pr(#; = +1) = 1/2. A separable Banach space B is said to be of
type p if there exists a constant C such that

E

n 1/p
<C (Z |xi||”) .0
i=1

n
Zﬂ'xi
i=1

for every n € N and all x4,...,x, €B.
Woyczynski [7] proved the equivalent condition of a space of type p.

LEMMA 1 (WoyczynsKi [7]). Let 1 < p <2 and q > 1. The following properties of B
are equivalent :
(i) The separable Banach space B is of type p.
(ii) There exists C such that, for everyn € N and for any sequence {X;:i=1,2,...,n}
of independent random elements inB with EX; =0,i=1,2,...,n,

a n alp
) <CE (Z IXiIIV) : (2.2)
i=1

Using Lemma 1, some elementary properties of spaces of type p can be easily proved.
Every separable Hilbert space and finite-dimensional Banach space are of type 2. Every
separable Banach space is at least of type 1, and the €7 and L? are of type min{2,p}
for p = 1. If B is a space of type p and 1 < g < p, then B is a space of type q. Before
considering the Marcinkiewicz-Zygmund law of large numbers in a space of type p,
we need the following definition and lemmas.

n

A
i=1

2. Xi

DEFINITION 2. Let B be a separable Banach space, B* the dual space of B, and B’
the unit ball in B*. X is a random element in B. The directionally maximum median of
X is defined by

p(X) E;ug lu(f(X))], (2.3)

where 1 (Y) denotes the minimum median in absolute value of the random variable Y.

LEMMA 2 (Sakhanenko [5]). LetX.,...,X, be independent random elements inB and
Sk = z’i‘:lXi, then, for every t > 0,

Pr( max ||Sk|| > t) < 2Pr<|\5n\| >t — max p(Sn—Sk)). (2.4)
l1<k<n 1<k<n
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LEMMA 3. Let {X,,:n=1,2,3,...} be a sequence of independent random elements
in a separable Banach space. If S, = >[-; X; converges to a random element S in
probability, then S,, converges to S a.s.

PROOF. Since S, converges to S in probability, take € such that 0 < € < 1/2, then
there exists an integer n( such that if m > n = no,

Pr<||Sm—S||>%)<g and Pr(||Sn—SH>§>< (2.5)

€
>
So,

Pr (|[Sm —Sall > €) <Pr<||Sm—S|| > g) +Pr(||Sn—S|| > g) <e< % (2.6)

We have u(||Sy, — Sxll) < € for any m > n < ng, where y(Y) is minimum median in
absolute value of the random variable Y.
By Lemma 2, if m; > n > ny,

Pr( max |}Sm—5n||>2€>s2Pr(||Sml—Sn||>2€— max p(Smy —Sm))
n<m<mg n<m<mi
52Pr(||5m175n||>2€7n<1'¥1n2>§n1”<||5m175m”>> (2.7)

< 2Pr (|[Sm, —Snll > €) < 2¢.

Let m; — oo, then if m > n > ng, we have Pr(maxy, <m ||Sm — Snll > 2€) < 2€.
We obtain S, converges to some random element a.s., and S, converges to S in
probability. Hence, S, converges to S a.s. O

Now, we prove the Marcinkiewicz-Zygmund law of large numbers in a space of
type p.

THEOREM 1. Let B be a separable Banach space of type P and {X,,:n =1,2,3,...}
be a sequence of independent and identically distributed random elements in B. Then,
forany 0 <v < p,

Sn—nc
nl/V

— 0 a.s. (2.8)

for some constant c if and only if E|| X, || < co.
Moreover, ifv =1, c =EX; and 0 <r < 1, c is arbitrary.

PROOF.
NECESSARY PART. Since (2.8) holds,
Xon Sp-mnc (m-1\""S,.1-nc
nir — i T\ n (m—1)lr
whence, by the Borel-Cantelli lemma, > _, Pr(|| X1l > n!/") < c. Thus, E[| X1 ||" < c.
SUFFICIENT PART. Since E[|X1[|" < oo, define Y;, = n V" X, I (| X, |l < n'/") and A =
{(Gj—-DY" < ||X1]| < jY"}. Choose a positive number « such that7 < x < p and & > 1.
We have

00 o8] n
SEIYa =S Zn‘““f
n=1

n=1j-1 A

— 0 as., (2.9)

IXildp =S S el JA 1 1 *dp
J J

Jj=ln=j
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sclzﬁ*“”j ||x1||“dpsclzj X117 dp
j=1 Aj j=1"4i

(2.10)
=1 E||X1]]" <, for some constant c;.
From Lemma 1,
m % m D(/p
E||> (Yi-EY:) sczE<Z||Yi—EYi||p>
o - 2.11)

E||Yi—EYi[|* < 2% Z El|vil|*.

n i=n

|/\
M§

i

We have 2?:1(Yi — EY;) converges to some random element Yy in L%. Therefore,
>, (Y;—EY;) — Y, in probability. By Lemma 3, >I; (Y; —EY;) — Y, a.s. Since

> Pr( )in * Yn) = > Pr(IXill>n") <ElIX1|I" < oo, (2.12)
nl/r
n=1 n=1
S0,
o EX I(IXnll <nt7)) & X
Z- n Sl/yn” Z (nl’/‘r EYn) converges a.s. (2.13)

If 0 < ¥ < 1, we can choose o = 1. Then >,_; E|| Yyl < co. We have > _; (Xp,)/(n'/")
converges a.s. By Kronecker lemma, (S, —nc)/(n'/") converges a.s. for any constant c.

If ¥ = 1, by Kronecker lemma, (S,/n) — (1/n) Z?:] E(X;I(]|X;ll < n)) converges a.s.
and E(X,I(|| X, <n)) — EX;, we have (2.8) holds.

If r > 1, we can show that

[

> T VE || X (1Xn |l > nt/7)||

00

< Zn‘l”E(nxlul(nXlu>n”f))= Sy j 1X1 lldp

n=1 n=1 Jj=n+l1

S w1 [ xulidp < '—1”-WJ X, lld
g JAJ_II ldp < 257 3G =D Xl

(2.14)

u|_\/]g

.
. 5 [ ixirap - eI <o
j=174

Therefore, 37_; (X, — EX1)/n'/" converges a.s. We have (2.8) holds by Kronecker
lemma. O

3. The convergence of the weighted sums. Throughout this section, we deal with
the almost sure convergence of randomly weighted sums > A, ;X;, where {X,, :
n=1,2,3,...} is a sequence of independent and identically distributed random ele-
ments in a space of type p and {A,;:n,i=1,2,3,...} is an array of random variables
satisfying some conditions.
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THEOREM 2. LetB be a separable Banach space of type p. Let {X,, :n =1,2,3,...} be
a sequence of independent and identically distributed random elements in B such that
E|IX1]" < o0 andr < p. Moreover, we assume that EX; = 0 whenv = 1. Let {Ay,;:n,i =
1,2,3,...} be an array of random variables such that { A, ;} and {X;} are independent
and satisfying

Ani=0("Y") as. for everyn, (3.1)
}Llln Ani=0 a.s. for every i, 3.2)
D E|Ani|" <o foreveryn, (3.3)
and i=1
> iV Api—Anic1| <M as. for every n and some constant M > 0. (3.4)
i-1
Then
lim > AniXi =0 as. (3.5)
i=1
Conversely, if '
lim > AniXi=0 as. (3.6)

i=1
for all arrays {Ay i} satisfying the above conditions, then E|| X1 || < co.

PROOF. Since {A,;} and {X;} are independent, if » > 1, we choose p = q =* in
Lemma 1, then

.,
E (Z ||An,l-xi|) < D> ElAni|"ElIX1|I" < . (3.7)

i=1 i=1

If » <1, it is obvious that

v
E (Z ||An,iXi|) < D E[An;|"ElIX1]I" < o0, (3.8)
i=1 i=1

Therefore, > ;7 A, i X; converges a.s.

Since Ay, = A, ; — A, ;, without loss of generality, we can assume that A, ; > 0.

Let Sy = Z’leXi, Yy = (Sk/kY7) for every k = 1 and Sy = 0. By Theorem 1, we have
lil’l’lkaw Yy =0 a.s.

D AniXi= D Api(Si—Si-1) = lim ( D (Ani—Anii)Si +An,NSN) : (3.9)
i=1 i=1 N=e<\ {0
Since {i'/" A, ;} is bounded a.s. for every n and v,
I\IIim Ap NSy = }jim (NY"ApN)Yn =0 as. (3.10)
We have

Z Ap,iXi= Z it (Ani—Ania)Yi as. (3.11)

i=1 i=1
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Let By, =1'""(Ay,i—An,i+1). Hence, > 72 |By il <M a.s. for every n and limy, . By ; =0
a.s. for every i. Define D = {w :lim; .., Y;(w) = 0} and D}, = {w: 337 |Bni(w)| < M}
for each n and Di2 = {w :limy . By i(w) = 0} for each i. For every w € D°n72, (Dl.1 N
D?) and every € > 0, we can choose A such that ||Y;(w)| <efori= A,

[ A-1 )
DB (w)Yi(w) < > B (w) [1Yi(w) [l + > 1Bni (w) [ Yi(w)]|

i1 i-1 i—A
. (3.12)
< max IYi(w)ll > |Bni(w)|+Me — Me asn — o.
t=A- i=1
Since Pr(D° NN, (D} ND?)) = 1, limy e > | By,:Yill = 0 a.s. Therefore,
}L%;An,ixi = %%;Bn,iyi =0 as. (3.13)

If limy e >.jvq An,iXi = 0 a.s. for all arrays {A, ;} satisfying the above conditions,
we can choose

A n 1 ifi<mn, (3.14)
"o if i > n. '
Then (2.8) holds. By Theorem 1, we have E|| X, ||" < oo. O

REMARK 1. The following example claims that condition (3.4) cannot be omitted.
Consider the real number space R as a space of type 2. Choose a sequence {X, :n =
1,2,3,...} of independent and identically distributed random variables with EX 12 <
and EX; = 0. Define

nl2 ifi<n,
Ani = , (3.15)
0 if i > n.

Choose any ¥ < 2 so that condition (3.4) does not hold. By the Central Limit Theorem,
> 21 AniX; cannot converge to 0 a.s.

Choi and Sung [2] considered the almost sure convergence of > ay;X; for
triangular array of constants. Their Theorem 3 can be regarded as a corollary of
Theorem 2.

COROLLARY 1 (Choi and Sung [2, Theorem 3]). Let{X,:n =1,2,3,...} be indepen-
dent and identically distributed random variables with EX; = 0 and E|X;|" < o for
somel <v <2. Let{an;:i=1,2,....,n;n =1,2,3,...} be a triangular array of con-
stants satisfying 3" lan,i — anit1] = 0(m=Y"), where ay i1 = 0. Then

n
lim > a,Xi=0 as. (3.16)
e
PROOF. By Theorem 2, we must show that there is a constant M > 0 such that

lima,; =0 foreveryi 3.17)

Nn—oo
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and

> i |ani—ani| <M for every n. (3.18)
i-1

There is a constant C > 0 such that Y1 |an,i — dn,i+1] < Cn~Y". We have |a, ;| <
Cn~'" for every i. So, limy, . ay ; = 0 for every i.

Therefore,

0o n

Z il ‘an,i —An,i+l | = Z il |an,i —An,i+l |

i=1 i=1
n (3.19)

<M"Y |ani—aninl < C.
i-1
So, the proof is complete. O

The assumptions of {A,,;} in Theorem 2 can be simplified as in Theorem 3 for » < 1
and Theorem 4 for v > 1.

LEMMA 4. Let {b,:n=1,2,3,...} be a sequence of positive numbers. If >3-, i|b; —
bis1l < o0 and 3.7, b; < oo, then there exists C > 0 such that ib; < C for all i.

PROOF. Since X2, i|b;—bjs1] < oo, there exists N > 0 such that >;_yilb; —bi1] <
1. If the result of this Lemma is false, then any n,l > 0, there exists i > [ such that
b; > n/i. We define

ni= inf{i 1i>2n;_; and b; > {} if j > 2. (3.20)
And
no =0, nlzinf{i:i>Nandbi>%}. (3.21)
We see that
) 0 ni 9 ng
zbizz Z bk=Z z (bn, + (br—by,)). (3.22)
i=1 i=1 k=nj_;+1 i=1k=n;_1+1
If m >n >N, then
m m m-1 m-1 k
S hi—bm <> > |Ibk—biil= > D |bk—biil < Z K|by—br| <1. (3.23)
i=n i=n k=i k=ni=n k=n
Therefore
[e9] 00 ng
Zbi:Z Z (b”i+(bk_b"i))
i=1 1,:)1 k=nj_y+i . (3.24)
i ] ‘VLi _
zg(nl(n —MNi-1) 1)2 2 (Tll > 1>—oo.
i=2 i=2
But 3.2, b; < o and the proof is complete. O

When r < 1, Theorem 2 can be rewritten as follows.
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THEOREM 3. Let B be a separable Banach space of type p. Let {X, :n =1,2,3,...}
be a sequence of independent and identically distributed random elements in B such
thatE|| X, ||" < coandv < 1.Let{A,;:n,i=1,2,3,...} bean array of random variables
such that {A, ;} and {X;} are independent, and satisfying

}L%An,i =0 a.s. foreveryi, (3.25)
iEIAn,iIT < oo a.s. for everyn, (3.26)
i=1
and
i i|Apni—Anis1l" <M a.s. for every n and some constant M > 0. 3.27)

i=1

Thenlimy .« > ;o1 AniXi =0 a.s.
Conversely, if limy_.« >.;oq AniX; = 0 a.s. for all arrays {Ay;} satisfying the above
conditions, then E|| X1 ||" < oo.

PROOF. Since A;,; = A;,i — A, ;, without loss of generality, we can assume that
Ap,i =2 0. We consider A}, ; = b; in Lemma 4. Since ;2 i|A} ;- A} ;| < 30 i[Ayi -
A1, forr < 1,wehave A, ; = O(i~V") a.s. for every n. From the proof of Theorem
2, we have lim;_. Y; = 0 a.s. and >  ApiXi = Doq i7" (Ani — Anis1)Yi a.s., where
Yi= (/i) S X

Define By, ; = iY/" (Ap i — Anit1). Hence, X721 |Byi|” <M a.s. and limy, .. By ; = 0 a.s.
Let D = DN, (D} nD?), where the definitions of D°, D}, and D? are the same as in
Theorem 2. For every w € D and every € > 0, we can choose A such that ||Y;(w)]| <€
fori> A,

0 A-1 )
SUBniYiw) " < D [Buil " 1Yi )" + > Byl "1 Yi(w) |I”
i=1 i=1 i=A
a1 (3.28)
< max IYi(w)II" > |Bnil” + Me — Me asn — .
t=A- i=1
Since Pr(D) =1, limy . 2;’;1 |Bn,iYill" =0 a.s. Therefore,
lim A, X; = lim > B,;Y; =0 as. (3.29)
n—oo n—oo

i=1
The proof of the converse part is the same as the proof of Theorem 2. So the proof
is complete. O

When 7 > 1, we can obtain the following theorem:

THEOREM 4. Let B be a separable Banach space of type p. Let {X, :n =1,2,3,...}
be a sequence of independent and identically distributed random elements in B such
that EX; =0 and E|| X1 ||" < oo for 1 <v <p. Let {Ay,i:n,i=1,2,3,...} be an array of
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random variables such that {Ay,;} and {X;} are independent, and satisfying

711151010 Ani=0 a.s. foreveryi, (3.30)
ZEIAn,iIT < oo foreveryn, 3.31)
i=1
and
1/r

il <M as. for every n and some constant M > 0.  (3.32)

DAY - A
i1

Then .
lim > A, X; =0 as. (3.33)
Nn—oo i1

Conversely, if
lim > AniX;=0 a.s. (3.34)
n—oo

i=1
for all arrays {An i} satisfying the above conditions, then E|| X1 ||” < oo.

PROOF. We see that

> i Ani= Ansr | < S VT [AL - AL 1T <M (3-35)
i=1 i=1
and
SVTAL —AL | <o = D i|AL ~AL | <o (sincer=1).  (3.36)
i=1 i=1
So, from the proofs of Theorem 2 and Theorem 3, we can obtain this theorem. O

Now, we consider a very special case of {4, ;}. Let A,; = n~'/" fori =1,2,...,n
and A, ; = 0 for i > n. The assumptions of {A, ;} in Theorem 4 can be easily verified.
Therefore, the Marcinkiewicz-Zygmund law of large numbers in a space of type p can
be obtained as the following corollary.

COROLLARY 2. LetB be a separable Banach space of type p and {X,, :n=1,2,3,...}
be a sequence of independent and identically distributed random elements in B with zero
means. For any 1 <v < p, we have if E|| X, || < o, then

(l>l/y iXi — 0 a.s. (3.37)

n i=1

PROOF. Let A,;=n"'"fori=1,2,...,nand A, ; = 0 for i > n. Since

lim A, ; = limn~Y" =0, (3.38)
N—00 n—oo
) n 1
D E|Api|"=> — =1, (3.39)
. “p
i=1 i=1

and

PR L L (3.40)

> ir|AL - AL
i=1

the proof is complete by Theorem 4. O
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