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Abstract. Let {Xn :n= 1,2,3, . . .} be a sequence of i.i.d. random elements taking values in
a separable Banach space of type p and let {An,i : i= 1,2,3, . . . ;n= 1,2,3, . . .} be an array
of random variables. In this paper, under various assumptions of {An,i}, the necessary
and sufficient conditions for

∑∞
i=1An,i Xi → 0 a.s. are obtained. Also, the necessity of the

assumptions of {An,i} is discussed.
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1. Introduction. Let {Xn : n = 1,2,3, . . .} be a sequence of independent identically
distributed (i.i.d.) random variables and let {an,i : i = 1,2, . . . ,n;n = 1,2,3, . . .} be a
triangular array of constants. Many papers were devoted to extending various types of
convergence modes to weighted sums Wn =

∑n
i=1an,i Xi in the literature. However, we

are only interested in the work of almost sure convergence. The sequence {∑n
i=1an,i}

converging to 0 at a certain rate as n→∞ is a traditional assumption. For example,
under the assumption

∑n
i=1a

2
n,i = O(n−2/r ), Wn → 0 a.s. if E|X1|r < ∞ and EX1 = 0

(See Chow and Lia [3] and Choi and Sung [2]). On the other hand, Padgett and Taylor
[4] extended the usual convergence theorems to weighted sums of random elements
in a separable Banach space. It would be interesting to extend the results with random
weights.

Let {An,i : i = 1,2, . . . ,n;n = 1,2,3, . . .} be a triangular array of random variables
such that

∑n
i=1 A2

n,i = O(n−2/r ) a.s., Ahmad [1] obtained Wn =
∑n

i=1An,iXi → 0 a.s.
if E‖X1‖r < ∞ and EX1 = 0. We note that, for the Marcinkiewicz-Zygmund law of
large numbers, we take the uniform weight an,i =n−1/r but the condition

∑n
i=1a

2
n,i =

O(n−2/r ) cannot be satisfied. The purpose of this paper is to extend the randomly
weighted sums of a triangular array of random variables to that of an infinite array of
random elements such that the Marcinkiewicz-Zygmund law of large numbers can be
obtained as a corollary.

In Section 2, we establish the Marcinkiewicz-Zygmund law of large numbers in a
separable Banach space of Typep. In Section 3, we consider an infinite array of random
variables {An,i : n,i = 1,2,3, . . .} as the weight under various assumptions of {An,i},
we obtain that Wn =

∑∞
i=1An,iXi → 0 a.s. if and only if EX1 = 0 (when it exists) and

E‖X1‖r <∞.
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2. The Marcinkiewicz law in a space of type p. Let (Ω,F,P) be a probability space
and B be a real separable Banach space with norm ‖•‖. A random element is defined
to be an F -measurable mapping of Ω into B with the Borel σ -field. The concept of
independent random elements is a direct extension of the concept of independent
random variables. A detailed account of basic properties of random elements in real
Banach spaces can be found in Taylor [6].
In this section, we prove theMarcinkiewicz-Zygmund law of large numbers in a space

of type p. First, we introduce a space of type p.

Definition 1. Let 1≤ p ≤ 2 and {ri : i= 1,2,3, . . .} be a sequence of independent
random variables with Pr(ri =±1)= 1/2. A separable Banach space B is said to be of
type p if there exists a constant C such that

E

∥∥∥∥∥
n∑

i=1
rixi

∥∥∥∥∥≤ C


 n∑

i=1
‖xi‖p



1/p

(2.1)

for every n∈N and all x1, . . . ,xn ∈ B.
Woyczyński [7] proved the equivalent condition of a space of type p.

Lemma 1 (Woyczyński [7]). Let 1 ≤ p ≤ 2 and q ≥ 1. The following properties of B
are equivalent :

(i) The separable Banach space B is of type p.
(ii) There exists C such that, for everyn∈N and for any sequence {Xi : i=1,2, . . . ,n}

of independent random elements in B with EXi = 0, i= 1,2, . . . ,n,

E
(∥∥∥∥

n∑
i=1

Xi

∥∥∥∥
q
)
≤ CE




 n∑

i=1
‖Xi‖p




q/p

 . (2.2)

Using Lemma 1, some elementary properties of spaces of typep can be easily proved.
Every separable Hilbert space and finite-dimensional Banach space are of type 2. Every
separable Banach space is at least of type 1, and the �p and Lp are of type min{2,p}
for p ≥ 1. If B is a space of type p and 1 ≤ q ≤ p, then B is a space of type q. Before
considering the Marcinkiewicz-Zygmund law of large numbers in a space of type p,
we need the following definition and lemmas.

Definition 2. Let B be a separable Banach space, B∗ the dual space of B, and B′

the unit ball in B∗. X is a random element in B. The directionally maximum median of
X is defined by

ρ(X)≡ sup
f∈B′

∣∣µ(f(X)
)∣∣, (2.3)

where µ(Y) denotes the minimummedian in absolute value of the random variable Y .

Lemma 2 (Sakhanenko [5]). LetX1, . . . ,Xn be independent random elements in B and
Sk =

∑k
i=1Xi, then, for every t > 0,

Pr
(
max
1≤k≤n

∥∥Sk
∥∥> t

)
≤ 2Pr

(∥∥Sn
∥∥> t− max

1≤k≤n
ρ
(
Sn−Sk

))
. (2.4)
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Lemma 3. Let {Xn : n = 1,2,3, . . .} be a sequence of independent random elements
in a separable Banach space. If Sn =

∑n
i=1Xi converges to a random element S in

probability, then Sn converges to S a.s.

Proof. Since Sn converges to S in probability, take ε such that 0 < ε < 1/2, then
there exists an integer n0 such that if m > n≥n0,

Pr
(∥∥Sm−S

∥∥>
ε
2

)
<

ε
2

and Pr
(∥∥Sn−S

∥∥>
ε
2

)
<

ε
2
. (2.5)

So,

Pr
(∥∥Sm−Sn

∥∥> ε
)
< Pr

(∥∥Sm−S
∥∥>

ε
2

)
+Pr

(∥∥Sn−S
∥∥>

ε
2

)
< ε <

1
2
. (2.6)

We have µ(‖Sm−Sn‖) < ε for any m > n ≤ n0, where µ(Y) is minimum median in
absolute value of the random variable Y .
By Lemma 2, if m1 > n > n0,

Pr
(

max
n<m<m1

∥∥Sm−Sn
∥∥> 2ε

)
≤ 2Pr

(∥∥Sm1−Sn
∥∥> 2ε− max

n<m<m1
ρ
(
Sm1−Sm

))

≤ 2Pr
(∥∥Sm1−Sn

∥∥> 2ε− max
n<m<m1

µ
(∥∥Sm1−Sm

∥∥))

≤ 2Pr
(∥∥Sm1−Sn

∥∥> ε
)
< 2ε.

(2.7)

Let m1→∞, then if m > n > n0, we have Pr(maxn<m ‖Sm−Sn‖> 2ε) < 2ε.
We obtain Sn converges to some random element a.s., and Sn converges to S in

probability. Hence, Sn converges to S a.s.

Now, we prove the Marcinkiewicz-Zygmund law of large numbers in a space of
type p.

Theorem 1. Let B be a separable Banach space of type P and {Xn : n = 1,2,3, . . .}
be a sequence of independent and identically distributed random elements in B. Then,
for any 0< r < p,

Sn−nc
n1/r �→ 0 a.s. (2.8)

for some constant c if and only if E‖X1‖r <∞.
Moreover, if r ≥ 1, c = EX1 and 0< r < 1, c is arbitrary.

Proof.

Necessary part. Since (2.8) holds,

Xn

n1/r =
Sn−nc
n1/r −

(
n−1
n

)1/r Sn−1−nc
(n−1)1/r �→ 0 a.s., (2.9)

whence, by the Borel-Cantelli lemma,
∑∞

n=1 Pr(‖X1‖> n1/r ) <∞. Thus, E‖X1‖r <∞.
Sufficient part. Since E‖X1‖r <∞, define Yn =n−1/rXnI(‖Xn‖ ≤n1/r ) andAj =

{(j−1)1/r < ‖X1‖ ≤ j1/r}. Choose a positive number α such that r < α≤ p and α≥ 1.
We have

∞∑
n=1

E‖Yn‖α =
∞∑

n=1

n∑
j=1

n−α/r
∫
Aj
‖X1‖αdp =

∞∑
j=1

∞∑
n=j

n−α/r
∫
Aj
‖X1‖αdp
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≤ c1
∞∑

j=1
j1−α/r

∫
Aj
‖X1‖αdp ≤ c1

∞∑
j=1

∫
Aj
‖X1‖rdp

= c1E‖X1‖r <∞, for some constant c1.

(2.10)

From Lemma 1,

E
∥∥∥∥

m∑
i=n

(
Yi−EYi

)∥∥∥∥
α
≤ c2E


 m∑

i=n

∥∥Yi−EYi
∥∥p




α/p

≤ c2
m∑

i=n
E
∥∥Yi−EYi

∥∥α ≤ 2αc2
m∑

i=n
E
∥∥Yi

∥∥α.

(2.11)

We have
∑n

i=1(Yi − EYi) converges to some random element Y0 in Lα. Therefore,∑n
i=1(Yi−EYi)→ Y0 in probability. By Lemma 3,

∑n
i=1(Yi−EYi)→ Y0 a.s. Since

∞∑
n=1

Pr
(

Xn

n1/r ≠ Yn

)
=

∞∑
n=1

Pr
(‖X1‖> n1/r )≤ E‖X1‖r <∞, (2.12)

so,

∞∑
n=1

Xn−E
(
XnI

(‖Xn‖ ≤n1/r ))
n1/r =

∞∑
n=1

(
Xn

n1/r −EYn

)
converges a.s. (2.13)

If 0< r < 1, we can choose α= 1. Then
∑∞

n=1E‖Yn‖<∞. We have
∑∞

n=1(Xn)/(n1/r )
converges a.s. By Kronecker lemma, (Sn−nc)/(n1/r ) converges a.s. for any constant c.
If r = 1, by Kronecker lemma, (Sn/n)−(1/n)

∑n
i=1E(XiI(‖Xi‖ ≤ n)) converges a.s.

and E(XnI(‖Xn‖ ≤n))→ EX1, we have (2.8) holds.
If r > 1, we can show that

∞∑
n=1

n−1/r E
∥∥XnI

(‖Xn‖> n1/r )∥∥
≤

∞∑
n=1

n−1/r E
(‖X1‖I

(‖X1‖> n1/r ))= ∞∑
n=1

n−1/r
∞∑

j=n+1

∫
Aj
‖X1‖dp

=
∞∑

j=2

j−1∑
n=1

n−1/r
∫
Aj
‖X1‖dp ≤ r

r −1
∞∑

j=1
(j−1)(r−1)/r

∫
Aj
‖X1‖dp

≤ r
r −1

∞∑
j=1

∫
Aj
‖X1‖rdp = r

r −1E‖X1‖r <∞.

(2.14)

Therefore,
∑∞

n=1(Xn − EX1)/n1/r converges a.s. We have (2.8) holds by Kronecker
lemma.

3. The convergence of the weighted sums. Throughout this section, we deal with
the almost sure convergence of randomly weighted sums

∑∞
i=1An,iXi, where {Xn :

n = 1,2,3, . . .} is a sequence of independent and identically distributed random ele-
ments in a space of type p and {An,i :n,i= 1,2,3, . . .} is an array of random variables
satisfying some conditions.
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Theorem 2. Let B be a separable Banach space of type p. Let {Xn :n= 1,2,3, . . .} be
a sequence of independent and identically distributed random elements in B such that
E‖X1‖r <∞ and r < p. Moreover, we assume that EX1 = 0when r ≥ 1. Let {An,i :n,i=
1,2,3, . . .} be an array of random variables such that {An,i} and {Xi} are independent
and satisfying

An,i =O
(
i−1/r

)
a.s. for every n, (3.1)

lim
n→∞An,i = 0 a.s. for every i, (3.2)

∞∑
i=1

E
∣∣An,i

∣∣r <∞ for every n, (3.3)
and

∞∑
i=1

i1/r
∣∣An,i−An,i+1

∣∣< M a.s. for every n and some constant M > 0. (3.4)

Then

lim
n→∞

∞∑
i=1

An,iXi = 0 a.s. (3.5)

Conversely, if

lim
n→∞

∞∑
i=1

An,iXi = 0 a.s. (3.6)

for all arrays {An,i} satisfying the above conditions, then E‖X1‖r <∞.
Proof. Since {An,i} and {Xi} are independent, if r > 1, we choose p = q = r in

Lemma 1, then

E


 ∞∑

i=1
‖An,iXi‖




r

≤
∞∑

i=1
E|An,i|r E‖X1‖r <∞. (3.7)

If r ≤ 1, it is obvious that

E


 ∞∑

i=1
‖An,iXi‖




r

≤
∞∑

i=1
E|An,i|r E‖X1‖r <∞. (3.8)

Therefore,
∑∞

i=1An,iXi converges a.s.
Since An,i = A+n,i −A−n,i, without loss of generality, we can assume that An,i ≥ 0.

Let Sk =
∑k

i=1Xi, Yk = (Sk/k1/r ) for every k ≥ 1 and S0 = 0. By Theorem 1, we have
limk→∞Yk = 0 a.s.

∞∑
i=1

An,iXi =
∞∑

i=1
An,i

(
Si−Si−1

)= lim
N→∞


N−1∑

i−1

(
An,i−An,i+1

)
Si+An,NSN


 . (3.9)

Since {i1/rAn,i} is bounded a.s. for every n and r ,

lim
N→∞

An,NSN = lim
N→∞

(
N1/rAn,N

)
YN = 0 a.s. (3.10)

We have
∞∑

i=1
An,iXi =

∞∑
i=1

i1/r
(
An,i−An,i+1

)
Yi a.s. (3.11)
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Let Bn,i=i1/r (An,i−An,i+1). Hence,
∑∞

i=1 |Bn,i|≤M a.s. for everyn and limn→∞Bn,i=0
a.s. for every i. Define D0 = {w : limi→∞Yi(w)= 0} and D1

n =
{
w :

∑∞
i=1 |Bn,i(w)| ≤M

}
for each n andD2

i = {w : limn→∞Bn,i(w)= 0} for each i. For everyw ∈D0∩⋂∞i=1(D1
i ∩

D2
i ) and every ε > 0, we can choose A such that ‖Yi(w)‖< ε for i≥A,

∞∑
i=1
‖Bn,i(w)Yi(w)‖ ≤

A−1∑
i=1
|Bn,i(w)|‖Yi(w)‖+

∞∑
i=A
|Bn,i(w)|‖Yi(w)‖

≤ max
i≤A−1

‖Yi(w)‖
A−1∑
i=1
|Bn,i(w)|+Mε �→Mε as n �→∞.

(3.12)

Since Pr(D0∩⋂∞i=1(D1
i ∩D2

i ))= 1, limn→∞
∑∞

i=1‖Bn,iYi‖ = 0 a.s. Therefore,

lim
n→∞

∞∑
i=1

An,iXi = lim
n→∞

∞∑
i=1

Bn,iYi = 0 a.s. (3.13)

If limn→∞
∑∞

i=1An,iXi = 0 a.s. for all arrays {An,i} satisfying the above conditions,
we can choose

An,i =

n−1/r if i≤n,

0 if i > n.
(3.14)

Then (2.8) holds. By Theorem 1, we have E‖X1‖r <∞.
Remark 1. The following example claims that condition (3.4) cannot be omitted.

Consider the real number space R as a space of type 2. Choose a sequence {Xn : n =
1,2,3, . . .} of independent and identically distributed random variables with EX2

1 <∞
and EX1 = 0. Define

An,i =

n−1/2 if i≤n,

0 if i > n.
(3.15)

Choose any r < 2 so that condition (3.4) does not hold. By the Central Limit Theorem,∑∞
i=1An,iXi cannot converge to 0 a.s.
Choi and Sung [2] considered the almost sure convergence of

∑∞
i=1an,iXi for

triangular array of constants. Their Theorem 3 can be regarded as a corollary of
Theorem 2.

Corollary 1 (Choi and Sung [2, Theorem 3]). Let {Xn :n= 1,2,3, . . .} be indepen-
dent and identically distributed random variables with EX1 = 0 and E|X1|r < ∞ for
some 1 ≤ r < 2. Let {an,i : i = 1,2, . . . ,n;n = 1,2,3, . . .} be a triangular array of con-
stants satisfying

∑n
i=1 |an,i−an,i+1| =O(n−1/r ), where an,n+1 = 0. Then

lim
n→∞

n∑
i=1

an,iXi = 0 a.s. (3.16)

Proof. By Theorem 2, we must show that there is a constant M > 0 such that

lim
n→∞an,i = 0 for every i (3.17)
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and
∞∑

i=1
i1/r |an,i−an,i+1|< M for every n. (3.18)

There is a constant C > 0 such that
∑n

i=1 |an,i−an,i+1| ≤ Cn−1/r . We have |an,i| ≤
Cn−1/r for every i. So, limn→∞an,i = 0 for every i.
Therefore,

∞∑
i=1

i1/r |an,i−an,i+1| =
n∑

i=1
i1/r |an,i−an,i+1|

≤n1/r
n∑

i=1
|an,i−an,i+1| ≤ C.

(3.19)

So, the proof is complete.

The assumptions of {An,i} in Theorem 2 can be simplified as in Theorem 3 for r < 1
and Theorem 4 for r ≥ 1.

Lemma 4. Let {bn : n= 1,2,3, . . .} be a sequence of positive numbers. If ∑∞
i=1 i|bi−

bi+1|<∞ and
∑∞

i=1bi <∞, then there exists C > 0 such that ibi < C for all i.

Proof. Since
∑∞

i=1 i|bi−bi+1|<∞, there exists N > 0 such that
∑∞

k=N i|bi−bi+1|<
1. If the result of this Lemma is false, then any n,l > 0, there exists i > l such that
bi > n/i. We define

ni ≡ inf
{
i : i > 2nj−1 and bi >

J
i

}
if j ≥ 2. (3.20)

And

n0 ≡ 0, n1 ≡ inf
{
i : i > N and bi >

1
i

}
. (3.21)

We see that

∞∑
i=1

bi =
∞∑

i=1

ni∑
k=ni−1+1

bk =
∞∑

i=1

ni∑
k=ni−1+1

(
bni+

(
bk−bni

))
. (3.22)

If m > n≥N , then

m∑
i=n

bi−bm ≤
m∑

i=n

m−1∑
k=i

|bk−bk+1| =
m−1∑
k=n

k∑
i=n
|bk−bk+1| ≤

m−1∑
k=n

K|bk−bk+1|< 1. (3.23)

Therefore,

∞∑
i=1

bi =
∞∑

i=1

ni∑
k=ni−1+i

(
bni+

(
bk−bni

))

≥
∞∑

i=2

(
i
ni

(
ni−ni−1

)−1)≥ ∞∑
i=2

(
i
ni
× ni

2
−1

)
=∞.

(3.24)

But
∑∞

i=1bi <∞ and the proof is complete.

When r < 1, Theorem 2 can be rewritten as follows.



566 T.-C. HU AND H.-C. CHANG

Theorem 3. Let B be a separable Banach space of type p. Let {Xn : n = 1,2,3, . . .}
be a sequence of independent and identically distributed random elements in B such
that E‖X1‖r <∞ and r < 1. Let {An,i :n,i= 1,2,3, . . .} be an array of random variables
such that {An,i} and {Xi} are independent, and satisfying

lim
n→∞An,i = 0 a.s. for every i, (3.25)

∞∑
i=1

E|An,i|r <∞ a.s. for every n, (3.26)

and

∞∑
i=1

i|An,i−An,i+1|r < M a.s. for every n and some constant M > 0. (3.27)

Then limn→∞
∑∞

i=1An,iXi = 0 a.s.
Conversely, if limn→∞

∑∞
i=1An,iXi = 0 a.s. for all arrays {An,i} satisfying the above

conditions, then E‖X1‖r <∞.
Proof. Since An,i = A+n,i −A−n,i, without loss of generality, we can assume that

An,i ≥ 0. We consider Ar
n,i = bi in Lemma 4. Since

∑∞
i=1 i|Ar

n,i−Ar
n,i+1| ≤

∑∞
i=1 i|An,i−

An,i+1|r , for r < 1, we haveAn,i =O(i−1/r ) a.s. for everyn. From the proof of Theorem
2, we have limi→∞Yi = 0 a.s. and

∑∞
i=1An,iXi =

∑∞
i=1 i1/r (An,i−An,i+1)Yi a.s., where

Yi = (1/i1/r )
∑i

j=1Xj .
Define Bn,i = i1/r (An,i−An,i+1). Hence,

∑∞
i=1 |Bn,i|r ≤M a.s. and limn→∞Bn,i = 0 a.s.

LetD =D0∩⋂∞i=1(D1
i ∩D2

i ), where the definitions ofD0,D1
i , andD2

i are the same as in
Theorem 2. For every w ∈D and every ε > 0, we can choose A such that ‖Yi(w)‖< ε
for i≥A,

∞∑
i=1
‖Bn,iYi(w)‖r ≤

A−1∑
i=1
|Bn,i|r‖Yi(w)‖r +

∞∑
i=A
|Bn,i|r‖Yi(w)‖r

≤ max
i≤A−1

‖Yi(w)‖r
A−1∑
i=1
|Bn,i|r +Mε �→Mε as n �→∞.

(3.28)

Since Pr(D)= 1, limn→∞
∑∞

i=1‖Bn,iYi‖r = 0 a.s. Therefore,

lim
n→∞An,iXi = lim

n→∞

∞∑
i=1

Bn,iYi = 0 a.s. (3.29)

The proof of the converse part is the same as the proof of Theorem 2. So the proof
is complete.

When r ≥ 1, we can obtain the following theorem:

Theorem 4. Let B be a separable Banach space of type p. Let {Xn : n = 1,2,3, . . .}
be a sequence of independent and identically distributed random elements in B such
that EX1 = 0 and E‖X1‖r <∞ for 1≤ r < p. Let {An,i :n,i= 1,2,3, . . .} be an array of
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random variables such that {An,i} and {Xi} are independent, and satisfying
lim
n→∞An,i = 0 a.s. for every i, (3.30)

∞∑
i=1

E|An,i|r <∞ for every n, (3.31)

and
∞∑

i=1
i1/r

∣∣Ar
n,i−Ar

n,i+1
∣∣1/r < M a.s. for every n and some constant M > 0. (3.32)

Then

lim
n→∞

∞∑
i=1

An,iXi = 0 a.s. (3.33)

Conversely, if

lim
n→∞

∞∑
i=1

An,iXi = 0 a.s. (3.34)

for all arrays {An,i} satisfying the above conditions, then E‖X1‖r <∞.
Proof. We see that

∞∑
i=1

i1/r |An,i−An,i+1|<
∞∑

i=1
i1/r

∣∣Ar
n,i−Ar

n,i+1
∣∣1/r < M (3.35)

and
∞∑

i=1
i1/r

∣∣Ar
n,i−Ar

n,i+1
∣∣1/r <∞ �⇒

∞∑
i=1

i
∣∣Ar

n,i−Ar
n,i+1

∣∣<∞ (since r ≥ 1). (3.36)

So, from the proofs of Theorem 2 and Theorem 3, we can obtain this theorem.

Now, we consider a very special case of {An,i}. Let An,i = n−1/r for i = 1,2, . . . ,n
and An,i = 0 for i > n. The assumptions of {An,i} in Theorem 4 can be easily verified.
Therefore, the Marcinkiewicz-Zygmund law of large numbers in a space of type p can
be obtained as the following corollary.

Corollary 2. Let B be a separable Banach space of type p and {Xn :n= 1,2,3, . . .}
be a sequence of independent and identically distributed random elements in Bwith zero
means. For any 1≤ r < p, we have if E‖X1‖r <∞, then

(
1
n

)1/r n∑
i=1

Xi �→ 0 a.s. (3.37)

Proof. Let An,i =n−1/r for i= 1,2, . . . ,n and An,i = 0 for i > n. Since

lim
n→∞An,i = lim

n→∞n−1/r = 0, (3.38)

∞∑
i=1

E|An,i|r =
n∑

i=1

1
n
= 1, (3.39)

and ∞∑
i=1

i1/r
∣∣Ar

n,i−Ar
n,i+1

∣∣1/r =n1/r ·n−1/r = 1, (3.40)

the proof is complete by Theorem 4.
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