
Internat. J. Math. & Math. Sci.
Vol. 22, No. 3 (1999) 617–628
S 0161-1712〈99〉22617-8

© Electronic Publishing House
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Abstract. An Abelian group is pseudofree of rank� if it belongs to the extended genus
of Z�, i.e., its localization at every prime p is isomorphic to Z�p . A pseudofree group can be
studied through a sequence of rational matrices, the so-called sequential representation.
Here, we use these sequential representations to study the relation between the product
of extended genera of free Abelian groups and the extended genus of their direct sum. In
particular, using sequential representations, we give a new proof of a result by Baer, stating
that two direct sum decompositions into rank one groups of a completely decomposable
pseudofree Abelian group are necessarily equivalent. On the other hand, sequential repre-
sentations can also be used to exhibit examples of pseudofree groups having nonequiva-
lent direct sum decompositions into indecomposable groups. However, since this cannot
occur when using the notion of near-isomorphism rather than isomorphism, we conclude
our work by giving a characterization of near-isomorphism for pseudofree groups in terms
of their sequential representations.
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rank, sequential representation, direct sum decomposition, near-isomorphism.
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1. Introduction. The Mislin genus �(N) [11] of a finitely generated nilpotent group
N is the set of isomorphism classes of finitely generated nilpotent groupsM such that
the localization of M and N at every prime are isomorphic, that is Mp � Np for all
primes p. If N is a finitely generated Abelian group, then N has a trivial Mislin genus.
This observation led Casacuberta and Hilton [2] to introduce the notion of extended
genus. They define the extended genus ��(N) of a finitely generated nilpotent group
N as the set of isomorphism classes of (not necessarily finitely generated) nilpotent
groupsM such thatMp �Np for all primes p. This notion admits interesting examples
as, for example, in [6], Hilton showed that there are uncountably many nonisomorphic
Abelian groups in the extended genus of Z.
Following the definition of extended genus, the notion of a pseudofree group was

introduced in [2, 6]. An Abelian group A is called pseudofree of rank�—the name is
due to Ries [12]—ifA belongs to the extended genus of Z�. Clearly, a pseudofree group
of rank� is torsion-free of rank�. However, the fact that A is pseudofree imposes
strong restrictions on A. This in turn enables us to use methods which do not seem
to be applicable to the broad class of torsion-free Abelian groups of finite rank. In
particular, we obtain the so-called “sequential representation” of a pseudofree group
of rank�, which consists of a sequence of invertible (�× �)-matrices (one for each
prime) with entries in Q.
For a finitely generated nilpotent group N and for k≥ 2, the function
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Φ :
(
�(N)

)k
�→ �

(
Nk) (1.1)

sending the k-tuple (L1, . . . ,Lk) to L1×···×Lk has been studied in [3, 7, 8]. If N has a
finite commutator subgroup, then Φ is surjective, but not necessarily injective. More
generally, for finitely generated nilpotent groups N1, . . . ,Nk(k ≥ 2), one can consider
an obvious function (cf. [7]),

Ψ : �
(
N1
)×···×�

(
Nk
)
�→ �

(
N1×···×Nk

)
. (1.2)

If all the groups N1, . . . ,Nk belong to a certain subclass of the class of finitely gen-
erated nilpotent groups with finite commutator subgroup, then this function is again
surjective, but not necessarily injective (cf. [13]).
In Section 3, we study functions analogous to (1.1) and (1.2), now defined on the

extended genus. It then makes sense to consider these functions when the groups
involved are finitely generated and Abelian. As pointed out in [2], in this case, we may,
without loss of generality, restrict our attention to the functions

Φ̃ :
(

��
(
Z�
))k

�→ ��
(
Z�k

)
(1.3)

and

Ψ̃ : ��
(
Z�1

)×···×��
(
Z�k

)
�→ ��

(
Z�1+···+�k

)
, (1.4)

where k≥ 2 and �,�1, . . . ,�k are positive integers. Of course, neither of these functions
is surjective since there exist pseudofree Abelian groups that are not decomposable.
If � = 1, then we show that the function Φ̃ is injective up to a reordering of the factors
(see Corollary 3.2). In fact, this is a consequence of a well-known result due to Baer,
stating that two direct sum decompositions into rank one groups of a completely de-
composable Abelian torsion-free group of finite rank are necessarily equivalent (cf. [4,
Thm. 86.1], [5, Thm. 117]). Using sequential representations, we give in Theorem 3.1
a new proof of Baer’s result for completely decomposable pseudofree groups of finite
rank. A proof for the case k = 2 can also be found in [9]. On the other hand, it is
well known that torsion-free Abelian groups of finite rank may have nonequivalent
direct sum decompositions into indecomposable groups (cf. [4]). This implies that, if
� = 2, then Φ̃ is far from being injective. Indeed, in Example 2.3, we use sequential
representations to exhibit a pseudofree Abelian group A of rank4 with nonequivalent
direct sum decompositions into indecomposable groups, i.e., A � A1⊕A2 � B1⊕B2,
where A1 � A2 and B1 � B2 are indecomposable pseudofree groups of rank2, but
A1 �� B1. As to the function Ψ̃ , in Example 2.4, we use sequential representations to
give a pseudofree Abelian group G of rank3 such that G �A⊕B � C⊕D, where A� C
are pseudofree groups of rank1 and B and D are nonisomorphic pseudofree groups
of rank2. In the course of Section 3, we thus provide an answer to various questions
raised by Militello in [10].
Two torsion-free Abelian groups A and B of finite rank are called nearly isomor-

phic if, for every positive integer n, there is a subgroup An of B, of finite index
prime to n such that An � A. Clearly, isomorphism implies near-isomorphism. The
above mentioned phenomena of nonequivalent direct sum decompositions, however,
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cannot appear if one uses the notion of near-isomorphism rather than isomorphism.
Indeed for torsion-free Abelian groups A, B, and C of finite rank, if A⊕C is nearly
isomorphic to B⊕C , then A is nearly isomorphic to B. Likewise, if Ak is nearly iso-
morphic to Bk, then A is nearly isomorphic to B (cf. [1, Cor. 7.17]). In Section 4, we
therefore characterize nearly isomorphic pseudofree groups in terms of their sequen-
tial representations.

2. Pseudofree groups. For a finitely generated nilpotent group N , the extended
genus ��(N) [2] is the set of isomorphism classes of nilpotent groups M such that
Mp �Np for all primesp. TheMislin genus �(N) [11] is the subset of ��(N) containing
the isomorphism classes of finitely generated nilpotent groups. For short, we say that
a group M belongs to the extended (or Mislin) genus of N if the isomorphism class of
M does.
For a finitely generated Abelian group A, the Mislin genus �(A) is easily seen to

be trivial. However, the situation for ��(A) is completely different. For example, the
extended genus of Z contains uncountably many isomorphism classes (cf. [6]). In fact,
in [2], Casacuberta and Hilton showed that in order to study the extended genus of any
finitely generated Abelian group, it suffices to consider ��(Z�). An Abelian group A is
called pseudofree of rank� [12] if A belongs to ��(Z�). Note that if A is pseudofree of
rank�, thenA is torsion-free Abelian of rank�. For convenience of the reader, we recall
from [2] the following basic facts about pseudofree groups. For a pseudofree group
A of rank�, we can choose isomorphism f0 : A0 �Q� and fp : Ap � Z�p for all primes
p, which we write for short as {fp,p ≥ 0}. Since Ap is naturally embedded in A0,
the homomorphism f0f−1p : Z�p →Q� is actually a monomorphism. With respect to the

canonical basis {e1,e2, . . . ,e�} for Z�, Z�p ,Q�, this monomorphism f0f−1p is represented
by a matrix Mp ; explicitly,

f0f−1p
(
ej
)=∑

i
aij

(
p
)
ei, Mp =

(
aij(p)

)∈ GL� (Q). (2.1)

We write M∗ for the sequence of matrices {Mpi}, where we enumerate the primes
as p1,p2, . . . ,pi, . . . , and we call this sequence M∗ the sequential representation of A
associated with {fp,p ≥ 0}.
The pseudofree groups of rank one, the so-called groups of pseudo-integers, were

treated by Hilton in [6]. For a group of pseudo-integers, a sequential representation
simply consists of a sequence of rational numbers.

Example 2.1. Let A be a group of pseudo-integers. Then there exists a sequential
representation M∗ of A of the form Mpi = (p

−mi
i ), where mi ≥ 0. In fact, A is iso-

morphic to the subgroup of Q generated by the set
{
p−mi
i | all primes pi

}
, and the

sequence (mi) corresponds, in the classical sense, to a height sequence for a torsion-
free Abelian group of rank one (cf. [1, 4, 5]).

A great deal of properties of pseudofree groups can be studied through their sequen-
tial representation. For future reference, we recall from [2] the following criterion for
two pseudofree groups to be isomorphic.
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Theorem 2.2. Let A, B be pseudofree groups of rank� with respective sequential
representations M∗ and N∗. Then A and B are isomorphic if and only if

∃Cp ∈ GL�
(
Zp
)
, L∈ GL�

(
Q
)
:Np = LMpCp for all p. (2.2)

In the case of groups of pseudo-integers, this leads to the following (cf. [6]).

Example 2.3. Given groups of pseudo-integers A,B with respective sequential rep-
resentationsM∗ andN∗ given byMpi = (p

−mi
i ) andNpi = (p

−ni
i ). ThenA is isomorphic

to B if and only if mi = ni for almost all i. This corresponds with the fact that the
isomorphism class of a torsion-free Abelian group of rank one is determined by its
type (cf. [1, Thm. 1.1] and [4, Thm. 85.1]).

Particular attention will be paid to completely decomposable pseudofree groups. Re-
call that a torsion-free Abelian group A of rank� is called completely decomposable if

A=
�⊕
i=1

Ai, (2.3)

where each Ai is torsion-free of rank one. Clearly, if A is a completely decomposable
pseudofree group of rank� as in (2.3), then each Ai is a group of pseudo-integers.
Recall further (cf. [2, Thm. 4.3]) that a pseudofree group A of rank� is completely
decomposable if and only if A admits a sequential representation D∗, where each Dp
is a diagonal matrix.

3. Decomposable pseudofree groups. LetN be a finitely generated nilpotent group
with a finite commutator subgroup. From [7], we know that the Mislin genus �(N) has
a natural Abelian group structure and that the function

Φ :
(
�(N)

)k
�→ �

(
Nk) (fork≥ 2) (3.1)

given by

Φ
(
L1, . . . ,Lk

)= L1×···×Lk (3.2)

is actually a group homomorphism. In fact, Φ is a surjective homomorphism. This can
be seen as follows. Recall from [3] that the function

ρ : �(N) �→ �
(
Nk) (3.3)

given by

ρ(L)= L×Nk−1 (3.4)

is a surjective homomorphism. Moreover, as explained in [7],

Φ
(
L1, . . . ,Lk

)= L1×···×Lk � (L1+···+Lk)×Nk−1 = ρ(L1+···+Lk), (3.5)

where+ denotes the operation in the Abelian group �(N). Hence, since ρ is surjective,
we infer that Φ is surjective. In other words, every group in �(Nk) is decomposable.
On the other hand, it was pointed out in [7] that Φ is far from being injective. Indeed,

in [7, Thm. 3.2], it is proved that, for Mi, Li ∈ �(N)(i = 1, . . . ,k), if M1+···+Mk =
L1+···+Lk in �(N), then M1×···×Mk � L1×···×Lk. Moreover, in [8], the kernel of
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Φ is precisely described in the case where N belongs to a certain subclass of the class
of finitely generated nilpotent groups with finite commutator subgroup.
We now confine our attention to the analogue of the function Φ, defined on the

extended genus rather than the Mislin genus. As pointed out in [2], in order to study
this function in the case when the groups involved are finitely generated Abelian, it
suffices to consider the case of Z�. Thus, for � ≥ 1 and k≥ 2, we consider the function

Φ̃ :
(

��
(
Z�
))k

�→ ��
(
Z�k

)
(3.6)

given by

Φ̃
(
L1, . . . ,Lk

)= L1×···×Lk. (3.7)

Consider the case where � = 1. It was pointed out in [2] that Φ̃ : ��(Z)k→ ��(Zk) is
not surjective. Indeed, the image of Φ̃ consists precisely of those pseudofree Abelian
groups of rankk that are completely decomposable. As to the injectivity of Φ̃, a classi-
cal result by Baer (cf. [4, Prop. 86.1], [5, Thm. 117]) states that two direct sum decom-
positions into rank one groups of a completely decomposable torsion-free Abelian
group of finite rank are necessarily equivalent. This means that if A is a completely
decomposable Abelian torsion-free group of rankk and

A�
k⊕
i=1

Ai �
k⊕
i=1

Bi, (3.8)

where Ai, Bi (i= 1, . . . ,k) are torsion-free of rank one, then there exists a permutation
σ ∈ Σk such that Ai � Bσ(i) for all i. Using sequential representations, we here give a
new proof of this fact for pseudofree groups.

Theorem 3.1. LetA be a completely decomposable pseudofree group of rankk. Sup-
pose that

A�
k⊕
i=1

Ai �
k⊕
i=1

Bi, (3.9)

whereAi, Bi (i= 1, . . . ,k) are groups of pseudo-integers. Then there exists a permutation
σ ∈ Σk such that Ai � Bσ(i) for all i∈ {1, . . . ,k}.

Proof. We may assume that Ai � 〈1/pmi(p), all p〉 and Bi � 〈1/pni(p), all p〉 for
i= 1, . . . ,k. Then clearly A has a sequential representation M∗ given by

Mp =




1
pm1(p)

0 ··· 0

0
1

pm2(p)
··· 0

...
. . .

...

0 0
1

pmk(p)



, (3.10)
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but A also has a sequential representation N∗ given by

Np =




1
pn1(p)

0 ··· 0

0
1

pn2(p)
··· 0

...
. . .

...

0 0
1

pnk(p)



. (3.11)

Theorem 2.2 then implies that there exist L ∈ GLk(Q) and Cp ∈ GLk(Zp) such that
Np = LMpCp for all primes p. Equivalently, L−1Np =MpCp for all p. If we put L−1 =
(�ij) and Cp = (cij(p)), then this is equivalent to

�ji
pni(p)

= cji(p)
pmj(p)

(3.12)

for all i,j ∈ {1, . . . ,k} and for all primes p. Since detCp is a unit in Zp and since the
entries of Cp belong to Zp , we infer that there exists a permutation σ ∈ Σk such that
cσ(i)i(p) is a unit in Zp for all i. Moreover, since, for almost all p, the nonzero �ji are
units in Zp , we conclude from (3.12) that

mσ(i)(p)=ni(p) (3.13)

for almost all p. This implies that

Ai � Bσ(i) fori∈ {1, . . . ,k}. (3.14)

Corollary 3.2. Let Φ̃ be as in (3.6) with � = 1. Then
Φ̃
(
L1, . . . ,Lk

)= Φ̃(M1, . . . ,Mk
)

(3.15)

if and only if (L1, . . . ,Lk) and (M1, . . . ,Mk) belong to the same orbit under the obvious
action of Σk on (��(Z))k.

However, as the following example shows (cf. [1, Ex. 2.11]), the situation is com-
pletely different if we consider Φ̃ defined on the extended genus of Z2.

Example 3.3. Let P1∪P2∪{5} be a partition of the set of all primes, where P1 and
P2 are infinite. Consider the pseudofree group A of rank4 given by the sequential
representation

Mp =




1
p1

0 0 0

0 1 0 0

0 0
1
p1

0

0 0 0 1



,




1 0 0 0

0
1
p2

0 0

0 0 1 0

0 0 0
1
p2



,




1
1
5

0 0

0
1
5

0 0

0 0 1
1
5

0 0 0
1
5




(3.16)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. Consider also the pseudofree
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group B of rank4 given by the sequential representation

Np =




1
p1

0 0 0

0 1 0 0

0 0
1
p1

0

0 0 0 1



,




1 0 0 0

0
1
p2

0 0

0 0 1 0

0 0 0
1
p2



,




1
1
5

0 0

0
2
5

0 0

0 0 1
1
5

0 0 0
2
5




(3.17)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. Then clearly A � A1⊕A2, where
A1 � A2 is an indecomposable pseudofree group of rank2 with sequential represen-
tation

Xp =


1
p1

0

0 1


 ,


1 0

0
1
p2


 ,


1

1
5

0
1
5


 (3.18)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. Analogously, B � B1⊕B2, where
B1 � B2 is an indecomposable pseudofree group of rank2 with sequential representa-
tion

Yp =


1
p1

0

0 1


 ,


1 0

0
1
p2


 ,


1

1
5

0
2
5


 (3.19)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. Observe that A � B. Indeed,
setting

L=



1 0 3 0
0 2 0 1
0 0 −1 0
0 −5 0 −2


 (3.20)

and Cp = L−1 for all p ≠ 5, while

C5 =



1 1 3 1
0 −4 0 −2
0 −2 −1 −1
0 10 0 4,


 (3.21)

it is easily verified that Np = LMpCp for all primes p. On the other hand, note that
A1 � B1. Indeed, suppose that there exist L ∈ GL2(Q) and Cp ∈ GL2(Zp) such that
LXpCp = Yp for all primes p. If we set

L=
(
x z
y t

)
, (3.22)
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then we infer that C−1p = Y−1p LXp is equal to



x p1z
y
p1

t


 ,

 x

z
p2

p2y t


 ,


x− 1

2
y

x+z
5

− y+t
10

5
2
y

y+t
2


 (3.23)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. This implies that p1 |y and p2 | z
for all p1 ∈ P1 and for all p2 ∈ P2. Hence, y = 0= z. This means that

C−15 =



x

x
5
− t
10

0
t
2


 . (3.24)

Moreover, since, for all p different from 5, we have that

C−1p =
(
x 0
0 t

)
, (3.25)

we infer that x = 5i and t = 5j for some integers i, j. However, this is in contradiction
with C−15 ∈ GL2(Z5).
Another function of interest considered in [7] is the following. Let N1, . . . ,Nk be

finitely generated nilpotent groups with a finite commutator subgroup and consider

Ψ : �
(
N1
)×···×�

(
Nk
)
�→ �

(
N1×···×Nk

)
(3.26)

given by

Ψ
(
L1, . . . ,Lk

)= L1×···×Lk. (3.27)

In [7], it is shown that Ψ is a group homomorphism and the authors asked whether Ψ
is always surjective. In [13], this homomorphism Ψ is studied for a certain subclass of
the class of finitely generated nilpotent groups with finite commutator subgroup. In
this case, Ψ is indeed surjective and, moreover, the exact conditions for Ψ(L1, . . . ,Lk)=
Ψ(M1, . . . ,Mk) (i.e., for L1×···×Lk �M1×···×Mk) to hold are described.
Again, we consider the analogue function defined on the extended genus and we are

particularly interested in

Ψ̃ : ��
(
Z�1

)×···×��
(
Z�k

)
�→ ��

(
Z�1+···+�k

)
. (3.28)

Of course, this function Ψ̃ is not surjective. Indeed, not every pseudofree group of
finite rank is decomposable. Furthermore, Ψ̃ is far from being injective in general.
Indeed, it is a well-known fact that torsion-free Abelian groups of finite rank may
have nonequivalent direct sum decompositions (cf. [4, Thm. 90.4]), In fact, we can
already exhibit a pseudofree group of rank3 that has two nonequivalent direct sum
decompositions (cf. [1, Ex. 2.10]).

Example 3.4. Let P1∪P2∪{5} be a partition of the set of all primes, where P1 and
P2 are infinite. Consider the pseudofree group G of rank3 given by the sequential
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representation

Mp =




1
p1

0 0

0
1
p1

0

0 0 1


 ,



1 0 0

0 1 0

0 0
1
p2


 ,




1 0 0

0 1
1
5

0 0
1
5




(3.29)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. Consider also the pseudofree
group H of rank3 given by the sequential representation

Np =




8
p1

5
p1

0

3
p1

2
p1

0

0 0 1


 ,



1 0 0

0 1 0

0 0
1
p2


 ,




1 0 3

0 1
6
5

0 0
1
5




(3.30)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. Then it is easily seen that G �
A⊕B, where A is pseudofree of rank1 with sequential representation (1/p1),(1),(1)
for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5, and B is pseudofree of rank2
with sequential representation


1
p1

0

0 1


 ,


1 0

0
1
p2


 ,


1

1
5

0
1
5


 (3.31)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. Analogously, it can be ver-
ified that H � C ⊕D, where C is pseudofree of rank1 with sequential representa-
tion (1/p1),(1),(1) for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5, and D is
pseudofree of rank2 with sequential representation


1
p1

0

0 1


 ,


1 0

0
1
p2


 ,


1

3
5

0
1
5


 (3.32)

for respectively p = p1 ∈ P1, p = p2 ∈ P2, and p = 5. Finally, observe that G �H and
A� C while B ��D.

4. Near-isomorphism of pseudofree groups. Motivated by the fact that the above
phenomena of nonequivalent direct sum decompositions of a pseudofree group can-
not appear if we use the notion of near-isomorphism rather than the notion of isomor-
phism (cf. [1, Cor. 7.17]), we give in this section a characterization of near-isomorphism
for pseudofree groups in terms of their sequential representations.
Recall (see, e.g., [1]) that two torsion-free Abelian groups A and B of finite rank are

called nearly isomorphic (notation A �n B) if, for every positive integer n, there is a
subgroup An of B, of finite index prime to n such that An � A. Note that A and B
are then necessarily of the same rank. Moreover, two nearly isomorphic torsion-free
Abelian groups obviously belong to the same extended genus.

Theorem 4.1. Let A and B be pseudofree groups of rankkwith respectively sequen-
tial representations M∗ and N∗, induced by {fp,p ≥ 0} and {f ′p,p ≥ 0}. Then A �n B
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if and only if, for all positive integers n, there exists Φn ∈ GLk(Q) such that N−1
p ΦnMp

has entries in Zp for all primes p, and N−1
p ΦnMp ∈ GLk(Zp) for almost all primes p,

including all the prime divisors of n.

Proof. Suppose that A�n B. For all positive integers n, there exists an embedding
jn :A→ B of finite index such that [B : jn(A)]= kn is prime to n. Then (jn)0 :A0→ Bo
is an isomorphism and we may choose (fn)0 : A0 →Qk,(f ′n)0 : B0 →Qk such that the
following diagram commutes.

A0
(fn)0 ��

(jn)0
��

Qk

id

��
B0

(f ′n)0 �� Qk,

(4.1)

i.e., (fn)0 = (f ′n)0 ◦ (jn)0. This means that we change the sequential representations
M∗ and N∗ to respectively M̃∗, Ñ∗ given by

M̃p = SnMp, Ñp = S′nNp, (4.2)

where Sn, S′n ∈ GLk(Q). Since now the conditions of [2, Thm. 2.6] are satisfied, we
infer that (

Ñp
)−1M̃p (4.3)

has entries in Zp for all primes p. This is equivalent to

N−1
p ΦnMp (4.4)

having entries in Zp for all p, where Φn = S ′−1n Sn. Moreover, since [B : jn(A)] = kn
is prime to n, we know that (jn)p : Ap → Bp is an isomorphism for all primes p not
dividing kn. If p does not divide kn, then we have the following diagram:

Zkp Ap
(fn)p��

(jn)p

��

� � �� A0

(jn)0

��

(fn)0 �� Qk

id

��
Zkp Bp

(f ′n)p�� � � �� B0
(f ′n)0 �� Qk.

(4.5)

Hence, if p does not divide kn, then there exists an isomorphism γn(p) : Zkp → Zkp
such that (f ′n)0◦(f ′n)−1p ◦γn(p)= (fn)0◦(fn)−1p . This means that the matrix of γn(p),
given by (

S′nNp
)−1SnMp =N−1

p ΦnMp, (4.6)

belongs to GLk(Zp) if p � kn.
Conversely, let the isomorphisms φn : Qk → Qk correspond to the given matrices

Φn. Then the composition

Zkp
f−1p ��Ap

� � ��A0
f0 ��Qk

φn ��Qk (4.7)

corresponds to a sequential representation for A, given by ΦnMp , and induced by



ON DECOMPOSABLE PSEUDOFREE GROUPS 627

homomorphisms (gn)0 :=φn ◦f0 and (gn)p := fp . By [2, Thm. 2.6], we find a homo-
morphism jn : A → B such that (gn)0 = f ′0 ◦ (jn)0. Moreover, due to the hypothesis
on N−1

p ΦnMp , we deduce the existence of a monomorphism γn(p) : Zkp → Zkp , which
is an isomorphism for almost all primes p, including all prime divisors of n. Hence,
it induces a monomorphism jn(p) :Ap → Bp (which is an isomorphism for almost all
primes, including the prime divisors ofn ) such that the following diagram commutes.

Zkp

γn(p)
��

Ap
fp��

jn(p)

��

� � �� Ao
(gn)0 �� Qk

id

��
Zkp Bp

f ′p�� � � �� B0
f ′0 �� Qk.

(4.8)

Now set jn(0)= f ′−1o ◦(gn)0. Then the diagram

Ap

jn(p)

��

� � �� A0

jn(0)

��
Bp � � �� B0

(4.9)

commutes for all primes p. Hence, there exists a monomorphism jn :A→ B such that
(jn)p = jn(p), which is an isomorphism for almost all p, including the prime divisors
of n. Finally, it is easily verified that jn is, in fact, an embedding of finite index prime
to n.

Example 4.2. With the notations as in Example 2.3, we show that A1 �n B1. Let n
be any positive integer and suppose that its prime divisors are p1, . . . ,pk. Choose an
integerm such that 2+5m is a prime number different from p1, . . . ,pk and set

Φn =
(
1 0
0 2+5m

)
. (4.10)

Then it is easy to verify that Y−1p ΦnXp has entries in Zp for all primes p and that it
belongs to GL2(Zp) for almost all primes, including p1, . . . ,pk.

References

[1] D. M. Arnold, Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in
Mathematics, vol. 931, Springer-Verlag, Berlin, New York, 1982. MR 84d:20002.
Zbl 493.20034.

[2] C. Casacuberta and P. Hilton, On the extended genus of finitely generated Abelian groups,
Bull. Soc. Math. Belg. Sér. A 41 (1989), no. 1, 51–72. MR 91j:20089. Zbl 672.20024.

[3] , Calculating the Mislin genus for a certain family of nilpotent groups, Comm. Al-
gebra 19 (1991), no. 7, 2051–2069. MR 92j:20032. Zbl 742.20034.

[4] L. Fuchs, Infinite Abelian Groups. II, Pure and Applied Mathematics, vol. 36-II, Academic
Press, New York, London, 1973. MR 50 2362. Zbl 257.20035.

[5] P. A. Griffith, Infinite Abelian Group Theory, Chicago Lectures in Mathematics, The Uni-
versity of Chicago Press, Chicago, 1970. MR 44#6826. Zbl 204.35001.

[6] P. Hilton, On groups of pseudo-integers, Acta Math. Sinica (N.S.) 4 (1988), no. 2, 189–192.
MR 89i:11015. Zbl 682.20039.

http://www.ams.org/mathscinet-getitem?mr=84d:20002
http://www.emis.de/cgi-bin/MATH-item?493.20034
http://www.ams.org/mathscinet-getitem?mr=91j:20089
http://www.emis.de/cgi-bin/MATH-item?672.20024
http://www.ams.org/mathscinet-getitem?mr=92j:20032
http://www.emis.de/cgi-bin/MATH-item?742.20034
http://www.ams.org/mathscinet-getitem?mr=50:2362
http://www.emis.de/cgi-bin/MATH-item?257.20035
http://www.ams.org/mathscinet-getitem?mr=44:6826
http://www.emis.de/cgi-bin/MATH-item?204.35001
http://www.ams.org/mathscinet-getitem?mr=89i:11015
http://www.emis.de/cgi-bin/MATH-item?682.20039


628 DIRK SCEVENELS

[7] P. Hilton andG. Mislin,On the genus of a nilpotent groupwith finite commutator subgroup,
Math. Z. 146 (1976), no. 3, 201–211. MR 53 615. Zbl 311.20013.

[8] P. Hilton, D. Scevenels, and C. Schuck, Non-cancellation phenomena for direct products
in a class of finitely generated nilpotent groups, Preprint, 1996.

[9] R. Militello and H. Ries, On pseudofree groups and sequential representations, New
Zealand J. Math. 23 (1994), no. 2, 137–146. MR 96c:20103. Zbl 826.20051.

[10] R. R. Militello, On a certain class of nilpotent groups, Group theory (River Edge, NJ)
(S. Sehgal et al., eds.), World Sci. Publishing, 1993, pp. 229–236. MR 96f:20055.
Zbl 831.20042.

[11] G. Mislin, Nilpotent groups with finite commutator subgroups, Localization in group the-
ory and homotopy theory, and related topics (Berlin), Lecture Notes in Math., vol.
418, Springer, 1974, pp. 103–120. MR 50 10080. Zbl 302.20029.

[12] H. Ries, On torsion free Abelian groups that are almost finitly-generated, Ph.D. thesis,
SUNY, Binghamton, 1992.

[13] D. Scevenels, The genus of a direct product of nilpotent groups of a certain type
and non-cancellation phenomena, Comm. Algebra 23 (1995), no. 9, 3223–3231.
MR 96c:20062. Zbl 843.20029.

Scevenels: Centre de Recerca Matemàtica, Apartat 50, E-08193 Bellaterra, Spain

http://www.ams.org/mathscinet-getitem?mr=53:615
http://www.emis.de/cgi-bin/MATH-item?311.20013
http://www.ams.org/mathscinet-getitem?mr=96c:20103
http://www.emis.de/cgi-bin/MATH-item?826.20051
http://www.ams.org/mathscinet-getitem?mr=96f:20055
http://www.emis.de/cgi-bin/MATH-item?831.20042
http://www.ams.org/mathscinet-getitem?mr=50:10080
http://www.emis.de/cgi-bin/MATH-item?302.20029
http://www.ams.org/mathscinet-getitem?mr=96c:20062
http://www.emis.de/cgi-bin/MATH-item?843.20029

