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ABSTRACT. Let X be a Hilbert space and let Q C R" be a bounded domain with smooth
boundary 0Q. We establish the existence and norm estimation of solutions for the parabolic
partial functional integro-differential equation in X by using the fundamental solution.
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1. Introduction. Let X be a Hilbert space and let Q € R" be a bounded domain with
smooth boundary 0Q. We consider the following parabolic partial functional integro-
differential equation.

ou

0
T Aou(t,x) +Au(t—h,x) +J ha(s)&ﬁzu(t+s,x)ds

t
+J0 {k(t,s)G(s,u(sfh),x) +H(t,s,u(sfh,x))}ds (1.1)

+F(t,u(t-h,x))+f(t,x), 0<t=<T,x€Q,

where «;(i = 0,1,2) are elliptic differential operators, f is a forcing function, h > 0
is a delay time, a(s) is a real scalar function on [—h,0],G,H, and F are nonlinear
functions, and k is a kernel. The boundary condition attached to (1.1) is, e.g., given by
the Dirichlet boundary condition

Ulga=0, 0<t=<T, (1.2)
and the initial condition is given by
u(f,x)=g(0,x), 0e€l[-h,0], xeQ. (1.3)

From [4], the above mixed problems (1.1), (1.2), and (1.3) can be formulated abstractly
as
du(t)
dat

0
=Aou(t)+Aju(t—h) +J ha(s)Azu(t+5)ds

t
+L {(k(t,5)G(s,us) + H(t,s,us)} ds (1.4)

+F(t,uy) + f(t), 0<t=<T,
u(0)=g(0), 0€[-h,0], (1.5)
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where the state u(x) of the system (1.5) lies in an appropriate Hilbert space and
A;(i =0,1,2) are unbounded operators associated with #;(i = 0,1,2), respectively.
Next, we explain the notation u in (1.5). Let I = [—h,0].If a function u(t) is continuous
from TU[0, T] into a Hilbert space X, then u; is an elementin C = C([—h,0];X), which
has the point-wise definition

u(0)=u(t+0) foroel. (1.6)

Let Ar = {(5,t);0<s<t<T}. Weassumein (1.5) that G:[0,T]xC - X, H:Ar xXC —
X, F:[0,T]xC — X and the kernel k : A7 — R (R denotes the set of real numbers)
are continuous, f: [0,T] — V* with some enlarged space V* D H and g:[—h,0] - V
with some dense subspace V C H. It is assumed that the inclusions V ¢ H C V* are
continuous and V* is the dual space of V.

Many authors [2, 8] studied the following delay differential equation:

du(t)
dt

0
=Aou(t) +Au(t—h) +J_ha(s)A2u(t+s)ds+f(t), a.e. t>0, w7

u(0) =g(0), 0<€[-h,0]

The fundamental solution is constructed in Tanabe [8]. In this paper, we establish
the existence and norm estimation of solutions for the equation (1.5) by using the
fundamental solution.

2. Preliminaries. Let H be a pivot complex Hilbert space and V be a complex Hilbert
space such that V is dense in H and the inclusion map i:V — H is continuous. The
norms of H,V, and the inner product of H are denoted by |- |, || - |l, and (-,-), re-
spectively. Identifying the antidual of H with H, we may consider that V ¢ H C V*.
The norm of the dual space V* is denoted by || - ||«. We consider the following linear
functional differential equation on the Hilbert space H.

du(t)
dt

0
=Aou(t) +Au(t—h) +Lha(s)A2u(t+s)ds+f(t), ae. t=0, o0

u(0)=g° u(s)=gs), ae.se[—h,0].

Let a(u,v) be a bounded sesquilinear form defined in V x V satisfying Garding’s
inequality

Rea(u,u) = collull®—cilul?, (2.2)

where cg > 0 and ¢; > 0 are real constants. Let Ag be the operator associated with this
sesquilinear form

(v,Aou) = —a(u,v), u,vev, (2.3)

where (-, -) denotes the duality pairing between V and V*. The operator A is bounded
linear from V into V*. The realization of Ag in H, which is the restriction of Ay to the
domain D(Ag) = {u € V:Apu € H}, is also denoted by Ay. It is proved in Tanabe [6]
that Ay generates an analytic semigroup e‘40 = T(t) both in H and V* and that T(t) :
V* — V for each t > 0. Throughout this paper, it is assumed that each A;(i = 1,2)
is bounded and linear from V to V* (i.e., A; € £(V,V*)) such that A; maps D(Ag)
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endowed with the graph norm of A to H continuously. The real valued scalar function
a(s) is assumed to be Holder continuous on [—h,0]. We introduce a Stieltjes measure

n given by
0

N(s) = =X(-w,-n1(5) A1 —J a(§)dgA: :V—V*, se[-h,0], (2.4)

s

where x(—«,n] denotes the characteristic function of (—co,—h]. Then the delay term
in (2.1) is written simply as f?h dan(s)u(t +s). The fundamental solution W (t) of (2.1)
is defined as a unique solution of

t 0

T(t)+J T(t—s)J dn(E)W(&+s)ds, t=0,
0 -h

0, t<0,

wi(t) = (2.5)

and W (t) is constructed by Tanabe [7] under the Holder continuity of a(s).

THEOREM 2.1 [2]. The fundamental solution W (t) is strongly continuous in V,H,
and V*, and for each t > 0, W(t) : V* — V. Furthermore, W (t) satisfies

0
iW(t):AOW(t)JrJ An(s)W(t+s), ae.t>0. (2.6)
dt “h

For each t > 0, we define the operator valued function U;(-) by
S
Ui (s) = J W(t-s+&)dn(€) :V—V, ae.se[-h,0] 2.7)
-h

Let T > 0 be fixed. Associated with U;(-), we consider the operator AU : L2(—h,0;V) —
L2(0,T;V) defined by
0
(ug") () = | vi9)g')ds, telo,T] (2.8)
-h
for g' € L?(—h,0;V).

THEOREM 2.2 [8]. LetT > 0 be fixed. Assume that f € L?(0,T;V*) andg = (g°,g') €
H x12(—h,0;V). Then there exists a unique solution u(t) = u(t;f,g) of (2.1) on [0,T]
satisfying

uel?0,T;V)nWh2(0, T;V*) c C([0,T];H). (2.9)

Further, for each T > 0, there is a constant Kt such that

2

T 2 Tl du(t) o1z (° 2 g 2
JO lu@®| dt+J0 o *dtsKT<|g | +th|g ()l ds+L IF (@5 dt ).
(2.10)
This solution u(t) is represented by
t
u(t;f.9) =wt)g°+(ug) +J0 W(t—s)f(s)ds. (2.11)

In what follows, in order to consider the solutions in the state space C = C([-h,0];H),
we assume that g = (g%, g') is continuous in H, i.e.,

g0)=g°  g()=g'()eC([-h,05;H). (2.12)
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Let
u(t; f,g), telo,T],

w(t; f,9) = 2.13
(t:f.9) {g(t), t € [-h,0]. ( )

Then, by Theorem 2.2, we get
(- f,9) € C([-h,T};H) (2.14)
if (2.12) is satisfied.

3. Existence and uniqueness of functional integro-differential equations. Using
the fundamental solution W (t) in Section 2, we consider the following abstract func-
tional integral equation.

v(t) =u(t;f,g)

+J;W(t—5)[J:{k(S,T)G(T,UT) .

+H(S,T,UT)}dT+F(S,US):| ds, 0<t<T,
v(0)=g(0), 0<c[-h,0],

where u(t; f,g) is given by (2.11).

We list the following hypotheses.

(A1) The nonlinear functions G:[0,T]|xC - H, H:ArxC - H,F:[0,T]xC — H,
and the kernel k : A7 — R (R denotes the set of real numbers) are continuous.

(Az) Let by,b3:[0,T] = R, by : At — R* be continuous functions such that

|G(t,¢)—G(t,$) |X = bl(t) {¢_$~C’
|H(t,s,)—H(t,s,})|x <ba(t,s) |p—P|c; (3.2)
|F(t,p)—F(t,)|x <bs(t) [dp- |,

for t,s € [0,T], ¢, € C.
(A3) The function k(t,s) is Holder continuous with exponent «, i.e., there exists a
positive constant a such that

|k(t1,51) —k(t2,82) | <a(lty —t2|*+ |51 —521%) (3.3)

for ty,t2,51,5, € [0, T],0 < x<1.
(Ag) Forall0<s<t<T,

G(t,0) =0, H(t,s,0) =0, F(t,0) =0. (3.4)

THEOREM 3.1. Let f € L?(0,T;V*) and g = (g(0),g(-)) € HxL?(~h,0;V) satisfy
(2.12). Assume that the hypotheses (A1)-(A4) hold. Then there exists a time t, > 0 such
that the functional integral equation (3.1) admits a unique solution v (t) on [0,t;].

PROOF. We prove this theorem by using the method of successive approximations.

SetvO(t) = u(t;f,g), t = 0.Let DO(t) be the extension of v°(t) on [-h,T] by (2.13).
Then, by the assumptions on f and g, we have ¥°(t) € C([~h,T];H). By hypotheses
(A1)-(A4), we define {0"};_, € C([-h,T];H) successively by
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0" (t) =u(t; f,9)
+J(:W(t—s)[JOS {k(s,T)G(T,07 1) (3.5)
+H(S,T,f1¥’1)}dT+F($,v}1’1)]ds, O<t<T,
"(0) =g(0), 6e[-h,0]. (3.6)
It is obvious that M = sup;cio 1 |W () lLx) is finite and that
"L (0)-0"(0) =0, O [—h,0]. (3.7)
For 0 <t < T, we have, by (A;)-(A4) and the strong continuity of W(t) on [0, T],
|f)n+1(t)_ﬁn(t)|

t X
J W(t_s)H (k(s,T)G(T,0m) +H(s,r,ﬁ¢)}dT+F(s,ﬁp)]ds
0 0

t s
—J W(t—s)[JO {k(s,T)G(T,0071) +H(s,'r,17$’1)}d'r+F(s,05”’1)]ds
0

t s
SMJ [J |k(s,T)||G(T,0") - G(T,0 ) |dTds
olJo

s t
s tE o —m (s T op ) [T e [ |FGs 00 - F(s, 087 |ds
0 0

IA

t s
M [ Ik by 1[07 =02+ [ b2t |[[oF - 03[} dr |ds
0 0
t
M [ [bs(s) |17 - 027 lds
0
t t
ij [KL1+L2]||f;¢_ﬁr—1||sds+Mj Ls|[on — oY |ds
0 0

< [MKLy+Lo) §t2 + MLst | [|0" = 0" Y| p )

= (cxt+e2)t[[ 0" = 0" Mo pryms
(3.8)

where ¢; = (1/2)M(KLy + L,) and ¢ = ML3. We now choose a sufficiently small con-
stant £; > 0 such that

L= (C] t +C2)t1 <1. 3.9)

Then by (3.6), (3.8), and (3.9), we get

H0n+1

= 0"leqonrrm < LI =" leqonrim
......... (3.10)

<L"|[0" =0l prrmn-
This implies that {0} _, converges uniformly to some U € C([—h,0];H). Therefore,
n=0

llm Sup ||’0£n_,0t||c([*h,0];H) :O. (3.11)
N=% 10,8 ]
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Hence, by letting n — o in (3.5), in view of (A;)-(A4) and (3.11), we get
(t) =u(t; f,9)

+J0t [W(t—s)U: {k(s,1)G(7,07) (3.12)

+H(s,T,ﬁT)}dT] +F(s,175)]d5, 0O<t<ty,
0(0)=g(0), 0e<[-h,0].

This shows the local existence of a solution v (t) = U (£)lo,t;7 of (3.1) on [0, 1 ]. Let vy
and v, be the solution of (3.1) on [0, £;]. Then it is easy to see, similarly to the above,
that

10" =02l cpeyrm < LD =02l e opoey 1oy (3.13)

so that by L < 1, vi(t) = va2(t) on [0,t;]. This proves the uniqueness. O

Since k(s,T)G(T,V¢), H(s,T,D"), F(s,vs) € L?(0,t;;H) C L?(0,t;;V*), by Theorem
2.1, we see that the solution v (t) of (3.1) satisfies

dv (t)
dt

0
=Apv(t)+Av(t—h) +J ha(s)Agv(t+s)ds

t
+Io {k(t,s)G(s,v5) +H(t,s,v5)}ds (3.14)

+F(t,ve) + f(t), ae.te[0,t1],
v(0)=g(0), 0¢c[-h,0]

and v € L2(0,t1;V) nWL2(0,t;;V*). In this sense, we call this v a mild solution of
(1.5) on [0,t;]. We give a norm estimation of the mild solution of (1.5) and estab-
lish the global existence of solutions with the aid of norm estimations. It is well
known (cf. Lions and Magenes [3, Prop. 2.1, Thm. 3.1]) that the inclusion L2(0,T;V) n
wl2(0,T;V*) c C([0,T];H) is continuous, that is, there exists a constant cg such that

du

T (3.15)

lullcqo,ri;m) < co (llullLZ(o,T;v) +’ )
L2(0,T;V*)

forall u € L2(0,T;V) nWL2(0, T; V*).

LEMMA 3.1 [5]. Leta(t), b(t), and c(t) be real valued nonnegative continuous func-
tions defined on R*, for which the inequality

t t s
c(t) <co +JO a(s)c(s)ds + Jo a(s) [Jo b(t)c(T) dT] ds (3.16)

holds for all t € R*, where ¢y is a nonnegative constant. Then

t s
c(t) <cg (1 + L a(s)exp [Jo (a(t)+b(T)) dT] ds) forallt eR*. (3.17)
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THEOREM 3.2. Assume that the conditions in Theorem 3.1 hold. Then for any solu-
tionv(t) =v(t;f,g) of (3.1) on [—h,T], we have the estimate

||Ut(';f!g)||C([0,T];H) = C( |g(0) ] + ||gHL2(—h,0;V) + HfHLZ(o,T;v*))eKt, (3.18)
where c is a positive constant which does not depend on v.
PROOF. From hypotheses (A;)-(A4), we have

lv(t+06;f,9)]

< |u(t+6;f,9)| +

t+6
W(t+60-s)

0

X [JOS {k(s,T)G(T,v)+H(s,T,v:)}dT +F(s,v5)] ds

<|lu(fr9)eqornm

t+0 s
+Mj H {K|b1<r>|uvT||+|hz<s,T>l||vT|\}dT+|b3<s>|||vs||]ds.
0 0

(3.19)
Hence, by (2.10) and (3.15),
lve(£,9)l= sup |v(t+0;f,9)]
0e[—h,0]
= Krco (|g(0) | +11glli2-nov) + HfHLZ(O,T;V*))
t t rs
+JO C1||US(';fvg)||dS+J0 JO collve (-, 9)lldTds (3.20)
<c ( |g(0)] + ||gHL2(—h,O;V) + HfHLZ(o,T;v*))
t t rs
eM( [ lvsCiflds || vetis.g)ldras).
By using Lemma 3.1, we get
||vt(-;f’g)||c([O,T];H) =c < \g(o) \ + HgHLZ(—h,O;V) + ||fHL2(O,T;V*))
t s
X (1 +MJ exp(J (M+1)d'r) ds)
0 0
, 3.21
=c (|g(0)| + ||9||L2<7h,0;v> + ||f||L2(0,T;v*)) ( )
x[1+Mexp{(M+1)T}t]
=c ( lg(0)] + HgHLZ(—h,O;V) + ||f||L2(0,T;v*)) ekt
for some constants ¢ and K. This completes the proof. O

By using Theorems 3.1, 3.2, we get the following theorem:

THEOREM 3.3. Assume that the conditions in Theorem 3.1 hold. Then there exists a
unique solution v (t) on [0,T] of (3.1) which satisfies the estimate

Hv(';fvg)HC([O,T];H) =c ( lg(0) | + HgHLZ(—h,O;V) + ||f||L2<o,T;v*)> ekt (3.22)

for some constants ¢ and K.
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