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Abstract. Let X be a Hilbert space and let Ω ⊂ Rn be a bounded domain with smooth
boundary ∂Ω. We establish the existence and norm estimation of solutions for the parabolic
partial functional integro-differential equation in X by using the fundamental solution.
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1. Introduction. Let X be a Hilbert space and letΩ ⊂ Rn be a bounded domain with
smooth boundary ∂Ω. We consider the following parabolic partial functional integro-
differential equation.

∂u
∂t
=�0u(t,x)+�1u(t−h,x)+

∫ 0

−h
a(s)�2u(t+s,x)ds

+
∫ t

0

{
k(t,s)G

(
s,u(s−h),x)+H(t,s,u(s−h,x))}ds

+F(t,u(t−h,x))+f(t,x), 0< t ≤ T , x ∈Ω,

(1.1)

where �i(i = 0,1,2) are elliptic differential operators, f is a forcing function, h > 0
is a delay time, a(s) is a real scalar function on [−h,0],G,H, and F are nonlinear
functions, and k is a kernel. The boundary condition attached to (1.1) is, e.g., given by
the Dirichlet boundary condition

u|∂Ω = 0, 0< t ≤ T , (1.2)

and the initial condition is given by

u(θ,x)= g(θ,x), θ ∈ [−h,0], x ∈Ω. (1.3)

From [4], the above mixed problems (1.1), (1.2), and (1.3) can be formulated abstractly
as

du(t)
dt

=A0u(t)+A1u(t−h)+
∫ 0

−h
a(s)A2u(t+s)ds

+
∫ t

0

{
k(t,s)G(s,us)+H(t,s,us)

}
ds

+F(t,ut)+f(t), 0< t ≤ T ,

(1.4)

u(θ)= g(θ), θ ∈ [−h,0], (1.5)
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where the state u(x) of the system (1.5) lies in an appropriate Hilbert space and
Ai(i = 0,1,2) are unbounded operators associated with �i(i = 0,1,2), respectively.
Next, we explain the notationut in (1.5). Let I = [−h,0]. If a functionu(t) is continuous
from I∪[0,T ] into a Hilbert space X, then ut is an element in C = C([−h,0];X), which
has the point-wise definition

ut(θ)=u(t+θ) for θ ∈ I. (1.6)

Let ∆T = {(s,t);0≤ s ≤ t ≤ T}. We assume in (1.5) that G : [0,T ]×C →X, H :∆T ×C →
X, F : [0,T ]×C → X and the kernel k : ∆T → R (R denotes the set of real numbers)
are continuous, f : [0,T ]→ V∗ with some enlarged space V∗ ⊃H and g : [−h,0]→ V
with some dense subspace V ⊂ H. It is assumed that the inclusions V ⊂ H ⊂ V∗ are
continuous and V∗ is the dual space of V .

Many authors [2, 8] studied the following delay differential equation:

du(t)
dt

=A0u(t)+A1u(t−h)+
∫ 0

−h
a(s)A2u(t+s)ds+f(t), a.e. t ≥ 0,

u(θ)= g(θ), θ ∈ [−h,0].
(1.7)

The fundamental solution is constructed in Tanabe [8]. In this paper, we establish
the existence and norm estimation of solutions for the equation (1.5) by using the
fundamental solution.

2. Preliminaries. LetH be a pivot complex Hilbert space and V be a complex Hilbert
space such that V is dense in H and the inclusion map i : V → H is continuous. The
norms of H,V , and the inner product of H are denoted by | · |, ‖ · ‖, and 〈·,·〉, re-
spectively. Identifying the antidual of H with H, we may consider that V ⊂ H ⊂ V∗.
The norm of the dual space V∗ is denoted by ‖·‖∗. We consider the following linear
functional differential equation on the Hilbert space H.

du(t)
dt

=A0u(t)+A1u(t−h)+
∫ 0

−h
a(s)A2u(t+s)ds+f(t), a.e. t ≥ 0,

u(0)= g0, u(s)= g1(s), a.e. s ∈ [−h,0].
(2.1)

Let a(u,v) be a bounded sesquilinear form defined in V × V satisfying Gårding’s
inequality

Re a(u,u)≥ c0‖u‖2−c1|u|2, (2.2)

where c0 > 0 and c1 ≥ 0 are real constants. Let A0 be the operator associated with this
sesquilinear form

〈v,A0u〉 = −a(u,v), u,v ∈ V, (2.3)

where 〈·,·〉 denotes the duality pairing between V and V∗. The operatorA0 is bounded
linear from V into V∗. The realization of A0 in H, which is the restriction of A0 to the
domain D(A0) = {u∈ V :A0u∈H}, is also denoted by A0. It is proved in Tanabe [6]
that A0 generates an analytic semigroup etA0 = T(t) both in H and V∗ and that T(t) :
V∗ → V for each t > 0. Throughout this paper, it is assumed that each Ai(i = 1,2)
is bounded and linear from V to V∗ (i.e., Ai ∈ �(V ,V∗)) such that Ai maps D(A0)
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endowed with the graph norm ofA0 toH continuously. The real valued scalar function
a(s) is assumed to be Hölder continuous on [−h,0]. We introduce a Stieltjes measure
η given by

η(s)=−χ(−∞,−h](s)A1−
∫ 0

s
a
(
ξ
)
dξA2 : V �→ V∗, s ∈ [−h,0], (2.4)

where χ(−∞,−h] denotes the characteristic function of (−∞,−h]. Then the delay term

in (2.1) is written simply as
∫ 0
−h dη(s)u(t+s). The fundamental solution W(t) of (2.1)

is defined as a unique solution of

W(t)=



T(t)+

∫ t
0
T(t−s)

∫ 0

−h
dη
(
ξ
)
W
(
ξ+s)ds, t ≥ 0,

0, t < 0,
(2.5)

and W(t) is constructed by Tanabe [7] under the Hölder continuity of a(s).

Theorem 2.1 [2]. The fundamental solution W(t) is strongly continuous in V,H,
and V∗, and for each t > 0, W(t) : V∗ → V . Furthermore, W(t) satisfies

d
dt

W(t)=A0W(t)+
∫ 0

−h
dη(s)W(t+s), a.e. t > 0. (2.6)

For each t > 0, we define the operator valued function Ut(·) by

Ut(s)=
∫ s
−h
W
(
t−s+ξ)dη(ξ) : V �→ V, a.e. s ∈ [−h,0]. (2.7)

Let T > 0 be fixed. Associated with Ut(·), we consider the operator � : L2(−h,0;V)→
L2(0,T ;V) defined by

(
�g1

)
(t)=

∫ 0

−h
Ut(s)g1(s)ds, t ∈ [0,T ] (2.8)

for g1 ∈ L2(−h,0;V).

Theorem 2.2 [8]. Let T > 0 be fixed. Assume that f ∈ L2(0,T ;V∗) andg=(g0,g1)∈
H×L2(−h,0;V). Then there exists a unique solution u(t)=u(t;f ,g) of (2.1) on [0,T ]
satisfying

u∈ L2(0,T ;V)∩W 1,2(0,T ;V∗)⊂ C([0,T ];H). (2.9)

Further, for each T > 0, there is a constant KT such that

∫ T
0

∥∥u(t)∥∥2dt+
∫ T

0

∥∥∥∥du(t)dt

∥∥∥∥
2

∗
dt ≤KT

(∣∣g0
∣∣2+

∫ 0

−h

∥∥g1(s)
∥∥2ds+

∫ T
0

∥∥f(t)∥∥2
∗dt

)
.

(2.10)

This solution u(t) is represented by

u
(
t;f ,g

)=W(t)g0+
(

�g1
)
(t)+

∫ t
0
W(t−s)f (s)ds. (2.11)

In what follows, in order to consider the solutions in the state space C = C([−h,0];H),
we assume that g = (g0,g1) is continuous in H, i.e.,

g(0)= g0, g(·)= g1(·)∈ C([−h,0];H). (2.12)
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Let

û
(
t;f ,g

)=

u

(
t;f ,g

)
, t ∈ [0,T ],

g(t), t ∈ [−h,0]. (2.13)

Then, by Theorem 2.2, we get

û
(·;f ,g)∈ C([−h,T];H) (2.14)

if (2.12) is satisfied.

3. Existence and uniqueness of functional integro-differential equations. Using
the fundamental solution W(t) in Section 2, we consider the following abstract func-
tional integral equation.

v(t)=u(t;f ,g)

+
∫ t

0
W(t−s)

[∫ s
0

{
k(s,τ)G

(
τ,vτ

)

+H(s,τ,vτ)
}
dτ+F(s,vs)

]
ds, 0< t ≤ T ,

v(θ)= g(θ), θ ∈ [−h,0],

(3.1)

where u(t;f ,g) is given by (2.11).
We list the following hypotheses.
(A1) The nonlinear functions G : [0,T ]×C → H, H : ∆T ×C → H, F : [0,T ]×C → H,

and the kernel k :∆T → R (R denotes the set of real numbers) are continuous.
(A2) Let b1,b3 : [0,T ]→ R, b2 :∆T → R+ be continuous functions such that∣∣G(t,φ)−G(t,φ)∣∣X ≤ b1(t)

∣∣φ−φ∣∣C ;∣∣H(t,s,φ)−H(t,s,φ)∣∣X ≤ b2(t,s)
∣∣φ−φ∣∣C ;∣∣F(t,φ)−F(t,φ)∣∣X ≤ b3(t)

∣∣φ−φ∣∣C
(3.2)

for t,s ∈ [0,T ], φ,φ∈ C .
(A3) The function k(t,s) is Hölder continuous with exponent α, i.e., there exists a

positive constant a such that∣∣k(t1,s1)−k(t2,s2)
∣∣≤ a(|t1−t2|α+|s1−s2|α

)
(3.3)

for t1, t2,s1,s2 ∈ [0,T ], 0<α≤ 1.
(A4) For all 0≤ s ≤ t ≤ T ,

G(t,0)= 0, H(t,s,0)= 0, F(t,0)= 0. (3.4)

Theorem 3.1. Let f ∈ L2(0,T ;V∗) and g = (g(0),g(·)) ∈ H×L2(−h,0;V) satisfy
(2.12). Assume that the hypotheses (A1)–(A4) hold. Then there exists a time t1 > 0 such
that the functional integral equation (3.1) admits a unique solution v(t) on [0, t1].

Proof. We prove this theorem by using the method of successive approximations.
Set v0(t)=u(t;f ,g), t ≥ 0. Let v̂0(t) be the extension of v0(t) on [−h,T] by (2.13).

Then, by the assumptions on f and g, we have v̂0(t)∈ C([−h,T];H). By hypotheses
(A1)–(A4), we define {v̂n}∞n=0 ⊂ C([−h,T];H) successively by
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v̂n(t)=u(t;f ,g)

+
∫ t

0
W(t−s)

[∫ s
0

{
k(s,τ)G

(
τ,v̂n−1

τ
)

+H(s,τ, v̂n−1
τ

)}
dτ+F(s,vn−1

s
)]
ds, 0< t ≤ T ,

(3.5)

v̂n(θ)= g(θ), θ ∈ [−h,0]. (3.6)

It is obvious that M = supt∈[0,T ]‖W(t)‖L(H) is finite and that

v̂n+1(θ)− v̂n(θ)= 0, θ ∈ [−h,0]. (3.7)

For 0≤ t ≤ T , we have, by (A1)–(A4) and the strong continuity of W(t) on [0,T ],∣∣v̂n+1(t)− v̂n(t)∣∣
=
∣∣∣∣∣
∫ t

0
W(t−s)

[∫ s
0

{
k(s,τ)G

(
τ,v̂nτ

)+H(s,τ, v̂nτ )}dτ+F(s, v̂ns )
]
ds

−
∫ t

0
W(t−s)

[∫ s
0

{
k(s,τ)G

(
τ,v̂n−1

τ
)+H(s,τ, v̂n−1

τ
)}
dτ+F(s, v̂n−1

s
)]
ds

∣∣∣∣∣
≤M

∫ t
0

[∫ s
0

∣∣k(s,τ)∣∣∣∣G(τ,v̂nτ )−G(τ,v̂n−1
τ

)∣∣dτds
+
∫ s

0

∣∣H(s,τ, v̂nτ )−H(s,τ, v̂n−1
τ

)∣∣dτ]+M
∫ t

0

∣∣F(s, v̂ns )−F(s, v̂n−1
s

)∣∣ds
≤M

∫ t
0

[∫ s
0

{∣∣k(s,τ)∣∣∣∣b1(τ)
∣∣∥∥v̂nτ − v̂n−1

τ
∥∥+∣∣b2(s,τ)

∣∣∥∥v̂nτ − v̂n−1
τ

∥∥}dτ]ds
+M

∫ t
0

∣∣b3(s)
∣∣∥∥v̂ns − v̂n−1

s
∥∥ds

≤M
∫ t

0

[
KL1+L2

]∥∥v̂nτ − v̂n−1
τ

∥∥sds+M
∫ t

0
L3
∥∥v̂ns − v̂n−1

s
∥∥ds

≤
[
M(KL1+L2) 1

2 t
2+ML3t

]∥∥v̂n− v̂n−1
∥∥
C([−h,T];H)

= (c1t+c2
)
t
∥∥v̂n− v̂n−1

∥∥
C([−h,T];H),

(3.8)

where c1 = (1/2)M(KL1+L2) and c2 =ML3. We now choose a sufficiently small con-
stant t1 > 0 such that

L= (c1t1+c2
)
t1 < 1. (3.9)

Then by (3.6), (3.8), and (3.9), we get∥∥v̂n+1− v̂n∥∥C([−h,T];H) ≤ L∥∥v̂n− v̂n−1
∥∥
C([−h,T];H)

·········
≤ Ln∥∥v̂1− v̂0

∥∥
C([−h,T];H).

(3.10)

This implies that {v̂n}∞n=0 converges uniformly to some v̂ ∈ C([−h,0];H). Therefore,

lim
n→∞ sup

t∈[0,t1]

∥∥v̂nt − v̂t∥∥C([−h,0];H) = 0. (3.11)
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Hence, by letting n→∞ in (3.5), in view of (A1)–(A4) and (3.11), we get

v̂(t)=u(t;f ,g)

+
∫ t

0

[
W(t−s)

[∫ s
0

{
k(s,τ)G(τ,v̂τ)

+H(s,τ,v̂τ)
}
dτ
]
+F(s, v̂s)

]
ds, 0< t ≤ t1,

v̂(θ)= g(θ), θ ∈ [−h,0].

(3.12)

This shows the local existence of a solution v(t)= v̂(t)|[0,t1] of (3.1) on [0, t1]. Let v1

and v2 be the solution of (3.1) on [0, t1]. Then it is easy to see, similarly to the above,
that

∥∥v̂1− v̂2
∥∥
C([−h,t1];H) ≤ L

∥∥v̂1− v̂2
∥∥
C([−h,t1];H), (3.13)

so that by L < 1, v1(t)= v2(t) on [0, t1]. This proves the uniqueness.

Since k(s,τ)G(τ,v̂τ), H(s,τ,v̂n), F(s,vs) ∈ L2(0, t1;H) ⊂ L2(0, t1;V∗), by Theorem
2.1, we see that the solution v(t) of (3.1) satisfies

dv(t)
dt

=A0v(t)+A1v(t−h)+
∫ 0

−h
a(s)A2v(t+s)ds

+
∫ t

0

{
k(t,s)G(s,vs)+H(t,s,vs)

}
ds

+F(t,vt)+f(t), a.e. t ∈ [0, t1],
v(θ)= g(θ), θ ∈ [−h,0],

(3.14)

and v ∈ L2(0, t1;V)∩W 1,2(0, t1;V∗). In this sense, we call this v a mild solution of
(1.5) on [0, t1]. We give a norm estimation of the mild solution of (1.5) and estab-
lish the global existence of solutions with the aid of norm estimations. It is well
known (cf. Lions and Magenes [3, Prop. 2.1, Thm. 3.1]) that the inclusion L2(0,T ;V)∩
W 1,2(0,T ;V∗)⊂ C([0,T ];H) is continuous, that is, there exists a constant c0 such that

‖u‖C([0,T ];H) ≤ c0

(
‖u‖L2(0,T ;V)+

∥∥∥∥dudt
∥∥∥∥
L2(0,T ;V∗)

)
(3.15)

for all u∈ L2(0,T ;V)∩W 1,2(0,T ;V∗).

Lemma 3.1 [5]. Let a(t), b(t), and c(t) be real valued nonnegative continuous func-
tions defined on R+, for which the inequality

c(t)≤ c0+
∫ t

0
a(s)c(s)ds+

∫ t
0
a(s)

[∫ s
0
b(τ)c(τ)dτ

]
ds (3.16)

holds for all t ∈ R+, where c0 is a nonnegative constant. Then

c(t)≤ c0

(
1+

∫ t
0
a(s)exp

[∫ s
0

(
a(τ)+b(τ))dτ]ds

)
for all t ∈ R+. (3.17)
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Theorem 3.2. Assume that the conditions in Theorem 3.1 hold. Then for any solu-
tion v(t)= v(t;f ,g) of (3.1) on [−h,T], we have the estimate∥∥vt(·;f ,g)∥∥C([0,T ];H) ≤ c

(∣∣g(0)∣∣+∥∥g∥∥L2(−h,0;V)+
∥∥f∥∥L2(0,T ;V∗)

)
eKt, (3.18)

where c is a positive constant which does not depend on v .

Proof. From hypotheses (A1)–(A4), we have∣∣v(t+θ;f ,g
)∣∣

≤ ∣∣u(t+θ;f ,g
)∣∣+

∣∣∣∣∣
∫ t+θ

0
W(t+θ−s)

×
[∫ s

0

{
k(s,τ)G(τ,vτ)+H(s,τ,vτ)

}
dτ+F(s,vs)

]
ds

∣∣∣∣∣
≤ ∥∥u(·;f ,g)∥∥C([0,T ];H)
+M

∫ t+θ
0

[∫ s
0

{
K|b1(τ)|‖vτ‖+

∣∣b2(s,τ)
∣∣‖vτ‖}dτ+∣∣b3(s)

∣∣‖vs‖
]
ds.

(3.19)

Hence, by (2.10) and (3.15),∥∥vt(·;f ,g)∥∥= sup
θ∈[−h,0]

∣∣v(t+θ;f ,g
)∣∣

≤KTc0

(∣∣g(0)∣∣+∥∥g∥∥L2(−h,0;V)+
∥∥f∥∥L2(0,T ;V∗)

)

+
∫ t

0
c1
∥∥vs(·;f ,g)∥∥ds+

∫ t
0

∫ s
0
c2
∥∥vτ(·;f ,g)∥∥dτds

≤ c′
(∣∣g(0)∣∣+∥∥g∥∥L2(−h,0;V)+

∥∥f∥∥L2(0,T ;V∗)
)

+M
(∫ t

0

∥∥vs(·;f ,g)∥∥ds+
∫ t

0

∫ s
0

∥∥vτ(·;f ,g)∥∥dτds
)
.

(3.20)

By using Lemma 3.1, we get∥∥vt(·;f ,g)∥∥C([0,T ];H) ≤ c
(∣∣g(0)∣∣+∥∥g∥∥L2(−h,0;V)+

∥∥f∥∥L2(0,T ;V∗)
)

×
(

1+M
∫ t

0
exp

(∫ s
0
(M+1)dτ

)
ds
)

≤ c′
(∣∣g(0)∣∣+∥∥g∥∥L2(−h,0;V)+

∥∥f∥∥L2(0,T ;V∗)
)

×[1+M exp
{
(M+1)T

}
t
]

≤ c
(∣∣g(0)∣∣+∥∥g∥∥L2(−h,0;V)+

∥∥f∥∥L2(0,T ;V∗)
)
eKt

(3.21)

for some constants c and K. This completes the proof.

By using Theorems 3.1, 3.2, we get the following theorem:

Theorem 3.3. Assume that the conditions in Theorem 3.1 hold. Then there exists a
unique solution v(t) on [0,T ] of (3.1) which satisfies the estimate∥∥v(·;f ,g)∥∥C([0,T ];H) ≤ c

(∣∣g(0)∣∣+∥∥g∥∥L2(−h,0;V)+
∥∥f∥∥L2(0,T ;V∗)

)
eKT (3.22)

for some constants c and K.



854 J. Y. PARK ET AL.

Acknowledgement. This work was supported by KOSEF, 1996.

References

[1] M. B. Dhakne and B. G. Pachpatte,On some abstract functional integrodifferential equations,
Indian J. Pure Appl. Math. 22 (1991), no. 2, 109–134. MR 92e:47127. Zbl 728.45013.

[2] J. M. Jeong, S. Nakagiri, and H. Tanabe, Structural operators and semigroups associated with
functional-differential equations in Hilbert spaces, Osaka J. Math. 30 (1993), no. 3,
365–395. MR 94i:34155. Zbl 818.47039.

[3] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications,
Vol. I, Die Grundlehren der mathematischen Wissenschaften, vol. 181, Springer-
Verlag, New York, Heidelberg, 1972, Translated from the French by P. Kenneth.
MR 50 2670. Zbl 223.35039.

[4] S. Nakagiri, Existence, uniqueness and norm estimation for partial functional integrodiffer-
ential equations, Preprint.

[5] B. G. Pachpatte, A note on Gronwall-Bellman inequality, J. Math. Anal. Appl. 44 (1973),
758–762. MR 49 501. Zbl 274.45011.

[6] H. Tanabe, On fundamental solution of differential equation with time delay in Banach
space, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), no. 5, 131–134. MR 89j:34090.
Zbl 658.34056.

[7] , Structural operators for linear delay-differential equations in Hilbert space,
Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), no. 8, 265–266. MR 89k:47061.
Zbl 668.45013.

[8] , Fundamental solutions for linear retarded functional-differential equations
in Banach space, Funkcial. Ekvac. 35 (1992), no. 1, 149–177. MR 93f:34136.
Zbl 771.34060.

Park, Y. Lee, and J. Lee: Department of Mathematics, Pusan National University,
Pusan 609-735, Korea

http://www.ams.org/mathscinet-getitem?mr=92e:47127
http://www.emis.de/cgi-bin/MATH-item?728.45013
http://www.ams.org/mathscinet-getitem?mr=94i:34155
http://www.emis.de/cgi-bin/MATH-item?818.47039
http://www.ams.org/mathscinet-getitem?mr=50:2670
http://www.emis.de/cgi-bin/MATH-item?223.35039
http://www.ams.org/mathscinet-getitem?mr=49:501
http://www.emis.de/cgi-bin/MATH-item?274.45011
http://www.ams.org/mathscinet-getitem?mr=89j:34090
http://www.emis.de/cgi-bin/MATH-item?658.34056
http://www.ams.org/mathscinet-getitem?mr=89k:47061
http://www.emis.de/cgi-bin/MATH-item?668.45013
http://www.ams.org/mathscinet-getitem?mr=93f:34136
http://www.emis.de/cgi-bin/MATH-item?771.34060

