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ABSTRACT. In this paper, we compute the Reidemeister torsion of an isoenergetic surface
for the integrable Hamiltonian system on the 4-dimensional symplectic manifold. We use
the spectral sequence defined by the filtration and following Floer-Witten ideas we bring
into play the orbits connecting the critical submanifolds.
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1. Introduction. Reidemeister torsion is a very important topological invariant
which has useful applications in knot theory, quantum field theory and dynamical
systems. In 1935, Reidemeister [10] classified up to PL equivalence the lens spaces
S3/T, where T is a finite cyclic group of fixed point free orthogonal transformations.
He used a certain new invariant—the Reidemeister torsion—which was quickly ex-
tended by Franz, who used it to classify the generalized lens spaces §2"*1/T. Let X be
a compact smooth manifold. A representation p : 11 (X) — U(m) of the fundamental
group defines a flat C™ bundle E over X. When the twisted cohomology H* (X;E) van-
ishes, the representation p and the flat bundle E are called acyclic. The Reidemeister
torsion or R-torsion is a positive number which is a ratio of determinants concocted
from the 1, (X)-equivariant chain complex of the universal covering of X. Later, Mil-
nor identified the Reidemeister torsion with the Alexander polynomial, which plays a
fundamental role in the theory of knots and links.

In 1971, Ray and Singer [9] introduced an analytic torsion associated with the
de Rham complex of forms with coefficients in a flat bundle over a compact Rie-
mannian manifold, and conjectured it was the same as the Reidemeister torsion. The
Ray-Singer conjecture was established independently by Cheeger and Miiller a few
years later.

Recently, the Reidemeister torsion has found interesting applications in dynamical
systems theory. A connection between the Lefschetz type dynamical zeta functions
and the Reidemeister torsion was established by D. Fried [6]. The work of Milnor [8]
was the first indication that such a connection exists.

In this paper, we study the Reidemeister torsion of isoenergy surfaces of an inte-
grable Hamiltonian system. Let N be a 4-dimensional smooth symplectic manifold
and consider the Hamiltonian system with smooth Hamiltonian H, which in Darboux
coordinates has the form
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dpi _ OoH dqi OH

dt oai’ at ~ opi’

(1.1)

The 3-dimensional level surface M = {H = constant} is invariant under the flow de-
fined by the system (1.1). The surface M is called an isoenergy surface or a constant-
energy surface. The topological structure of isoenergy surfaces of integrable Hamil-
tonian systems and the structure of their fundamental groups were described in
[3, 4]. Isoenergy surfaces of integrable Hamiltonians system possess specific prop-
erties which distinguish them among all smooth 3-dimensional manifolds. Namely,
they belong to the class of graph-manifolds introduced by Waldhausen [12]. Since N
is orientable (as a symplectic manifold), the surface M is automatically orientable in
all cases. Suppose that the system (1.1) is complete integrable (in Liouville’s sense) on
the surface M. This means, that there is a smooth function f (the second integral),
which is independent of H and with Poisson bracket {H, f} = 0 in a neighborhood
of M.

DEFINITION. We call f: M — R a Bott function if its critical points form critical
nondegenerate smooth submanifolds of M. This means that the Hessian d? f of the
function f is nondegenerate on the planes normal to the critical submanifolds of the
function f.

Fomenko [3] proved that a Bott integral on a compact nonsingular isoenergy surface
M can have only three types of critical submanifolds: circles, tori, or Klein bottles. The
investigation of concrete mechanical and physical systems [3] shows that it is a typical
situation when the integral on M is a Bott integral. In the classical integrable cases
of the solid body motion (cases of the Kovalevskaya, Goriachev-Chaplygin, Clebsch,
Manakov) the Bott integrals are round Morse functions on the isoenergy surfaces. A
round Morse function is a Bott function all whose critical manifolds are circles. Note
that critical circles of f are periodic solutions of the system (1.1) and the number of
these circles is finite. Suppose for the moment that the Bott integral f is a round Morse
function on the closed isoenergy surface M. Let us recall the concept of the separatrix
diagram of the critical circle y. Let x € y be an arbitrary point and N, (y) be a disc
of small radius normal to y at x. The restriction of f to the N, (y) is a normal Morse
function with the critical point x having a certain index u(y) = 0,1, 2. A separatrix of
the critical point x is an integral trajectory of the field grad f, called a gradient line,
which is entering or leaving x. The union of all the separatrices leaving the point x
gives a disc of dimension u(y) and is called the outgoing separatrix diagram (disc).
The union of incoming separatrices gives a disc of complementary dimension and is
called the separatrix incoming diagram (disc). Varying the point x and constructing the
incoming and outgoing separatrix discs for each point x, we obtain the incoming and
outgoing separatrix diagrams of the circle y. Let A(y) be +1 if the outgoing separatrix
is orientable, and —1 if it is not. Let €(y) = (-1)*®). Let pg : 11 (M, p) — U(E,) be
the holonomy representation of the hermitian bundle E over M; E,, is the fiber at the
point p. For the gradient flow of f on M, one can construct an index filtration for the
collection of critical circles {y;}, i.e., a collection of compact submanifolds M; of top
dimension so that M; C int M;,1, My = 0, M; = M for large i, the flow is transverse
inwards on 0M; and M;.; \ M; is an isolating neighborhood for the critical circle y;.
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When E | (M;,1,M;) is acyclic for each i, following the ideas of D. Fried [6] we can
compute the Reidemeister torsion as [1]

T(M;E) = [ [T(Mis1,Mi; E) = [ ]| det (1= A(y:) - pr(yi) | 7. (1.2)
i Yi
This formula means that for the integrable Hamiltonian system on the 4-dimensional
symplectic manifold, the Reidemeister torsion of the isoenergy surface counts the
critical circles of the second independent Bott integral on this surface. If E | (M1, M;)
is acyclic, then det(I — A(y;) - pe(y;)) # 0 for each i. Since in many classical integrable
cases there are contractible critical circles it is interesting to study the situation when
not all E | (M;,1,M;) are acyclic. Here, we carry out this study and in fact we consider
the general situation when the Bott integral has critical tori and Klein bottles. We use
the spectral sequence defined by the filtration and following Witten-Floer ideas we
bring into play the orbits connecting the critical submanifolds. A similar approach
was developed in [11] for Morse-Smale flows.

2. R-torsion and spectral sequences. Let W be a finite dimensional vector space
with basis w = {w,...,wy,}, then AW =w; A--- Aw, is a generator of detW = A" W.
If dimV =0, set detV = C.

Consider a cochain complex of finite dimensional vector spaces

0— VoL oyl ... ym_4 g (2.1)

Let V* = @; V%, V- = @, V?+! and
detV =det(V™)® (detV*)~1. (2.2)

Let Z* =V*nkerd, B* =d(V*), H* = Z*|B*.

We now define the torsion element T4 € detV ® (det H) ~!. Pick ordered relative bases
h. for (Z*,B*) and t. for (V.,Z.), then dt- is a basis for B.. Denote by [h.] the
corresponding basis for H*.

Ta=At_,h_,dt,)ea(dt_h, t,) tea[h ]oA[h ]t (2.3)
NOTATION. Consider the cochain complex
00—V w—o. (2.4)

We have H° = ker A, H! = coker A and denote T(A) := T4. When A is an isomorphism,
T(A) is the coordinate free version of detA.

PROPOSITION 1 [5]. Let0=Fj , CFy C---CF} =V be a filtration of the cochain
complex (2.1) such that d'(F.) c Fi*'. Let {E,,d,} be the corresponding spectral se-
quence. Then

Ta=Tgy® - ®T4y- (2.5)
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COROLLARY 2 [5]. Suppose
0— (C,d) —— (C,d) - (c",d") — 0 (2.6)
is an exact sequence of chain complexes and
% :0 — HO(C') —— H(C) — HO(C") —~ HY(C") — - - - (2.7)

is the corresponding long exact sequence. For each k choose compatible volume ele-
ments in detCy, detCy, detC}/, i.e., such that the torsion of (2.6) is 1. Then

Td =Ta Ta" Ty- (2.8)

We now describe the first terms of the spectral sequence {E,,d, }. The filtration de-
fines the associated graded complex G = @,, G}, where G!, = F\, /F. . The cobound-
ary d induces a map dff : G§, — G5! whose cohomology defines the term E; by

F,
E{"1:= H"Ha (—") (2.9)
Fn+1
and induces the first differential d7 : E]** — EJ"""* as the coboundary map for the
short exact sequence
Fn+1 Fn Fn
0— — — — 0, (2.10)
Fyi2 Fui2 Fui1

i.e., the map d; in the long exact sequence

Jn Fy ) kn Fn dy Fui1
_Jn | Hn+q( Hn+q( ) Hn+q+l (7) (2'11)
Fn+2 Fn+1 Fn+2

The term E3*? is defined by

_ ker (d1 (Ep?— E}“l‘q)
im (dp B — EPY)

n,qg .

(2.12)

From (2.11) we have ker(d;) = im(k,) and im(d;) = ker(j,_1), and thus E;* =
im (ky,) / ker(jn-1).
Consider the commutative diagram

qu(Fn) kn Hw(Fn) in1 Hnm(Fn,l)

Fui2 ) Fni1 '51 Fni1 (2.13)
gn+a-1 (F"*Z > kn—2 gnta-1 (F"*Z ) s pgme+a-1 (ana ) ]
Fn n-1 n-1
The second differential d¥ 2 : Ey 9" — EI"® is given as the composite map
im (k- 5. , Jnk im (k
( n 2) 1 im (Jn—l) 1 ( n) (214)

ker (jn-3) ker (jn-1)"
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Further terms of the spectral sequence E;*# are obtained as cohomology of the pre-
vious term and the differentials d” : E;"? — E;*"7*" ! are the maps induced by the
original d.

Now, let K be a finite CW-complex. Let p: K — K be the universal covering and
p:T — U(m) be a representation of the fundamental group I' of K which defines a
flat vector bundle E := K xp C™. Lifting cells to K we obtain a I-invariant CW-complex

structure on K. The space of p-equivariant cochains
C*(K:E) = {E€ C*(R;C™) :Eoy = p(y) oE Vy €T} (2.15)

is preserved by d/ : C/(K;C™) — C/+1(K;C™) and so {C*(K;E),d(K;E)} forms a sub-
complex. Its cohomology H* (K;E) is called the p-twisted cohomology of K. As usual
H*(K;E) is subdivision invariant and we have a torsion element

Tawe) € detC* (K;E) ® (detH* (K;E)) . (2.16)

Order the j-cells o and choose an oriented lift & for each o. This gives an isomor-
phism C/(K;E) = &,C™ and determines a preferred generator w,‘g of det(C*(K;E))
up to multiplication by an element of the subgroup

U, ={(£1)"detp(y):y €T} c SL. (2.17)

The orbit Upw,’i C detC*(K;E) is invariant under subdivision, so we can define
R-torsion of K at p as the U, orbit

T(K;E) = (Uywl) " @ Tawr) C (detH* (K;E)) ", (2.18)

which is invariant under subdivision. When p is acyclic, i.e., when H* (K;E) = 0, we
have detH* (K;E) = C and we can identify T(K;E) as an element of C*/U,. Since
U, C St, all elements in T(K;E) have the same modulus which we still denote by
T(K;E).

The previous definitions can be extended to relative pairs. Let L be a subcomplex
of K. For each j we have the relative space of cellular j-cochains

C/(K,L;C) = € H(o,00;0). (2.19)
oeK\L

Let K and p be as above and let L = p~1(L). We can define the space of relative
p-equivariant cochains C* (K, L;E) ¢ C*(K,L;C™) with coboundary d(K,L;E) and then
we get a torsion element

Tak.Lp) € detC*(K,L; E) ® (detH* (K,L; E)) . (2.20)
Thus, choosing preferred basis as before we obtain a U, orbit
T(K,L;E) c detH* (K,L; E) !, (2.21)

which is invariant under subdivision.

REMARK 1. Another name for the twisted cohomology is cohomology with local
coefficients. One chooses a point on each cell of K and a path from a fixed point to
each chosen point. In this way any path ¢ between chosen points defines a closed path
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Y and then a matrix p(c) := p(y.) which gives the relation between the coefficients
at the ends of the path.

3. R-torsion and critical submanifolds. The foliation of the isoenergy surface M
by Liouville tori is given by the level sets of the Bott integral f~1(c) for ¢ a regular
value. The bifurcation of Liouville tori occur at the sets F. = f~1(c) nCrit (f) for ¢ a
critical value. We will make the following assumption which is satisfied in the generic
case.

ASSUMPTION. We will assume that there are no gradient lines of the Bott integral
f connecting saddle circles, i.e., circles with index 1.

We will substitute the Bott integral for another Bott function, still denoted by f and
not necessarily an integral, giving the same foliation by Liouville tori and such that its
critical values c; < - - - < ¢j, are ordered in the following way

(a) i <k; < F,, is a minimum circle.

(b) k1 <i<k; e F is a minimum torus or Klein bottle.

(©) k3 <i<ky e F is a maximum torus or Klein bottle.

(d) k4 <ie F, is a maximum circle.

Choosing numbers Ag < ¢; < A; < -+ < ¢ < A; and letting N; = Fl (c0,Aj] we get
an index filtration ) = No C Ny C - - - C N; = M for the critical sets of f, i.e., denoting
by ¢ the gradient flow of f, ¢ is transverse inwards on oN,, and

() be(Nj\Nj1) = Fe,. 3.1)
teR
Fix arepresentation p : 71y (M) — U (). All cochain complexes and cohomology groups
will have coefficients in the flat bundle defined by p. Let lp =0, 1 = k2, lo = k3, [3=1
and M, = Ny, . Define the filtration Fs C - - - C F; C Fp of C*(M) by F,, = ker(C*(M) —
C*(My)). The associated graded complex is given by

F,

Gn = Fin =C* (Mn+1,Mn) (32)
n+1

with O-differential dg = ,, dij, where djj : G, — Gy, and torsion element T4, = ®an(r)n,

where

1

ng EdetC*(MnH,Mn)@(detH* (Mn+1,Mn))_ . (3.3)

Since there are neither gradient lines connecting two minimum (maximum) critical
submanifolds nor gradient lines connecting two saddle circles (by assumption), we
have (see [11])

H*(Mp,Mp)= @ H*(Nj,Nj1), (3.4)
MynCN;jCMp+1
= QT (3.5)
MnCNjCMpsy  °

From (3.4), the computation of the map

d’f:H* (MmMn—l) _’H*H(Mnﬂ,Mn) (3.6)
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reduces to computing for each i,j with [, <i <[, < j < l,41, its component
F{; : H*(Ny,Ni_1) — H**'Y(N;,N;_1). To do so, we will use the trajectories of the
gradient flow of f, but we will modify f in the neighborhood of each critical level
set in order to apply Lemma 1 below giving such a map in the Morse function case.
This modification is just a technical device to choose some of the orbits connecting
the critical submanifolds to describe the maps Fi*;-. We will give a proof of the following
proposition using Lemma 1.

PROPOSITION 3. Ifkon < j <kons1, letyj=Fc; and%;=1-A(y;)p(y;). Then

HY (NN, ) = ker%;, ifk=nn+1, 3.7)

A 0, in other case, '
_nn

ng,j:T(@j)( " (3.8)

If kon-1 < j < kon and «j, Bj are generators of the fundamental group of Fe,, let
D= (Zf}igj’;), @i = (I+p(Bj),p(a;) —I), where the + sign occurs precisely when F,

is a Klein bottle. Then
ker @ ; = coker &%, iflk—n|=1,
HY(N;,N;_1) = {ker %, eker %;, ifk=mn, (3.9)

0, in other case,

T =1, (3.10)
COROLLARY 4.
E)=H1(My) =0 forq+0,1,2,
Ey =HY (M, M) =0 forq #0,1, (3.11)
Ep* = H™2(M,Mz) =0 forq#0,1,2.

Let G : M — R be a Morse-Smale function and let ¢; < - - - < ¢y be its critical points.
For Ag <c; <---<cy <Ay and K; = G 1(o0,A;] we get a filtration Ky C - - - C K.
The orientation of M and grad G define an orientation of L, = G~!(a) for each regular
value a. Giving an orientation to the unstable subspace E*(x) for each critical point
x of G, and using the orientation of M we also get an orientation of E*(x). Then
we have orientations of W% (x) and W*(x). Let x,y be critical points of G of indices
n,n+ 1, respectively and let a be aregular value with G(x) < a < G(y). Then S*(y) =
W% (y)nL, and S%(x) = WS(x) NnL, are oriented transverse submanifolds of L, with
dimensions n and 2 — n, respectively. Therefore, S*(x) NS* () is a finite set. For each
q € S°(x)NnS"(y) denote by I; the intersection number.

The proof given by Floer in [2] for the untwisted version of the following lemma
can be readily adapted. The only new ingredients are the matrices p(x) for nonclosed
paths « used to define cohomology with local coefficients.

LEMMA 1. Let c¢;, ci+1 be critical points of G with indices n,n + 1. For each q €
S(i,j) = $(ci) N S*(cj), let ag(t) = Peormry(q) : t € [0,1]. The coboundary map
d: H"(K,Ki—1) — H""'(Ki41,K;) is given by
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d= > Ip(ay). (3.12)
qaeS(i,j)
To change the Bott integral in a neighborhood of each critical level set, we will use
the following propositions:

PROPOSITION 5. Let F: M — R be a Bott function and let y be a critical circle of
index n. Given a small neighborhood U of y there is another Bott function G which
agrees with F outside U and has nondegenerate critical points w, z € y of indices
n,n+1 and no other critical points in U.

PROOF. let F(y) = c. If A(y) = 1, there is a tubular neighborhood U of y with
coordinates (x,y) € B:(0), 0 € xS' = R/Z such that

F(x,v,0) =c++x>+y2 (3.13)

Let p: R — [0,1] be a smooth function with p(t) = 0if t > €2 and p(t) = 1 for t < £2/4.
Define

+6p(x%+v?)cosO, onU,

G|/ rorxEey) (3.14)
f, outside U.
On U we have
grad G(x,y,0) =2(=1+6p’ (x> +y?) cos0)x %

+2(i1+6p’(x2+y2)c039)y% (3.15)

—8p(x%+y?)sin6 %
Thus, if ¢ is sufficiently small, the only critical points of G in U are w = (0,0, 1T) and
z =(0,0,0) with indices p and p + 1, respectively. O

PROPOSITION 6. Let F: M — R be a Bott function and let T be a minimal (maximal)
torus. Given a small neighborhood U of T there is another Bott function G which

(1) agrees with F outside U;

(2) has nondegenerate critical points p,q,v,s € T of indices 0,1,1,2 (or 1,2,2,3) and
no other critical points in U;

(3) there are no gradient lines either from a critical point of index 1 to any of q,v,s
or from a critical point of index 2 to s (either from p to a critical point of index 1
or from p,q,v,s to a critical point of index 2).

PROOF. Consider the case of aminimal torus. Let F(T) = c. There is a tubular neigh-
borhood U of T with coordinates (x,8,p) € (—¢,&) x S1 x §! such that F(x,0,p) =
c+x2.

For each critical point z of F of index 2, W% (z) n {x} xS! x S! is a curve. For each
critical point w of F of index 1, W¥*(w) n {x} x S! x S! is a point. Therefore, we can
choose the coordinates 9, @ such that

(@) (x,0,0) € Uyz)—2W*(2);

(b) {x}x(S'—{m}) x {0} NUyz)-1 WH*(2) = 0;

(0 {x}x{0}x(S'—{mhHn Uiany=2W*(w) = 0.
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Let p be as in the proof of Proposition 5. Define

F+ (8 0+6 , U,
- p(x?) (81 cos 2COSQ), on (3.16)
F, outside U.
On U we have
grad G(x,0,p) =2(x1+p'(x%)(51c080 + 52 cosqo))x%
(3.17)

—p(x?) (61 sin@ % +6,sing a?p> .
Thus, if 61, 62 are sufficiently small, the only critical points of G in U are p = (0, 1T, 7),
q = (0,1,0), r = (0,0,11), 5 = (0,0,0) which have the required indices and
(@) W*(s)nU = (-¢,8) x{(0,0) };
(b) W5(q)NU = (—¢,€) x (St — {mr}) x {0};
(© Ws(r)nU = (—¢,&) x {0} x (S = {rr}).
The proof of the maximal torus case is similar. O

Applying Proposition 5 to f we obtain a Bott function without critical circles, then
using Proposition 6 we obtain a Bott function without critical circles and minimal
torus (Klein bottles), and with no gradient lines from a critical point of index i to a
critical point of index j > i. Using Proposition 6 again we finally get a Morse-Smale
function g that agrees with f outside a neighborhood of each critical set. Denote by
C;(g) the set of critical points of g with index j. We have

CO(g) = {wls---;wkl!pk|+1s---1pk2}1
Cl(g) = {le---;zkl:le+1;7’k]+1;---151k2s7’k2;wk2+1,---swkgypk3+1;---:pk4};
Co(g) = {Sky+1s-++ySkas Zky 415+ 03 Zkys Ak +15 Vg +15 -+ s Akgs Vigs Wha+ 15 -, Wi},

C3(g) = {Skg+1s-+1Sky» Zkyt15--+» 21}

(3.18)

PROOF OF Proposition 3. For ky, < i < kopi1 let g(w;) < d; < g(z;) and N} =
g '(e,d;]. Then, H*(N},N;_1) = C"™w;, H*"*'1(N;,N}) = C™z;, and according to
Milnor [7],

Td(N;k,Nl',l) = 1, Td(Ni’Ni*) =1. (319)

Using Lemma 1 we have the sequence

0 — H"(Ni,Ni_1) — ¢ —2L. ¢m 2L, g+l (N;, Ni_y) — O (3.20)

with %; defined in the the statement of Proposition 3. Therefore,
H"(N;,N;_1) =ker®;,  H""'(N;N;i_1) = coker %;. (3.21)
Since sequence (3.20) has torsion 7(%;) 1", we obtain by Corollary 2
0 = Tavns Tao N T@) V" = T(@) V" (3.22)

For kon—1 < i < kon, let g(pi) < ¢} < g(ai), g(ri) <c < g(s;) and N} = g~1(o0,c/],
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N{ = g '(eo,cf']. Then, H" '(N},Ni-1) = C"pi, H" ' (N],N]) = C"q; & C"r,
H"1(N;,N!") = C™s;. Again from [7],
Td(Nl(rNi—l) = 1, Td(Nl["Ni’) = 1, Td(Ni,Nl(’) =1. (323)
By Lemma 1 we have the sequence of the triad (N;’,N;,N;_1)

i

0— H" (N, Ni_ 1) — ¢ 2. ¢m o —2 HY(NY,Ni-1)— 0, (3.24)

and the exact sequence of the triad (N;,N;',N;)

B

i g¥
0 — H'(N;,N]) =2 ¢m o €™ —— C™ —2L. H2(N;,N]) — 0, (3.25)

with®; and %} defined in the statement of Proposition 3. The first part of the sequence
of the triad (NixNL(,aNi—l)
0— H""'(N;,Ni—1) — H" ' (N{,Ni-1) — 0, (3.26)
and sequence (3.24) give
H" ' (Ni,Ni—1) =H" ' (N{',Ni_1) = ker @;,
’ (3.27)
H™(N;',N;_1) =coker %;.

Using (3.24) and (3.25), we have the commutative diagram

Dy
CcCmeCm
g ¥
B t
Aj
0 — H"(N;,N;_) — H"(N/',N;_1) —— C"™ — H"*1(N;,N;_1) —=0

0 Hn+1(Ni,Nl{)

(3.28)
which implies
H™(Ni,Ni_1) =kerA; = 3B, (coker %; nker ),
: : , (3.29)
H"™ 1 (N;,N;_1) = coker A; = coker &} = H"*!(N;,N;).

Sequence (3.24) has torsion T(%;) """ and sequence (3.25) has torsion T(A;) """,
Therefore, Corollary 2 gives
TANY N;_p) = Td(Ni”,N,,’)walf,Ni,l)T(@i)“l)n =T(%;) D", (3.30)
ng—l,i = Td(Ni,N{r’)Td(Ni”,Ni,])T(Ai)(il)nil _ T(@i)(*l)nT(Ai)(fl)n—l- (331)
To compute T(%;), we recall that %; = (f;gigl‘;) Since p(&;), p(Bi) € U(m) and they
commute. There is a splitting
C™ = Vy, + Vg, +ker %;, 3.32)

invariant under p(«;), and p(B;), such that I - p(;): Vs, < and I — p(B;): Vg, < are
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nonsingular. Let k;, vy;, Vg, be bases of H" Y(N;,N;_1) = ker %;, Vi, Vp,. Let
Wi = (Vg, +ker %;) ® (V, + ker @), (3.33)

then j: W; — H™(N;,N;_1) is an isomorphism, and so j[(vg, Uk;) x {0}]uU j[{0} x
(Va; Uk;)] is a basis of H"(N;',N;_1). Thus,

A DiVea, Divp,, (Vs UKi) x {01, {0} x (o, Uk;) ) © AK;

T(D;) =
A (Vo Ve, Ki) ® A(Bi[ (Vg Uk:) X {0}],B[{0} X (Ve UK)] )
(3.34)
A= p(e0)) Ve,V Ki) © A (Ve (1= p(Bi)) Vg, Ki) © 1K
/\(vo(l,,v,gi,ki)®9]3§‘</\(v,3i,ki)®/\(vai,ki))
To compute T(A;) we recall that @} = (I +p(Bi),p(x;) —I) and then
Winker % =ker @; @ ker %;, DF(C"eC™) =DF(W;) = Vg, + V. (3.35)

Thus, ker A; = B; (ker @; @ker ¥;) and coker A; = coker &} =ker ;. Thus, H" (N, N;_1)
= ker @; @ ker %;, H" (N;,N;_1) = ker @;, and using k; xk; and k; as their bases we have

A((I—p(cxi))vai, (I_p(Bi))Vﬂ“ki> ® (Aki® Ak;)

T(A)) = (3.36)
' %Z‘(A(VBi,ki)®A(vo(i,ki))®/\ki
From equations (3.31), (3.34), and (3.36) we have
ngfl,i =1. 3.37)
O

We now come to the description of the components F{’J‘. of d,. Let ¢ be the gradient
flow of g. One can construct an index filtration

=K 1CKycLiCcPiCKiCLyCP,CKyCK3=M, (3.38)
such that L; ¢ M; CL),PyCM>,CP> and
() wi(Ki\Ki-1) = Ci(g), i=0,1,2,3,

teR

() wi(Li\Ki-1) = Ci(g) My, i=1,2,

rek (3.39)
() we(P\Li) = Ci(g) n(M2\ M), i=1,2,
teR
() we(Ki\P;) = Ci(g@)\Ma, i=1,2.
teR

We have
H'(Ki,Ki.1)= P C"x. (3.40)

index (x)=1i

Note that all the components G}, : C"x — C™y of the maps dX in the cochain
complex

akK

0 — HO(Ko) =L H'(Ky,Ko) —— H?(K2,K1) —2— H*(M,K») — 0 (3.41)
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are given as in equation (3.12) of Lemma 1.

THEOREM 1. For critical circles y; the components Fi"j are induced by the maps
o (c.0) Gﬁ,iwj, G?;i fOV an <i< k2n+1, k2n+2 < J =< k2n+3, n=0,1,
o (VG Gl Gos, forka <i<ks <j <k
For critical tori F; the components F{‘j are induced by the maps
e (tc)GY G} Giizj fork; <i<ky<j<ks.

piwj’ Yaizj’

PROOF. Consider the commutative diagrams

a da
HO(M;) — H'(My,M,) —> H2(M,M>)

H'(M3,Ly) H2(M,P>)
H'(Py,Ly) H2(K»,P») (3.42)
H(Ko) HY(Py,Ko)
K

K
H'(Ky,Ko) —— H2(K2,K))

and

d d .
H'(M;) ——— H2(My,M,) —> H?3(M,M,)

HY(Ly) H2(P», M)
HY(Ly,Ko) H%(Py,K}) (3.43)
H'(K1,Kp) H?(P,,Ly) H3(M,K>)
H?*(K»,K1),

where the downwards maps are injective and the upwards maps are surjective. By
(3.42) the maps d; in

HO(My) —2 H' (M, My) —2— H?(M,My) (3.44)
are induced by the components H°(Ky) — H'(P;,L;) and

HY(P1,L1) = P C"w;— H*(K2,P2) = P C"wio P C"qioC™r;  (3.45)

ko<i<k3 kg<i k3<i<ky
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of the maps dX in (3.41). By (3.43) the maps d; in

di

H (M) H2 (Mo, M;) —2. H3 (M, M>) (3.46)

are induced by the components

HY(L1,Ko) = P C"zie P CmgioC™ri— H*(Py,Lo) = P C"z;  (3.47)
i<k; ky<i<k» ko<i<k3

and H%(P»,L») — H3(M,K>) of the maps dX in (3.41). O

We now consider the term (E»,d>) of the spectral sequence defined by the filtration.
By (2.12) and Corollary 4, the spaces E;"q that can be nonzero are

Ey? =ker (dy : HY(My) — H7' (M2, M1)), q=0,1,
Eg’z :HZ(M1)1

El,q:ker(d1:Hq”(M2,M1)—'H“Z(M,Mz)) 7=0,1
2 di(H1(My)) ’ T

(3.48)
Ey~' = H (M, M>),

H*2(M,M>)
di(Ha* 1 (M3, My))’

E>? = q=0,1,

Therefore, we can have nonzero maps ds : Ey*? — Ef %! only forn =0, g = 0,1,2.

THEOREM 2. (1) The map d> :53’0 - 55'*1 is induced by the component

HO(Ko) — €D C"p; of d°: H(Ko) — H' (K1, Ko). (3.49)

k3<i<ky
(2) The map d :Eg‘1 - Ef’o is induced by the component

Pcrzie P CgieC™ri— P C"wie P CmgioC™r (3.50)

i<kp ky<i<ko kg<i k3<i<ky

of d¥ : H' (K1,Ko) — H?(K2,K1).
(3) The map d :Eg‘2 - E%’l is induced by the component

B Cmsi— H3(M,K>) of dX: H*(K», K1) — H*(M,K>). (3.51)

ky<i<kp
PROOF. By (2.14), the map d, : Ey? — Eg’q_l is given as the composition

q+1
J7' o8, im ky :im kg — %ﬂjw (3.52)
a
where k, : H1(M;) — H(M;), 6 : H4(M;) — H4"1(M,M,) is the coboundary map and
Jq : HY"Y(M,M,) — H9*'(M,M;) defines the isomorphism J, : H3*!(M,M>)/ker j; —
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im j;. Consider the commutative diagrams

Solimkg | . Jo 5 _
E;_)’O im jo E;, 1
N N

S .
HO(M;) —> H'(M,M;) <—— H'(M,M,)

i

HY(M,P;)
H'(Ky,P)
; /
H%(Ko) H'(K1,Ko),
01limk . i J
o1 1lim ky im j, 1 E20
N N

S ,
H'(M;) —— H2(M,M;) <— H2(M, M)

/ o

HY(Ly) H?(M,P,)
HY(Ly,Ko) H?(K2,P»)
¢ ) ¢
H'(K1,Kp) H?(K», K1),
Eg,z 2 limk; im Jo Eg,l

N N

H2(M;) ——> H3(M,M;) <—— H3(M, M)

!

H?(Ly)

!

H?*(L2,K1)

! P

H?(K»,K7) H3(M,K>»),

(3.53)

(3.54)

(3.55)
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where as in Theorem 1 the downwards maps are injective and the upwards maps are
surjective. By (3.53) and H'(K;,P;) = EBk3<iSk4(Cmpi, we get (1). By (3.54), H' (L1,Ko) =
i<k, C"zi ® Dk, <i<k, C"qi ® C"r; and H? (K2, P2) = B, «iC"w; @ Diy ik, C"aqi @
C™r; we get (2). By (3.54) and H?(Ly, K1) = @y, <i<k, C™si, we get (3). O

4. Examples. Consider the following instance of the Kovalevskaya integrable case
of the rigid body. There are two minimal circles 1, m,, two nonorientable and one
orientable saddle circles 71, 7, 73, and one maximal circle n. The family of tori starting
at m; changes to a family %; of tori when crossing 7; (i = 1,2). The families %; and
%, come together to become one family when crossing #3. The manifold M is the
3-dimensional real projective space and so 111 (M) = Z». A representation p : 1y (M) —
U(1) is given by p([0]) =1, p([1]) = —1.

7'3

Wehave thatp(m;) =1,p(r;) =p(n) =-1,A(r;) = -1,A(r3) =1,i=1,2,j=1,2,3.
Therefore,

k CeC, ifk=0,1,
H*(My) =
0, in other case,
He My = 106 k=12,
7 o, in other case, (4.1)
H*(M,M) =0,
ng'i = Td(l]’i =1 (i=12), Td(ly3 = %1 Tds =2= Tdy = 1.

We now change the Bott integral f to a Morse-Smale function g to be able to compute
d, : H¥(M;) — H¥'(M>,M,), k = 0,1. Note that W% (#;),i = 1,2 is a Mobius strip
>; with 03; = m;. The function g has critical points w;,z; on m; with indices 0,1,
respectively, and critical points n;, C; on #; with indices 1, 2, respectively. There is one
orbit «; connecting C; to z; and two orbits 8;,6; connecting n; to w;, with p(x;) =1,
p(Bi) =1, p(6;) = -1.Thus, Gy;p, :C—-C=2and G, : C - C=1.

Therefore, dy : H*(M;) — H' (M»,M;) = (39) and dy : H' (M;) — H?(M2,M;) = (}9).
Thus, E; =0 and 74, =2-2/1 =4.
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