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ON CYCLICITY IN WEIGHTED DIRICHLET SPACES
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Abstract. We extend some results of Brown and Shields on cyclicity to weighted Dirichlet
spaces 0<α< 1. We prove a comparison theorem for cyclicity in these spaces and provide
a result on the geometry of the family of cyclic vectors in general functional Hilbert spaces.
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1. Introduction. In 1949, A. Beurling characterized the cyclic vectors for the oper-
ator of multiplication by z on H2. The important consequences of this work in func-
tion theory has led many investigators to study questions related to cyclicity on other
Banach spaces of analytic functions.
In 1984, Brown and Shields [3] published an interesting paper giving extensive re-

sults and many open questions on cyclicity in Dirichlet space. Subsequently, Brown
[2] and others [5, 6] have provided answers to some of these open questions and have
extended these results to Bloch, Bergman and other spaces. Interesting applications
of cyclicity to operator theory are given in [7].
Motivated by several of the open questions posed by Brown and Shields, in this

paper, we consider the question of cyclicity on the weighted Dirichlet spaces. Our
notation and terminology in this paper are standard. We use ∆ to denote the open unit
disk in the complex plane,H2 to denote the Hardy space of order 2, andDα,0<α< 1,
to denote

{
f ∈H2 : f(z)=

∞∑
n=o

anzn,
∞∑
n=o

(n+1)α|an|2 <∞
}
. (1.1)

For α= 1, this is the classical Dirichlet space D1 and, for α= 0, these space coincide
with Hardy space H2. We refer the reader to [3] for an extensive discussion of proper-
ties and a comparison of this interpolating family of Hilbert spaces with Bergman and
other spaces. Significant differences between the property of these weighted spaces
and the Dirichlet space are discussed in [1].
In Section 2 we present an example and some preliminary results which either moti-

vate our development or they are needed later. In Section 3, we prove a basic estimate
leading to Theorems 3.2 and 3.4. Theorem 3.2 asserts that if f ∈ Dα,0 < α < 1,g ∈
H∞∩D1, and |f | ≥ |g|, then the cyclicity of g2 in Dα implies that of f . Theorem 3.4
improves this result by replacing g2 by g. An easy-to-check variation of Theorem 3.4
is given by Proposition 3.5. Finally, in Section 4, we provide a result on the structure
of the family of cyclic vectors in functional Hilbert spaces.
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2. Preliminaries. A vector x in a Hilbert space H is a cyclic vector for the operator
T :H →H if the orbit of x under the action of polynomials in T on x is dense in H. It
is well known that the cyclic vectors on H2 for the operator of multiplication by z are
exactly the outer functions. Using the fact that Dα → H2 is a continuous imbedding
for α> 0, it is proved in [3] that a cyclic vector on Dα should be outer in H2. Carleson
[4] has constructed an outer function in D1, which is not cyclic in D1. By taking E
to be a closed set of capacity zero on the unit circle, Carleson constructs a function
f ∈ D1 such that the boundary values of f vanish on E but f is not identically 0.
Clearly, this f may be chosen to be outer. Carleson shows that the set of all functions
f ∈ D1 whose boundary values vanish on E,DE , is a closed subspace of D1. Hence,
[f ]⊆DE ⊂D1, where [f ] denotes the norm closure of the polynomial multiples of f .
Replacing the capacity by capacity of order α,Cα,α > 0, taking E such that Cα(E) > 0,
and f as before, we obtain [f ] ⊆ (Dα)E ⊂ Dα. Thus, the cyclic vectors in Dα form a
proper subset of the outer functions in H2.
We also note that f ∈Dα if and only if f ′ ∈Dα−2 for −∞<α<∞, and if [f ]=Dα,

then [f ]=Dβ for β <α.
The proof of the following basic lemma appears in [3].

Lemma 2.1. Let f ,g ∈Dα,−∞<α<∞, and let p be a polynomial. Then
(a) p[f]⊂ [f ].
(b) If g ∈ [f ], then [g]⊂ [f ].
(c) If g ∈ [f ] and g is cyclic, then f is cyclic.
(d) f is cyclic if and only if there exist polynomials {pn} such that pnf → 1 (in norm).
Brown and Shields ask whether f ,g ∈Dα,g cyclic and |f(z)| ≥ |g(z)| for all z ∈ ∆

implies that f is cyclic.
They show that

Proposition 2.2. For α∈ R\(0,1], if f ,g ∈Dα,|f(z)| ≥ |g(z)| for all z ∈∆ and g
is cyclic, then f is cyclic.

With some additional hypotheses, [3, Thm. 1] also provides an affirmative answer
to their question for D1. We provide an analogous answer to their question for the
weighted Dirichlet spaces Dα for α∈ (0,1).

3. Results

Lemma 3.1. Let f ∈Dα,0<α< 1, and g ∈D1. Let ft(z)= f(tz),0< t < 1. Then∫ 2π
0

∫ 1
0
|f −ft|2|g′t|2

(
1−r 2)−α+1r dr dθ ≤ C‖f‖2α‖g‖21. (3.1)

Proof. Let f(z)=∑∞
n=0 f̂ (n)zn. Then, if |z|=r , by the Cauchy-Schwarz inequality,

∣∣f(z)−f(tz)∣∣2 ≤ ∞∑
n=0

(n+1)α|f̂ (n)|2
∞∑
n=0

r 2n(1−tn)2
(n+1)α

≤ ‖f‖2α
∞∑
n=0

rn(1−tn)
(n+1)α ≤ ‖f‖2α

∞∑
n=0

rn

(n+1)α
≤ C‖f‖2α

1
(1−r)1−α .

(3.2)
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The last inequality follows directly from a formula by Euler for the gamma function
(see [10, p. 237] for example). Hence, since (1−r)1−α and (1−r 2)1−α are comparable,

∫ 2π
0

∫ 1
0
|f −ft|2|(gt)′|2

(
1−r 2)1−α rdr dθ

≤ C‖f‖2α
∫ 1
0

[∫ 2π
0

∣∣g′(tz)∣∣2dθ]rdr
= C‖f‖2α‖gt‖21 ≤ C‖f‖2α‖g‖21,

(3.3)

where the metric in D1 is, as usual, given by
∫ 2π
0

∫ 1
0 |g′|2rdr dθ.

Theorem 3.2. Suppose that f ∈ Dα,0 < α < 1, g ∈ H∞∩D1, and |f(z)| ≥ |g(z)|
for all z ∈∆. If g2 is cyclic in Dα, then f is cyclic in Dα.

Proof. Let gt = g(tz) for 0< t < 1. Since (g2t /ft) is a multiplier of Dα,(g2t /ft)f ∈
[f ]. We show that these functions converge in norm to g2 as t → 1. Hence, g2 ∈ [f ].
Clearly, this implies that [f ]⊇ [g2]=Dα by hypothesis. We start by noting that∥∥∥∥g2tft f −g2

∥∥∥∥
α
≤
∥∥∥∥g2tft f −g2t

∥∥∥∥
α
+∥∥g2t −g2∥∥α. (3.4)

Clearly, the second term tends to 0 as t→ 1. So, it suffices to prove that (g2t /ft)f → g2t
in Dα-norm. This is equivalent to showing that the derivative of (g2t /ft)f −g2t → 0 in
Dα−2 as t→ 1. Write
(
g2t
ft
f −g2t

)′
=
(
g2t
(
f −ft
ft

))′
= g2t

(
f −ft
ft

)′
+2gt(gt)′

(
f −ft
ft

)
=φ1+φ2. (3.5)

By hypothesis, ∣∣∣∣φ22
∣∣∣∣≤

∣∣∣∣gtft
∣∣∣∣∣∣g′t∣∣|f −ft| ≤ ∣∣g′t∣∣|f −ft|. (3.6)

Hence,

∥∥∥φ2
2

∥∥∥
α−2 ≤

∫ 2π
0

∫ 1
0

∣∣g′t∣∣2|f −ft|2(1−r 2)1−α rdr dθ. (3.7)

To show that (3.7) tends to zero as t → 1, note that if f is a polynomial (in fact,
if f is in the disk algebra) and g is arbitrary, then the convergence to zero is clear.
For arbitrary f , given ε > 0, choose a polynomial p such that ‖f −p‖α < ε and let
h= f −p. Then

∫ 2π
0

∫ 1
0
|f −ft|2

∣∣(gt)′∣∣2(1−r 2)1−α rdr dθ
=
∫ 2π
0

∫ 1
0
|h+p−ht−pt|2

∣∣(gt)′∣∣2(1−r 2)1−α rdr dθ
≤ 2

∫ 2π
0

∫ 1
0
|h−ht|2

∣∣(gt)′∣∣2(1−r 2)1−α rdr dθ
+2

∫ 2π
0

∫ 1
0
|p−pt|2

∣∣(gt)′∣∣2(1−r 2)1−α rdr dθ.

(3.8)
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By the above remarks, the second term tends to zero as t→ 1. On the other hand, by
Lemma 3.1, we have

lim
t→1

∫ 2π
0

∫ 1
0
|f −ft|2|(gt)′|2(1−r 2)1−αrdrdθ ≤ C‖h‖2α‖g‖21 ≤ Cε2‖g‖21. (3.9)

Substituting this result in (3.7), we obtain ‖φ2‖α−2 <Cε2‖g‖21.
Next, to show that ‖φ1‖α−2→ 0, we write

φ1 = g2t
(
f −ft
ft

)′
= g2t ft

f 2t

(
f −ft

)′ − g2t
f 2t
f ′t
(
f −ft

)=φ3+φ4. (3.10)

Clearly, |φ4| ≤ |(f −ft)||f ′t |. So, ‖φ4‖α−2→ 0 as t→ 1.
Likewise, |φ3| ≤ |(f −ft)′gt|. Thus, ‖φ3‖α−2 ≤ ‖(f −ft)′‖α−2‖gt‖∞ and ‖φ3‖α−2→

0 as t→ 1. This completes the proof.
The following corollary follows immediately from Theorem 3.2.

Corollary 3.3. If f ∈ Dα,0 < α < 1, and |f(z)| ≥ δ > 0 for all z ∈ ∆, then f is
cyclic.

Proof. Simply let g(z)= δ in Theorem 3.2.
Brown and Shields also asked [3, Question 8], whether g needs to be only cyclic and

not g2. The following two results provide an affirmative answer in the context of our
development.

Theorem 3.4. If g ∈D1∩H∞, g is cyclic in Dα for 0<α< 1, f ∈Dα, and |f(z)| ≥
|g(z)| for all z ∈∆, then f is cyclic.

Proof. By [8, Thm. 1.7(a)] (or [9, Thm. 3.2]), D1 ∩H∞ is contained in the set of
multipliers of Dα. Hence, g2 ∈ Dα∩H∞. Since g is cyclic in Dα, by [3, Prop. 8], g2 is
cyclic in Dα. Now, using Theorem 3.2, it follows that f is cyclic in Dα.

Finally, the following proposition provides a variant of the above under the readily
tested hypothesis g′ ∈H∞.

Proposition 3.5. If g is cyclic in Dα and g′ ∈ H∞, then g2 is cyclic in Dα for 0 <
α< 1.

Although we are able to provide a proof similar to those of Theorems 3.2 and 3.4,
we demonstrate an alternative proof.

Proof. Plainly, if g′ ∈ H∞, then g ∈ Dα∩H∞ for all α > 0. Also, g2 ∈ H∞ and if
dAα = (1−r 2)−1+α rdr dθ, then
∫
∆

∣∣(g2)′∣∣2dAα = 4
∫
∆
|g|2|g′|2dAα ≤ 4‖g‖2∞

∫
∆
|g′|2dAα = 4‖g‖2∞‖g‖2α <∞. (3.11)

So, g2 ∈ Dα∩H∞. By hypothesis, since g is cyclic in Dα, by Lemma 2.1, there exist
polynomials {pn} such that pn(z)g(z) → 1 for all z ∈ ∆ and ‖png‖α ≤ C . To show
that g2 is cyclic, we show that pn(z)g2(z)→ g(z) pointwise and ‖png2‖α ≤ C .
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Fix z ∈∆. Since pn(z)g(z)→ 1 pointwise, given ε > 0, there exists N such that
∣∣pn(z)g(z)−1∣∣< ε

‖g‖∞ ∀n>N. (3.12)

Then for n>N
∣∣pn(z)g2(z)−g(z)∣∣≤ ‖g‖∞∣∣pn(z)g(z)−1∣∣< ε

‖g‖∞ = ε. (3.13)

So, pn(z)g2(z)→ g(z) pointwise. Now, Consider png2 = (png)g. Then,
∥∥png2∥∥2α ≤ 2

(∫
∆
|(png)′g|2dAα+

∫
∆

∣∣(png)g′∣∣2dAα
)

≤ 2‖g‖2∞‖png‖2α+2
∫
∆

∣∣(png)g′∣∣2dAα.
(3.14)

Since g′ ∈H∞, the result follows.

4. The geometry of cyclic vectors. In this section, we analyze the structure of the
set of cyclic vectors C for an operator T on a functional Hilbert space H. As usual,
a functional Hilbert space refers to a separable Hilbert space of analytic functions
in which the polynomials are dense. Clearly, the results of this section apply to the
weighted Dirichlet spaces of analytic functions. The following results provide the core
argument.

Proposition 4.1. Let H be a functional Hilbert space and C be the set of cyclic
vectors for T in H. Then H = C+C .

Proof. First, we show that C is a dense Gδ set in H. Let Un be a countable base for
the topology of H andQn(T)=∪p∈P [p(T)]−1(Un), where P is the set of polynomials.
Clearly, Qn is open and nonempty. We show that ∩nQn is precisely the set of cyclic
vectors for T . If x ∈ ∩∞n=1Qn, then x ∈ Qn for all n. Hence, there exist polynomials
pn(z) such that pn(T)x ∈ Un∀n. Therefore, x is a cyclic vector for T . Also, if x is
cyclic for T , then, clearly, x ∈∩∞n=1Qn. Hence, the set of cyclic vectors for T is aGδ set.
To show that ∩nQn is nonempty, we show that eachQn is dense. Then, by the Baire

Category theorem, ∩nQn is a dense Gδ set. Let h∈H and ε > 0. We want to show that
there exist y ∈Qn such that ‖y−h‖< ε. Let Un = BH(0,δ), the ball of radius δ in H
centered at the origin. Let M = ‖T‖ and p(z) = (δ/2M)z. Then p(T) maps the unit
disk into BH(0,δ) for if z ∈∆, then

∥∥p(T)(z)∥∥=
∥∥∥∥ δ
2M

T
∥∥∥∥< δ. (4.1)

Now, let x ∈ H and consider (C+x)∩C . This set is a dense Gδ set in H and, thus,
(C+x)∩C ≠ +. Hence, there exist y ∈H such that y ∈ (C+x)∩C . So, y is cyclic and
y = h+x for some h∈ C . Then x =y+(−h)∈ C+C .
It is interesting to ask if the set of cyclic vectors in H is stable under small pertur-

bations. For spaces contained in the Hardy space, this is, of course, more meaningful
if we restrict to the class of outer functions. The following result presents a negative
answer. Let CS = C∩{f ∈ C : ‖f‖H = 1} and A= {f ∈H : 1−ε < ‖f‖< 1+ε}.
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Theorem 4.2. Fix ε > 0 and letA= {f ∈H : 1−ε < ‖f‖< 1+ε}. Then CS+εCS =A.
Proof. Clearly, CS is a dense Gδ subset of the unit sphere of H. Hence, by essen-

tially the same argument as in Proposition 4.1, the assertion follows.

Corollary 4.3. The class of cyclic vectors in Dα is unstable. That is, given x ∈
C∩Dα and ε > 0, there exists y ∈Dα,‖y‖< ε such that x+y is not a cyclic vector.
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