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Abstract. Let X be a Banach space and A⊂X an absolutely convex, closed, and bounded
set. We give some sufficient and necessary conditions in order that A lies in the range
of a measure valued in the bidual space X∗∗ and having bounded variation. Among other
results, we prove that X∗ is a G. T.-space if and only if A lies inside the range of some
X∗∗-valued measure with bounded variation whenever XA is isomorphic to a Hilbert
space.
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1. Introduction. If X is an infinite dimensional Banach space, it is well known that
its unit ball cannot lie inside the range of an X∗∗-valued measure with bounded vari-
ation. This paper is devoted to a study of bounded sets in a Banach space having that
property. Since the convex and closed hull of the range of a measure is the range
of another one (see Diestel and Uhl [3]), we can reduce to consider bounded subsets
which are closed and absolutely convex. Such a set is called a Banach disc. If A⊂X is
a Banach disc, recall that ∪∞i=1nA is a vector space and that it can be endowed with
the norm

ρA(x)= inf
{
λ > 0 : x ∈ λA} for all x ∈ ∞∪

i=1
nA. (1.1)

It is easy to prove that (∪∞i=1nA,ρA)is a Banach space which will be denoted by XA
and that A is the unit closed ball of this space. jA will denote the canonical map from
XA into X. Since jA(A)=A, it follows that jA is a bounded linear map (see Junek [4]).
First of all, we obtain characterizations of linear operators T : X → Y that take the

unit ball of X into a subset of Y lying in the range of some Y -valued (respectively,
Y∗∗-valued) measure with bounded variation. Concretely, we prove that operators
belonging to �◦Πd1(X,Y) take the unit ball BX into a set lying in the range of some
Y -valued measure with bounded variation. Nevertheless, we show that there exist
operators satisfying that property but they do not belong to the class �◦Πd1 .
Next we give some sufficient and necessary conditions in order that a Banach disc

A in X lies in the range of some X∗∗-valued measure with bounded variation. Under
certain conditions about A we prove that XA must be isomorphic to a Hilbert space.
When XA is isomorphic to a Hilbert space we say that A is a Hilbert disc. Among
other results, we show that the Banach spaces whose dual spaces are G. T.-spaces
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are the only Banach spaces for which every Hilbert disc lies inside the range of some
X∗∗-valued measure with bounded variation.
Finally, we consider a class of subsets of Π1(X,Y) which we call (µ,c)-uniformly

dominated. Such a set is a subset M of Π1(X,Y) with the property

‖Tx‖ ≤ c
∫
BX∗

∣∣〈x,x∗〉∣∣dµ(x∗) for all x ∈X, T ∈M, (1.2)

where c is a positive constant and µ is a probability measure on (BX∗ ,�-weak).
Questions regarding the finer structure of these sets have found interest since
Grothendieck-Pietsch’s discovery of their famous Domination theorem. We prove that
M is uniformly dominated if and only if there exists some X∗-valued measurem with
bounded variation such that

T∗(BY∗)⊂ rg(m) for all T ∈M. (1.3)

We use the classical notation in Banach spaces theory. We consider all Banach spaces
over real numbers. If X is a Banach space, X∗ will denote its dual space and BX its
closed unit ball. For a subset K of X, aco(K) will be the absolutely convex and closed
hull of K.
We consider only countably additive measures defined on σ -algebras. If Σ is a

σ -algebra of subsets of a set Ω, X is a Banach space andm : Σ→X is such a measure,
we denote by |m| the total variation ofm. If |m| is finite, we say thatm has bounded
variation. The range ofm is denoted by rg(m), that is, rg(m)= {m(A) :A∈ Σ}.

2. Banach operators taking the unit ball inside the range of some vector measure.
Following Piñeiro [6], we denote by �bv(X,Y) the vector space of linear operators
taking compact subsets of X into sets that lie inside the range of a Y -valued measure
with bounded variation. The author proved that an operator T belongs to �bv if and
only if the adjoint map T∗ : Y∗ →X∗ is 1-summing. Next we prove that, in fact, these
operators take the unit ball of X inside the range of some Y∗∗-valued measure with
bounded variation.

Theorem 2.1. Let X and Y be Banach spaces. Suppose that T :X → Y is a bounded
operator. T maps the unit ball BX in a set lying in the range of a Y∗∗-valued measure
with bounded variation if and only if the adjoint map T∗ is 1-summing.

Proof. (⇒) Let T : X → Y be an operator such that T(BX) lies inside the range of
a Y∗∗-valued measure with bounded variation. Obviously, the map iY ◦T belongs to
Rbv(X,Y∗∗) and by Piñeiro [6] the map (iY ◦T)∗ is 1-summing. Then T∗ : Y∗ →X∗ is
1-summing too.
(⇐) Let T : X → Y be an operator such that its adjoint is 1-summing. In light of

Grothendieck-Pietsch’s Domination theorem (see Diestel et al. [2]) there is a regular
Borel probability measure µ on (BY∗∗ , weak∗) such that T∗ : Y∗ →X∗ factors through
a subspace H of L1(µ) in the way
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Y∗
T∗ ��

C ���
��

��
��

� X∗

H,
D

����������
(2.1)

where C and D are bounded linear maps and C̃ : Y∗ → L1(µ) is integral. By duality
we have

X
D∗0 �� H∗

C∗ �� Y∗∗

L∞(µ),

φ

��

C̃∗

�����������
(2.2)

where D∗0 denotes the restriction map of D∗ to X and φ is the quotient map. C̃∗

is integral and ω∗-ω continuous. So, if we define a Y∗∗-valued measure by m(E) =
C̃∗(xE) for all Borel set E in (BY∗∗ , weak∗), m is a countably additive Y∗∗-valued
measure having bounded variation (see Diestel-Uhl [3]). By Piñeiro [6], there is another
Y∗∗-valuedmeasure m̃ such that C̃∗(BL∞(µ))= rg(m̃) and |m̃| ≤ 2|m|. Finally, we have

T(BX)= C∗ ◦D∗0 (BX)⊂ ‖D∗0 ‖C∗(BH∗)
= ‖D∗0 ‖C∗

(
φ(BL∞(µ))

)⊂ ‖D∗0 ‖C∗(φ(BL∞(µ)))
= ‖D∗0 ‖C̃∗(BL∞(µ))= ‖D∗0 ‖C̃∗(BL∞(µ))= ‖D∗0 ‖rg(m̃).

(2.3)

Now, we give a characterization of operators T :X → Y taking the unit ball of X inside
the range of some Y -valued measure with bounded variation.

Theorem 2.2. Let X and Y be Banach spaces and T :X → Y an operator. T(BX) lies
inside the range of some Y -valued measure with bounded variation if and only if T∗

factors through a subspace H of an L1(µ)-space

Y∗
T∗ ��

A ����������� X∗

H ⊂ L1(µ),
B

�����������
(2.4)

where µ is a positive and finite measure, A : Y∗ → L1(µ) is integral and �-weak-weak
continuous, and B :H →X∗ is a bounded operator.

Proof. We only prove the “if part” because the “only if part” is similar to the
above theorem. Let T :X → Y be an operator such that T(BX)⊂ rg(m),m : Σ→ Y is a
vector measure with bounded variation. We denote by µ the variation measure ofm.
The integration operator I : L∞(µ)→ Y defined by I(f ) = ∫ f dm for all f ∈ L∞(µ) is
1-summing and, therefore, integral (see Diestel-Uhl [3]). So I∗ : Y∗ → L∞(µ)∗ is integral,
but

I∗(y∗)= d(y
∗ ◦m)
dµ

∈ L1(µ) for all y∗ ∈ Y∗. (2.5)
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Then the rank of I∗ is contained in L1(µ) and the map

A :y∗ ∈ Y∗ �→ d(y∗ ◦m)
dµ

∈ L1(µ) (2.6)

is �-weak-weak continuous and integral. Finally, let

H = {Ay∗ :y∗ ∈ Y∗}L
1(µ)
, (2.7)

and define B : H → X∗ by B(Ay∗) = T∗y∗. Since T(BX) ⊂ rg(m), it is easy to prove
that B is well defined and continuous.

Remark 2.3. (a) In [5], it is showed that there exist operators taking the unit ball in
the range of some Y∗∗-valued measure with bounded variation, but they do not take
it in the range of some Y -valued measure of bounded variation.
(b) Suppose that T1 :X → Y is an operator whose adjoint map T∗1 is 1-summing and

T2 : Y → Z is a weakly compact operator. Then, Theorem 2.2 tells us that the map
T2 ◦T1 takes the unit ball of X into a subset of Z lying in the range of some Z-valued
measure with bounded variation. Now, we prove that the converse is not true, i.e.,
there exist operators taking the unit ball inside the range of some vector measure
with bounded variation but they do not belong to the class �◦�bv (here � denotes
the operator ideal of all weakly compact operators). To see this, we need the following
result.

Lemma 2.1. Let T = T2 ◦ T1 where T1 ∈ �bv(X,Y) and T2 ∈ �(Y ,Z). Then the
sequence (Txn) lies inside a countable sum of segments whenever (xn) is a bounded
sequence in X.

Recall that a countable sum of segments in a Banach space X is a set of the form

∞∑
n=1
[−ωn,ωn]=




∞∑
n=1
αnωn : (αn)∈ B*∞


 , (2.8)

where
∑
ωn is an absolutely convergent series in X. Such a set is obviously the range

of a vector measure with bounded variation. Piñeiro [7] proved that a sequence (xn)
lies inside a countable sum of segments if and only if the operator

(αn)∈ *1 �→
∞∑
n=1
αnxn ∈X (2.9)

is nuclear.

Proof. Given a bounded sequence (xn) in X, we define the operator

S : (αn)∈ *1 �→
∞∑
n=1
αnTxn ∈ Z, (2.10)

where S is the composition of T0 : (αn) ∈ *1 → ΣαnT1xn ∈ NY and T2 : Y → Z . It
follows from Theorem 2.1 that the sequence (T1xn) lies inside the range of some
Y∗∗-valued measure with bounded variation. By [7, Lem 2] T0 is integral. Now by
Grothendieck’s theorem (see Diestel and Uhl [3]) the composition T2 ◦T0 is nuclear.
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Now we give the counterexample. Anantharaman and Diestel [1] showed that the
unit ball of *2 is the range of a c0-valued measure of bounded variation. Nevertheless,
the canonical basis (en) does not lie in a countable sum of segments in c0 because the
identity operator from *1 into c0 is not nuclear.

3. Banach discs lying in the range of some X∗∗-valued measure. Piñeiro and
Rodriguez-Piazza [8] proved that only finite dimensional Banach spaces X have the
property that every compact subset is contained in the range of some X-valued mea-
sure with bounded variation. Then a natural question arises: given an infinite dimen-
sional Banach space X, which bounded subsets of X have the following property (P)?
(P) “Every compact subset of A is contained in the range of an X-valued measure with

bounded variation”
We have obtained the following results:

Theorem 3.1. Let X be a Banach space. If A⊂X is a Banach disc with property (P),
then A is contained in the range of some X∗∗-valued measure with bounded variation.

Proof. If A is a Banach disc having property (P), it is obvious that the operator
jA : XA → X maps every compact K ⊂ A (compact in XA) into a set lying inside the
range of a X-valued measure with bounded variation. Again the theorem of Piñeiro [6]
tells us that (jA)∗ : X∗ → (XA)∗ is 1-summing. Theorem 2.1 concludes the proof.

Remark. By Theorem 2.1, a set A ⊂ X lies inside the range of some X∗∗-valued
measure with bounded variation if and only if (jA)∗ : X∗ → (XA)∗ is 1-summing.
According to Grothendieck-Pietsch’s theorem, there exist a regular Borel positive mea-
sure µ on (BX∗∗ ,�-weak) such that

∥∥(jA)∗(x∗)∥∥≤
∫
BX∗∗

∣∣〈x∗,x∗∗〉∣∣dµ for all x∗ ∈X∗. (3.1)

On the other hand, we have

∥∥(jA)∗(x∗)∥∥= sup
a∈A

∣∣〈a,(jA)∗(x∗)〉∣∣= sup
a∈A

∣∣〈a,x∗〉∣∣. (3.2)

So, (3.1) can be written in the form

sup
a∈A

|〈a,x∗〉| ≤
∫
BX∗∗

|〈x∗,x∗∗〉|dµ for all x∗ ∈X∗. (3.3)

Note that (3.3) implies that the operator

x∗ ∈X∗ �→ (〈a,x∗〉)a∈A ∈ *∞(A) (3.4)

is integral. So we have obtained the following result.

Theorem 3.2. Let X be a Banach space and A ⊂ X a Banach disc. The following
statements are equivalent:

(i) The adjoint operator of jA :XA→X is 1-summing.
(ii) The operator (ψa)∈ *1(A)→ Σa∈Aψaa∈X is integral.
(iii) A lies inside the range of some X∗∗-valued measure with bounded variation.
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As usual “◦” denotes the polar in the duality 〈X,X∗〉, “•” the polar in the duality
〈X∗,X∗∗〉 and X∗A◦ the vector space X∗/p−1A◦ {0} endowed with the norm P̃A◦(x

∗+P−1A◦ {0})
= PA◦(x∗), for all x∗ ∈ X∗ (see Junek [4]). Recall that PA◦(x∗) = supx∈A |〈x,x∗〉| for
all x∗ ∈X∗. In general, X∗A◦ is not complete.

Theorem 3.3. Let X be a Banach space and A⊂X a Banach disc such that X∗A◦ is a
Banach space. IfA is contained in the range of some X∗∗-valued measure with bounded
variation, then the Banach space XA is isomorphic to a Hilbert space.

Proof. We first prove that (X∗∗)A◦• is isomorphic to a Hilbert space. As we have
mentioned earlier, there is a regular Borel positive measure µ on (BX∗∗ , weak∗) satis-
fying (3.1). We may define on X∗ a scalar product (·/·) by letting

(
x∗/y∗

)=
∫
BX∗∗

〈x∗,x∗∗〉〈y∗,y∗∗〉dµ for all x∗,y∗ ∈X∗. (3.5)

We denote by p(·) the associate seminorm defined by

p(x∗)=
(∫

BX∗∗

∣∣〈x∗,x∗∗〉∣∣2dµ
)1/2

for all x∗ ∈X∗. (3.6)

By Hölder’s inequality we have∫
BX∗∗

∣∣〈x∗,x∗∗〉∣∣dµ ≤ µ(BX∗∗)1/2p(x∗) for all x∗ ∈X∗. (3.7)

Therefore, (3.3) and (3.7) yields

sup
a∈A

∣∣〈a,x∗〉∣∣≤ µ(BX∗∗)1/2p(x∗)≤ µ(BX∗∗)‖x∗‖ for all x∗ ∈X∗. (3.8)

Now we consider the vector space X∗/p−1{0} endowed with the scalar product((
x∗+p−1{0})/(y∗+p−1{0}))= (x∗/y∗) for all x∗,y∗ ∈X∗. (3.9)

We can define a linear map J : X∗/p−1{0} → X∗A◦ , J(x∗ + p−1{0}) = x∗ + p−1A◦ {0} for
all x∗ ∈ X∗. From (3.8) it follows that J is well defined and continuous. Obviously,
it is a surjection. Then X∗A◦ is isomorphic to a quotient of the prehilbertian space
X∗/p−1{0}. This implies that (X

∗
A◦)∗ is isomorphic to a subspace of the Hilbert space

(X∗/p−1{0})
∗. As (X∗A◦)∗ and X∗∗A◦• are isometric (see Junek [4]), we have proved that

X∗∗A◦• is isomorphic to a Hilbert space. Finally, we show that XA is isomorphic to a
subspace of X∗∗A◦• . By the open map theorem it suffices to prove that XA, endowed with
the restriction of pA◦• to XA, is complete because we have the relation

pA◦•(x)≤ pA(x) for all x ∈XA. (3.10)

To see this, let (xn) be a Cauchy sequence in X∗∗A◦• for which xn ∈XA for all n∈N. In
particular, (xn) is bounded forpA◦• . Then there is a constant c > 0 such that xn ∈ cA◦•
for all n ∈ N. Clearly, (xn) converges in X∗∗A◦• to a limit x∗∗ ∈ cA◦•, and therefore,
x∗∗ = limxn in X∗∗ too. Since X is closed in X∗∗ it follows that x∗∗ ∈X. This shows
that x∗∗ ∈ cA◦•. As A◦• =A, the theorem is established.
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Remark 3.4. (a) It is known that the convergence for the norm ‖·‖ does not im-
ply the convergence for pA. We are going to show an easy example. Let X = L1[0,1]
and A= aco{�[k−1/n,k/n] : 1≤ k≤n,n∈N}. Obviously, A is contained in the range of
someX-valuedmeasure of bounded variation, then jA ∈�bv(XA,X). By Piñeiro’s theo-
rem [6], jAmaps every null sequence fromXA into a sequence lying in a countable sum
of segments.But again Piñeiro [6] proved that the null sequence (�[k−1/n,k/n)])n∈N,1≤k≤n
is not contained in any countable sum of segments. Then this sequence does not con-
verge in XA.
We do not know whether every Banach disc A ⊂ X lying in the range of some

X∗∗-valued measure of bounded variation has property (P).
(b) If A is the unit ball of a closed subspace Y of X, then XA is isometric to Y and

X∗A◦ is isometric to the quotient space X∗/Y⊥. So X
∗
A◦ is a Banach space. In this case,

we have the following complete result.

Theorem 3.5. Let X be a Banach space and Y a closed subspace of X. BY has prop-
erty (P) if and only if BY lies inside the range of some X∗∗-valued measure having
bounded variation. If this is the case, Y is isomorphic to a Hilbert space.

(c) Unfortunately, Theorem 3.2 is not true when X∗A◦ is not complete. For example,
consider the set A = BL∞[0,1] in L1[0,1]. A is a Banach disc in L1[0,1] that lies in
the range of some L1[0,1]-valued measure of bounded variation since the identity
operator from L∞[0,1] into L1[0,1] is Pietsch integral (see Diestel and Uhl [3]). But XA
is isometric to L∞[0,1], so it cannot be isomorphic to a Hilbert space.

From now on in this section we suppose that the space under consideration belongs
to a particular class. To start, we consider the Hilbert case.

Theorem 3.6. Let X be a Hilbert space and A ⊂ X a Banach disc such that XA is
isomorphic to a Hilbert space. Then the set A has property (P) if and only if

∑
i∈I

sup
a∈A

∣∣∣∣
(
ei
a

)∣∣∣∣
2

<+∞ (3.11)

for some orthonormal basis (ei)i∈I in X.

Proof. LetA⊂X be a Banach disc for which XA is isomorphic to a Hilbert spaceH.
If J :H →XA is an isomorphism and (ei)i∈I an orthonormal basis in X, we have

∑
i∈I

sup
a∈A

∣∣∣∣
(
ei
a

)∣∣∣∣
2

=
∑
i∈I
‖(jA)∗ei‖2 ≤ ‖(J∗)−1‖2

∑
i∈I
‖J∗ ◦(jA)∗ei‖2, (3.12)

on the other hand,

∑
i∈I
‖J∗ ◦(jA)∗ei‖2 ≤ ‖J∗‖2

∑
i∈I
‖(jA)∗ei‖2 = ‖J∗‖2

∑
i∈I

sup
a∈A

∣∣∣∣
(
ei
a

)∣∣∣∣
2

. (3.13)

This proves that the map (jA ◦ J)∗ : X → H is Hilbert-Schmidt if and only if (3.11)
holds. As J is an isomorphism, it follows that (jA)∗ is 1-summing only in this case.
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Corollary 3.7. Let X be a Hilbert space and A = {Σαnxn : (αn) ∈ B*2}, where
(xn) is a sequence belonging to *2ω(X). The set A has property (P) if and only if
Σ‖xn‖2 < +∞.

Proof. In fact, if (ei)i∈I is an orthonormal basis in X, by Parseval’s identity we
have

∑
i∈I

sup
a∈A

∣∣∣∣
(
ei
a

)∣∣∣∣
2

=
∑
i∈I

sup
α∈B*2

∣∣∣∣
(

ei∑∞
n=1αnxn

)∣∣∣∣
2

=
∑
i∈I

sup
α∈B*2

∣∣∣∣
∞∑
n=1
αn
(
ei
xn

)∣∣∣∣
2

=
∑
i∈I

∞∑
n=1

∣∣∣∣
(
ei
xn

)∣∣∣∣
2

=
∞∑
n=1

∑
i∈I

∣∣∣∣
(
ei
xn

)∣∣∣∣
2

=
∞∑
n=1

‖xn‖2.
(3.14)

Now we are going to obtain an interesting result in case X∗ is a G. T.-space. Recall
that a Banach space is called a G. T.-space if Π1(X,H)=�(X,H) for all Hilbert space
H (see Pisier [9]).

Theorem 3.8. Let X be a Banach space. The following statements are equivalent:
(i) X∗ is a G. T.-space.
(ii) A Banach disc A⊂X is contained in the range of some X∗∗-valued measure with

bounded variation whenever XA is isomorphic to a Hilbert space.

Proof. The implication (i)⇒(ii) follows directly from Theorem 2.1 and the defini-
tion of G. T.-spaces. So, let X be a Banach space satisfying (ii). By Piñeiro [7], we only
need to prove that Π1(*1,X)= �(*1,X). To this end, let (xn) be a sequence in X such
that the operator T : (αn) ∈ *1 → Σαnxn ∈ X is 1-summing. By [7], there exists a
sequence (yn)∈ *2ω(X) such that

xn ∈
{∑

αnyn : (αn)∈ B*2
}
. (3.15)

Put A = {Σαnyn : (αn) ∈ B*2}. As XA is isomorphic to a Hilbert space, by hypothesis
A is contained in the range of some X∗∗-valued measure with bounded variation. In
particular, so is (xn). Again by Piñeiro [7], T is integral.

Next theorem proves that in �1-spaces a Hilbert disc has the property (P) if and only
if it is contained in some countable sum of segments in X.

Theorem 3.9. Let X be an �1 space and A ⊂ X a Hilbert disc. The following state-
ments are equivalent:

(i) A has property (P).
(ii) jA :XA→X is nuclear.
(iii) A is contained in some countable sum of segments in X.

Proof. (i)⇒(ii) If A⊂X has property (P), Theorem 3.1 tells us that A lies inside the
range of some X∗∗-valued measure with bounded variation. By Theorem 2.1, (jA)∗ :
X∗ → (XA)∗ is 1-summing. Since X∗ is an �∞-space it follows that (jA)∗ is integral.
Finally, (jA)∗ is nuclear because (XA)∗ is a dual space with Radon-Nikodym prop-
erty (XA is isomorphic to a Hilbert space). As Hilbert spaces have the approximation
property, jA itself is nuclear (see Diestel and Uhl [3]).
The other implications are obvious.
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4. (µ,c)-uniformly dominated sets. We finish our work by obtaining characteriza-
tion, in terms of ranges of vector measures, of (µ,c)-uniformly dominated subsets of
Π1(X,Y).

Theorem 4.1. Let X and Y be Banach spaces, and M a subset of Π1(X,Y). M is
uniformly dominated if and only if there exists some X∗-valued measurem of bounded
variation such that

T∗(BY∗)⊂ rg(m) for all T ∈M. (4.1)

Proof. (⇒) Let M ⊂Π1(X,Y) be a (µ,c)-uniformly dominated set, i.e., we have

‖Tx‖ ≤ c
∫
BX∗

∣∣〈x,x∗〉∣∣dµ(x∗) for all x ∈X, T ∈M, (4.2)

where µ is a regular Borel probability measure on BX∗ . This yields

sup
a∈A

|〈x,a〉| ≤ c
∫
BX∗

|〈x,x∗〉|dµ(x∗) for all x ∈X, (4.3)

where A=∪T∈MT∗(BY∗). By (4.3), the operator

U : x ∈X → (〈x,a〉)a∈A ∈ *∞(A) (4.4)

is 1-summing. So is U∗∗ : X∗∗ → *∞(A), in particular, U∗∗ is integral. Now it suffices
to notice that U∗∗(x∗∗) = (〈a,x∗∗〉)a∈A. Since there is a projection from X∗∗∗ in
X∗, it follows from Theorem 3.2 that A is contained in the range of some X∗-valued
measure of bounded variation.
Conversely, suppose M ⊂ Π1(X,Y) is a set satisfying T∗(BY∗) ⊂ rg(m) for all

T ∈ M , m being some X∗-valued measure with bounded variation. Put A =
aco(∪T∈M T∗(BY∗)). A is a Banach disc in X∗ that lies inside the range of some
X∗-valued measure with bounded variation. According to Theorem 3.2, the operator
x∗∗ ∈ X∗∗ → (〈a,x∗∗〉)a∈A ∈ *∞(A) is integral. So is x ∈ X → (〈x,a〉)a∈A ∈ *∞(A).
By Grothendieck-Pietsch’s theorem there exists a regular Borel positive measure µ on
BX∗ such that

sup
a∈A

∣∣〈x,x∗〉∣∣≤
∫
BX∗

|〈x,x∗〉|dµ(x∗) for all x ∈X. (4.5)

This yields

‖Tx‖ ≤
∫
BX∗

|〈x,x∗〉|dµ(x∗) for all x ∈X and all T ∈M . (4.6)
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