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ON THE REPRESENTATION OF m AS
∑n
k=−nεkk

LANE CLARK

(Received 3 September 1998)

Abstract. Let A(n,m) be the number of solutions of
∑n
k=−n εkk =m where each εk ∈

{0,1}. We determine the asymptotic behavior of A(n,m) for m = o(n3/2), extending re-
sults of van Lint and of Entringer.
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For a nonnegative integer n and an integerm, let

A(n,m)= #
{
(ε−n, . . . ,ε0, . . . ,εn)∈ {0,1}2n+1 :

n∑
k=−n

εkk=m
}
. (1)

van Lint [2] answered a question of Erdös by determining the asymptotic behavior
of A(n,0). Entringer [1] used this result and induction to determine the asymptotic
behavior of A(n,m) form=O(n). In this note, we give a further extension by show-
ing that

A(n,m)∼
(
3
π

)1/2
22n+1n−3/2 as n→∞, (2)

form= o(n3/2). We estimate the integral below, as in [2], though our analysis is more
involved. It is immediately seen that A(n,m) is the coefficient of zm in

∏n
k=−n(1+zk)

and, hence,

A(n,m)= 1
2πi

∮
C

∏n
k=−n

(
1+zk)

zm+1
dz

= 2
2n+2

π

∫ π/2
0

cos2mx
n∏
k=1

cos2kxdx,

(3)

upon parameterizing the unit circle C (see [1, 2]). Note that A(n,m)=A(n,−m) and
A(n,m) = 0 if and only if |m| >

(
n+1
2

)
. Hence, we assume that m is a nonnegative

integer. We denote the nonnegative integers by N; the integers by Z; and the real
numbers by R.
We use the following Taylor series approximations which are valid for all x ∈R.

sinx = x− x
3

6
+r(x); |r(x)| ≤ x4

24
for x ∈R and r(x)≥ 0 for x ∈ [0,π]; (4)
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cosx = 1+s(x); |s(x)| ≤ |x| for x ∈R; (5)

cos2x = 1−x2+t(x); |t(x)| ≤ 2|x|
3

3
for x ∈R; (6)

e−x = 1−x+u(x); 0≤u(x)≤ x2

2
for x ∈ [0,∞). (7)

Of course, r , s, t, and u are all infinitely-differentiable functions on R. We also use
the following standard inequalities:

ex−x
2 ≤ 1+x ≤ ex−x2/6 for x ∈ [−0.68,0.68]; (8)

1−x ≤ e−x for x ∈R. (9)

For all n∈ Z and x ∈R with sinx 
= 0, (4) gives
sinnx
sinx

=n− n
3−n
6

x2+v(n,x), (10)

where

v(n,x)= −
(
(n3−n)/36)x5+((n3−n)/6)x2r(x)+r(nx)−nr(x)

x−(x3/6)+r(x) , (11)

so that

∣∣v(n,x)∣∣≤ n4x4/23
5x/6

= 6
115

n4x3 for x ∈ [0,1] and n≥ 20. (12)

(Naturally, we define sinnx/sinx = n when x = 0 to remove that discontinuity.) We
require the following result (see [2] for a statement of a version of (a)).

Lemma. (a) For (π/2n)≤ x ≤π/2 and n≥ 4,∣∣∣∣sinnxsinx

∣∣∣∣≤ 2n3 . (13)

(b) For 0≤ x ≤ (π/2n) and n≥ 20,

∣∣∣∣sinnxsinx

∣∣∣∣≤n− n3x212
. (14)

Proof. (a) First, (4) gives sin(π/2n) ≥ (π/2n)− (π3/48n3) ≥ (3/2n) for n ≥ 4.
Hence,

∣∣∣∣sinnxsinx

∣∣∣∣= |sinnx|sinx
≤ 1
sin(π/2n)

≤ 2n
3
. (15)

(b) Next, (10) gives n − ((n3 − n)/6)x2 + v(n,x) ≤ n − n3x2((1/6) − (1/6n2) −
(6/115)nx)≤n−(n3x2/12) for n≥ 20. Hence,

∣∣∣∣sinnxsinx

∣∣∣∣= sinnxsinx
≤n− n

3x2

12
. (16)

For all x ∈R and n≥ 1, (9) gives (see [2])
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0≤
n∏
k=1

cos2kx =
n∏
k=1
(1−sin2kx)≤ exp


− n∑

k=1
sin2kx




= exp
(
− n
2
+ sinnx cos(n+1)x

2sinx

)
≤ exp

(
− n
2
+ 1
2

∣∣∣∣sinnxsinx

∣∣∣∣
)
.

(17)

Hence, for allm∈N and n≥ 20, the lemma and (17) now give
∣∣∣∣
∫ π/2
π/2n

cos2mx
n∏
k=1

cos2kxdx
∣∣∣∣≤ 2e−n/6, (18)

and, for all 0≤ c ≤n1/2,∣∣∣∣
∫ π/2n
cn−3/2

cos2mx
n∏
k=1

cos2kxdx
∣∣∣∣≤

∫ π/2n
cn−3/2

e−n
3x2/24dx ≤ e−c2/24. (19)

If k∈ Z and x ∈R, (6) and (7) give
cos2kx = e−k2x2(1+w(k,x)), (20)

where

w(k,x)= ek2x2(t(kx)−u(k2x2)) (21)

is infinitely-differentiable on R for each integer k and, for 1≤ k≤n, 0≤ x ≤n−1,∣∣w(k,x)∣∣≤ 4k3x3. (22)

Now, for 0≤ x ≤ an−1 ≤ 0.5n−1 and n≥ 7,
n∑
k=1

(
|w(k,x)|+|w(k,x)|2

)
≤ 6x3

n∑
k=1

k3 ≤ 2n4x3 ≤ 2a3n, (23)

so that (8) gives

e−2a
3n ≤

n∏
k=1

(
1+w(k,x))≤ e2a3n. (24)

Hence, for all m ∈ N, 0 ≤ b ≤ 0.5n1/2, n ≥ 7, (20) and (24) give with σ = σ(n) =
n(n+1)(2n+1)/6,

∣∣∣∣
∫ bn−3/2
0

cos2mx
n∏
k=1

cos2kxdx
∣∣∣∣≤

∫ bn−3/2
0

e−σx
2+2b3n−1/2 dx ≤ be2b3n−1/2

n3/2
. (25)

For 0≤ bn−3/2 ≤ cn−3/2 ≤ 0.5n−1, n≥ 7, t ∈ Z, (20) and (24) give

e−2c
3n−1/2

∫ cn−3/2
bn−3/2

xte−σx
2
dx ≤

∫ cn−3/2
bn−3/2

xt
n∏
k=1

cos2kxdx

≤ e2c3n−1/2
∫ cn−3/2
bn−3/2

xte−σx
2
dx.

(26)

Hence,
∫ cn−3/2
bn−3/2

n∏
k=1

cos2kxdx ∼ (3π)1/2

2
n−3/2, (27)
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and, for allm∈N,
∫ cn−3/2
bn−3/2

s(2mx)
n∏
k=1

cos2kxdx =O(mn−3
)
, (28)

since

∫ cn−3/2
bn−3/2

e−σx
2
dx ∼ (3π)1/2

2
n−3/2, (29)

∫ cn−3/2
bn−3/2

xe−σx
2
dx ∼ 3

2
n−3, (30)

and (26) holds for all sufficiently large n provided b = b(n)→ 0, c = c(n)→∞ with
c = o(n1/6) as n→∞.
Consequently, (5), (18), (19), (25), (27), and (28) give

∫ π/2
0

cos2mx
n∏
k=1

cos2kxdx =
∫ 7(lnn)1/2n−3/2
(lnn)−1/2n−3/2

n∏
k=1

cos2kxdx

+
∫ 7(lnn)1/2n−3/2
(lnn)−1/2n−3/2

s(2mx)
n∏
k=1

cos2kxdx

+O((lnn)−1/2n−3/2)

∼ (3π)1/2

2
n−3/2 as n→∞,

(31)

for all m =m(n) = o(n3/2) (our error term being adequate for our analysis which
indicates where the integral is concentrated). Hence, (3) gives

A(n,m)∼
(
3
π

)1/2
22n+1n−3/2 as n→∞, (32)

for allm=m(n)= o(n3/2). This completes the proof.
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