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HOMOGENIZATION IN ELASTODYNAMICS WITH
FORCE TERM DEPENDING ON TIME
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Abstract. We extend the study on the homogenization problem for an elastic material
containing a distributed array of gas bubbles to the case when the body force depends
on time. By technically constructing an approximating sequence, we are able to show the
convergence of semigroups and therefore prove the main result that such spongy material
can be approximated by an elastic material without holes in the elastodynamics with the
force term depending on time.
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1. Introduction. Classical homogenization problems are considered in [2, 3]. Ho-
mogenization in elasticity and elastodynamics can be found in [1, 4, 5, 6]. Especially in
[5], we studied the homogenization problem for an elastic material containing a fine
array of gas bubbles. The system considered was

ρuε
tt = div(C∇uε)+f , (1.1)

where the displacement vector uε is a function of x and t and the fourth-order elas-
ticity tensor C , the density function ρ and the body force f are functions of x and
x/ε.
The homogenization problem in the case when f depends on t was not solved be-

cause the method used in [5] to derive the limiting system does not work.
Since in elastodynamics the case the body force depending on time t is more inter-

esting, we extend our study on homogenization problem of (1.1) to this more general
and technically difficult case in this note. We assume that in (1.1) C and ρ are still
functions of x and x/ε and the body force is a function of x,x/ε,t. To prove our
main results, some results in [5] is applied, a sequence of function that approximates
the body force is constructed and the convergence of semigroup operators is studied.
We prove that uε, the solution of

ρ
(

x,
x
ε

)
uε

tt = div
(

C
(

x,
x
ε

)
∇uε

)
+f

(
t,x,

x
ε

)
, (1.2)

converges to u0, the solution of

ρ̄(x)u0
tt = div

(
C0(x)∇u0)+ f̄ (t,x) (1.3)

subject to appropriate boundary condition and initial conditions, where C0 is the
effective module and ρ̄ and f̄ are described later.
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This paper is arranged as follows: in Section 2, we define all notation and describe
the problem. Since this is a work based on some results in [5], we list those results in
this section. In Section 3, we construct of a sequence of function that approximates the
body force and prove that convergence of semigroup operators. The main results of
this paper are obtained by using the approximation technics and applying few results
from [5].

2. Preliminaries. We denote the displacement vector by u. Assume Ω to be a
bounded open set in R3 with a Lipschitz continuous boundary. We define a periodic
structure on Ω by tessellating R3 with scaled and translated copies of the unit cell
Y =Π3

i=1(0,1) as described below. Let an open subset � of Y represent a hole in Y . We
assume that the boundary of � is C1 and that the closure of � does not intersect the
boundary of Y . Denote �= Y\�. With each x ∈Ω and y ∈ Y , we associate an elasticity
tensor C(x,y) satisfying the following hypotheses:
(1) C(x,y) is a self-adjoint operator which maps second-order tensors to second-

order tensors for each y in Y and x in Ω. We assume the null space of C consists of
the skew-symmetric tensors, therefore for any second-order skew-symmetric tensor
W , we have C(x,y)[W]= 0.
(2) There exists a constant α > 0, independent of x and y , such that

E ·C(x,y)[E]≥αE ·E (2.1)

for all y ∈ �, x ∈ Ω and every symmetric E. That is, C(x,y) is uniformly positive
definite in solid part in the space of second-order symmetric tensors.
(3) There exists a λ > 0, such that, for y ∈ �,

C[E]= λ(trE)I, (2.2)

where I is a second-order unit tensor.
(4) C(x,y) is a bounded, measurable function of y in Y and a continuous function

of x in Ω.
We consider the function C(x,x/ε) in Ω as the elasticity tensor for a linearly elastic

material. The elastic material encloses an array of gas-filled holes congruent to ε�. Cer-
tainly ∂Ω may intersect some holes. Let �ε be formed by the union of all holes which
are completely contained in Ω. Denote Ωε =Ω\�ε. In our problem, Ωε is the solid part
while �ε is the gas part. We can easily derive similar assumptions on C(x,x/ε) from
assumptions (1)–(4). For simplicity, we just refer to assumptions (1)–(4) as assump-
tions on C(x,x/ε) later on. We also introduce a product space H = H1

0(Ω)×L2(Ω)
equipped with usual Sobolev norm ‖Q‖H = ‖u‖H1

0 (Ω)+‖v‖L2(Ω) for Q = (u,v)T ∈ H,

where the superscript T denotes the transpose. For (g(x),h(x))T ∈ H, we consider
the behavior, as ε→ 0, of the following system:

ρ
(

x,
x
ε

)
uε

tt = div
(

C
(

x,
x
ε

)
∇uε

)
+f

(
t,x,

x
ε

)
in Ω×R+; (2.3)

uε = 0 on ∂Ω×R+; (2.4)

uε(0,x)= g(x); uε
t (0,x)= h(x) in Ω, (2.5)



HOMOGENIZATION IN ELASTODYNAMICS WITH FORCE . . . 725

where ρ(x,x/ε) is the density function with the properties that it is integrable and
that ρ(x,x/ε) > k > 0 (k is a constant) for all x in Ω.
Let v = ut and Q = (u,v)T . Then equations (2.3), (2.4), and (2.5) then could be

rewritten as

Qt =�εQ+Fε(t) in Ω×R+; Q|t=0 = (g,h)T in Ω, (2.6)

where Fε(t)= (0,f (t,x,x/ε))T , �ε is the following operator on H:

�ε =



0 1
1

ρ(x,x/ε)
div

(
c
(

x,
x
ε

)
∇
)

0


 (2.7)

with domain D(�ε) = {Q = (u,v)T ∈ H such that �εQ belongs to H}. With all these
notation and assumptions, we are ready to list some useful results from [5].

Lemma 2.1. Under assumptions (1)–(4) on C(x,x/ε), �ε generates in H a C0 semi-
group operator Sε(t) such that

‖Sε(t)Q‖ ≤ ‖Q‖ (2.8)

for any Q∈H. So, for any G = (g,h)T ∈H, SεG ∈H is a solution of system

Qt =�εQ in Ω×R+; Q|t=0 =G in Ω. (2.9)

Lemma 2.2 (unit cell problem). Under assumptions (1)–(4) on C(x,x/ε), for any
constant second-order symmetric tensor Λ, there exists a weak solution, wΛ, to the
following differential system:

−div(C(x,y)
[∇y

(
wΛ+Λy

)])= 0, y ∈ Y , (2.10)∫
Y

wΛdy = 0, wΛ is a Y -periodic H1 function (2.11)

with x as a parameter in Ω.

Lemma 2.3. Sε(t)G→ S(t)G in L∞(R+,H) as ε→ 0, where G = (g,h)T ∈H and S(t)
is a semigroup operator generated by

�0 =



0 1
1

ρ̄(x)
div

(
C0(x)∇) 0


 (2.12)

in which ρ̄ = (1/|Y |)∫Y ρ(x,y)dy and C0 is defined by the following

C0[Λ]= 1
|Y |

∫
Y

C(x,y)
(∇y

(
wΛ+Λy

))
(2.13)

for any constant second-order symmetric tensor Λ and wΛ is obtained in Lemma 2.2.

Lemma 2.4. If f (x,x/ε)∈ L2(Ω), then, as ε→ 0,
∫ t

0
Sε(t−s)Fε(x)ds �→

∫ t

0
S(t−s)F̄(x)ds, (2.14)

where Fε(x)= (0,f (x,x/ε))T , F̄(x)= (0, f̄ (x))T with f̄ (x)= (1/|Y |)∫Y f (x,y)dy .
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Proofs of Lemmas 2.1, 2.2, 2.3, and 2.4 can be found in [5]. One can easily show that
the solution of (2.6) can be expressed as

Qε(t,x)= (uε(t,x),vε(t,x)
)T = SεG(x)+

∫ t

0
Sε(t−s)F

(
s,x,

x
ε

)
ds. (2.15)

3. Convergence of semigroups. When the force depends on time variable, the
method used in [5] to derive the limit system cannot be applied. The problem is to
deal with the integral in (2.15). There we have a convolution term whose behavior is
not clear if we directly send ε to zero on both sides of (2.15) in order to obtain an
equation which the limiting solution may satisfy. We should look for a new way to get
around this difficulty. The idea is to choose an approximation sequence of the force
function in such a way that functions in this sequence are piecewise constants with
respect to time. Then we can apply Lemma 2.4 to each function in this sequence to
study the limiting behaviour of all terms in (2.15).
Let us first prove the following technical lemma.

Lemma 3.1. For f (t,x,x/ε)∈ C(0,T ;L2(Ω)), there exists a sequence fn(t,x,x/ε)∈
L1(0,T ;L2(Ω)) such that fn(t,x,x/ε)→ f (t,x,x/ε) in L1(0,T ,L2(Ω)) as n→∞. More-
over, {fn} are piecewise constant functions with respect to t.

Proof. Let us define, for integers n and j = 1,2, . . . ,n,

fj

(
t,x,

x
ε

)
=




0
[
0,

j−1
n

T
)

f
(

j
n

T ,x,
x
ε

) [
j−1

n
T,

j
n

T
]

0
(

j
n

T ,T
]

(3.1)

and define χj as the following:

χj(t)=


1 on

(
j−1

n
T,

j
n

T
)
;

0 elsewhere.
(3.2)

Then take fn(t,x,x/ε)= Σn
j=1χj(t)fj(t,x,x/ε). It is obvious that the lemma follows.

Let us denote F(t,x,x/ε) = (0,f (t,x,x/ε))T (∈ H1
0(Ω) × C(0,T ;L2(Ω))). We can

show the following lemma.

Lemma 3.2. Assume f (t,x,x/ε)∈ C(0,T ;L2(Ω)) and f (t,x,y) is periodic iny with
period 1. We have the following convergence as ε→ 0:

∫ t

0
Sε(t−s)F

(
s,x,

x
ε

)
ds �→

∫ t

0
S0(t−s)F̄(s,x)ds, (3.3)

where F̄(t,x)= (0, f̄ (t,x))T with f̄ (t,x)= (1/|Y |)∫Y f (t,x,y)dy .
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Proof. Let us apply Lemma 3.1 to F(t,x,x/ε). Then there exists a sequence of
function Fn(t,x,x/ε) → F(t,x,x/ε) in H1

0(Ω)×L1(0,T ,L2(Ω)) and Fn(t,x,x/ε) is a
piecewise constant function with respect to variable t. It is a simple fact that, since
f (t,x,·) is periodic,

F
(

t,x,
x
ε

)
�→ F̄(t,x) in H1

0(Ω)×C
(
0,T ,L2(Ω)

)
, (3.4)

where F̄(t,x)= (0, f̄ (t,x))T with f̄ (t,x)= (1/|Y |)∫Y f (t,x,y)dy . Now consider

∫ t

0
Sε(t−s)F

(
s,x,

x
ε

)
ds−

∫ t

0
S0(t−s)F̄(s,x)ds

=
∫ t

0

(
Sε(t−s)F

(
s,x,

x
ε

)
−Sε(t−s)Fn

(
s,x,

x
ε

))
ds

+
∫ t

0

(
Sε(t−s)Fn

(
s,x,

x
ε

)
−S0(t−s)Fn

(
s,x,

x
ε

))
ds

+
∫ t

0

(
S0(t−s)Fn

(
s,x,

x
ε

)
−S0(t−s)F̄n

(
s,x,

x
ε

))
ds

+
∫ t

0

(
S0(t−s)F̄n

(
s,x,

x
ε

)
−S0(t−s)F̄

(
s,x,

x
ε

))
ds.

(3.5)

On the right-hand side of (3.4), applying Lemmas 2.1 and 3.1 to the first and the
last integrals, Lemma 2.4 to the second integral and Lemma 2.1 and (3.4) to the third
integral completes the proof of this lemma.

Applying Lemmas 2.3 and 3.2 to the right-hand side of (2.15), we conclude that, as
ε→ 0, Qε(t,x) converges weak star to Q0(t,x) in L∞(R+,H1

0(Ω)), where

Q0(t,x)= (u0(t,x),v0(t,x)
)T = S0(t)G(x)+

∫ t

0
S0(t−s)F̄(s,x)ds. (3.6)

Therefore we prove the following theorem.

Theorem 3.1. Under assumptions (1)–(4) of Section 2 on the elasticity coefficient
C(x,x/ε), for g(x)∈H1

0(Ω), h(x)∈ L2(Ω), f (t,x,x/ε)∈ C(0,T ;L2(Ω)) as described
in Lemma 3.2, the solution of (2.3), (2.4), and (2.5), uε(t,x), converges weak star in
L∞(R+,H1

0(Ω)) to u0 defined by (3.6), the solution of

ρ̄(x)u0
tt = div

(
C0(x)

[∇u0])+ f̄ (t,x) in Ω×R+; (3.7)

u0 = 0 on ∂Ω×R+; (3.8)

u0(0,x)= g(x); u0
t (0,x)= h(x) in Ω, (3.9)

where ρ̄(x) and C0 are given in Section 2 and f̄ (t,x) in Lemma 3.2.
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