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LOCAL PROPERTIES OF FOURIER SERIES
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Abstract. A theorem on local property of |N̄,pn|k summability of factored Fourier series,
which generalizes some known results, and also a general theorem concerning the |N̄,pn|k
summability factors of Fourier series have been proved.
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1. Introduction. Let
∑

an be a given infinite series with partial sums (sn). Let (pn)
be a sequence of positive numbers such that

Pn =
n∑

v=0
pv �→∞ as n �→∞, (P−i = p−i = 0, i≥ 1). (1.1)

The sequence-to-sequence transformation

tn = 1
Pn

n∑
v=0

pvsv (1.2)

defines the sequence (tn) of the (N̄,pn) mean of the sequence (sn) generated by the
sequence of coefficients (pn) (see [8]).
The series

∑
an is said to be summable |N̄,pn|k, k≥ 1, if (see [4])

∞∑
n=1

(
Pn

pn

)k−1
|tn−tn−1|k <∞. (1.3)

In the special case when pn = 1 for all values of n (resp., k= 1), |N̄,pn|k summability
is the same as |C,1| (resp., |N̄,pn|) summability. Also if we take k = 1 and pn = 1/n
summability |N̄,pn|k, is equivalent to the summability |R, logn,1|. A sequence (λn) is
said to be convex if ∆2λn ≥ 0 for every positive integer n, where ∆2λn =∆λn−∆λn+1
and ∆λn = λn−λn+1.
Let f(t) be a periodic function with period 2π , and integrable (L) over (−π,π).

Without loss of generality we may assume that the constant term in the Fourier series
of f(t) is zero, so that ∫ π

−π
f(t)dt = 0 (1.4)

and

f(t)∼
∞∑

n=1

(
ancosnt+bnsinnt

)= ∞∑
n=1

An(t) (1.5)

http://ijmms.hindawi.com
http://www.hindawi.com


704 HÜSEẎIN BOR

It is familiar that the convergence of the Fourier series at t = x is a local property of
f (i.e., it depends only on the behaviour of f in an arbitrarily small neighbourhood
of x), and hence the summability of the Fourier series at t = x by any regular linear
summability method is also a local property of f . The local property problem of the
factored Fourier series have been studied by several authors (see [1, 2, 5, 6, 7, 9]). Few
of them are given below.

2. Mohanty [13] has demonstrated that the |R, logn,1| summability of the factored
Fourier series

∑ An(t)
log(n+1) (2.1)

at t = x, is a local property of the generating function of f , whereas the |C,1| summa-
bility of this series is not. Later on, Matsumoto [10] improved this result by replacing
the series (2.1) by

∑ An(t)[
log log(n+1)]δ , δ > 1. (2.2)

Generalizing the above result Bhatt [3] proved the following theorem.

Theorem 2.1. If (λn) is a convex sequence such that
∑

n−1λn is convergent, then
the summability |R, logn,1| of the series

∑
An(t)λn logn at a point can be ensured by

a local property.

Mishra [12] has proved the following theorem by replacing the factor (λn logn) in
the most general form.

Theorem 2.2. Let the sequence (pn) be such that

Pn =O(npn), Pn∆pn =O(pnpn+1). (2.3)

Then the summability |N̄,pn| of the series

∞∑
n=1

An(t)λnPn

npn
, (2.4)

at a point can be ensured by local property, where (λn) is as in Theorem 2.1.

But this theorem does not directly generalize any of the above mentioned results
involving |R, logn,1| summability since order relations are not satisfied by pn = 1/n.

3. The aim of this paper is to prove a more general theorem which includes some
of the above mentioned results as special cases.
Now, we shall prove the following theorem.

Theorem 3.1. Let k ≥ 1. If (λn) is a convex sequence such that
∑

pnλn is conver-
gent, then the summability |N̄,pn|k of the series

∑
An(t)λnPn at a point can be ensured

by a local property.

We need the following lemmas for the proof of our theorem.
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Lemma 3.2 [11]. If (λn) is a convex sequence such that
∑

pnλn is convergent, where
(pn) is a sequence of positive numbers such that Pn→∞ as n→∞, then (λn) is a non-
negative monotonic decreasing sequence tending to zero, Pnλn = o(1) as n→∞ and∑

Pn∆λn <∞.

Lemma 3.3. Let k≥ 1. If (λn) is a convex sequence such that
∑

pnλn is convergent
and (sn) is bounded, then the series

∑
anλnPn is summable |N̄,pn|k.

Proof. Let (Tn) be the sequence of (N̄,pn)mean of the series
∑

anλnPn. Then, by
definition, we have

Tn = 1
Pn

n∑
v=0

pv

v∑
r=0

arλrPr = 1
Pn

n∑
v=0

(Pn−Pv−1)avλvPv. (3.1)

Then, for n≥ 1, we have

Tn−Tn−1 = pn

PnPn−1

n∑
v=1

Pv−1Pvavλv. (3.2)

By Abel’s transformation, we have

Tn−Tn−1 = pn

PnPn−1

n−1∑
v=1

PvPvsv∆λv− pn

PnPn−1

n−1∑
v=1

Pvsvpvλv

− pn

PnPn−1

n−1∑
v=1

Pvpv+1svλv+1+snpnλn

= Tn,1+Tn,2+Tn,3+Tn,4.

(3.3)

By Minkowski’s inequality for k > 1, to complete the proof of Lemma 3.3, it is sufficient
to show that

∞∑
n=1

(
Pn

pn

)k−1
|Tn,r |k <∞, for r = 1,2,3,4. (3.4)

Now, applying Hölder’s inequality with indices k and k′, where 1/k+1/k′ = 1, we get
that

m+1∑
n=2

(
Pn

pn

)k−1
|Tn,1|k ≤

m+1∑
n=2

pn

PnPn−1




n−1∑
v=1

|sv |kPvPv∆λv


×


 1
Pn−1

n−1∑
v=1

PvPv∆λv



k−1

.

(3.5)

Since

n−1∑
v=1

PvPv∆λv ≤ Pn−1
n−1∑
v=1

Pv∆λv, (3.6)

it follows by Lemma 3.2 that

1
Pn−1

n−1∑
v=1

PvPv∆λv ≤
n−1∑
v=1

Pv∆λv =O(1) asm �→∞. (3.7)
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Therefore

m+1∑
n=2

(
Pn

pn

)k−1
|Tn,1|k =O(1)

m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

|sv |kPvPv∆λv

=O(1)
m∑

v=1
|sv |kPvPv∆λv

m+1∑
n=v+1

pn

PnPn−1

=O(1)
m∑

v=1
Pv∆λv =O(1) asm �→∞,

(3.8)

by virtue of the hypotheses and Lemma 3.2. Again

m+1∑
n=2

(
Pn

pn

)k−1
|Tn,2|k ≤

m+1∑
n=2

pn

PnPn−1




n−1∑
v=1

|sv |k(Pvλv)kpv


×


 1
Pn−1

n−1∑
v=1

pv



k−1

.

=O(1)
m+1∑
v=2

pn

PnPn−1

n−1∑
v=1

|sv |k(Pvλv)kpv

=O(1)
m∑

v=1
|sv |k(Pvλv)kpv

m+1∑
n=v+1

pn

PnPn−1

=O(1)
m∑

v=1
|sv |k(Pvλv)k

pv

Pv

=O(1)
m∑

v=1
|sv |k(Pvλv)k−1pvλv

=O(1)
m∑

v=1
pvλv =O(1) asm �→∞,

(3.9)

by virtue of the hypotheses and Lemma 3.2. Using the fact that Pv < Pv+1, similarly
we have that

m+1∑
n=2

(
Pn

pn

)k−1
|Tn,3|k =O(1)

m∑
v=1

pv+1λv+1 =O(1) asm �→∞, (3.10)

Finally, we have that

m∑
n=1

(
Pn

pn

)k−1
|Tn,4|k =

m∑
n=1

|sn|k(Pnλn)k−1pnλn

=O(1)
m∑

n=1
pnλn =O(1) asm �→∞,

(3.11)

by virtue of the hypotheses and Lemma 3.2. Therefore, we get that

m∑
n=1

(
Pn

pn

)k−1
|Tn,r |k =O(1) asm �→∞, for r = 1,2,3,4. (3.12)

This completes the proof of Lemma 3.3.
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In the particular case if we take pn = 1 for all values of n in this lemma, then we get
the following corollary.

Corollary 3.4. Let k≥ 1. If (λn) is a convex sequence such that
∑

λn is convergent
and (sn) is bounded, then the series

∑
nanλn is summable |C,1|k.

Proof of Theorem 3.1. Since the behaviour of the Fourier series, as far as con-
vergence is concerned, for a particular value of x depends on the behaviour of the
function in the immediate neighbourhood of this point only, hence the truth of the
theorem is a necessary consequence of Lemma 3.3. If we take pn = 1 for all values ofn
in this theorem, then we get a local property result concerning the |C,1|k summability.

Nowwe shall prove the following theorem for |N̄,pn|k summability factors of Fourier
series.

Theorem 3.5. Let k ≥ 1 and let (λn) be a convex sequence such that
∑

pnλn <∞,
where (pn) is a sequence of positive numbers such that Pn → ∞. If

∑n
v=1PvAv(t) =

O(Pn), then the series
∑

An(t)Pnλn is summable |N̄,pn|k, where Av(t) is as in (1.5).

Proof. Let Tn(t) denotes the (N̄,pn) mean of the series
∑

An(t)Pnλn. Then, by
definition, we have

Tn = 1
Pn

n∑
v=0

pv

v∑
r=0

Ar(t)Prλr = 1
Pn

n∑
v=0

(Pn−Pv−1)Av(t)λvPv. (3.13)

Then, for n≥ 1, we have

Tn(t)−Tn−1(t)= pn

PnPn−1

n∑
v=1

Pv−1PvAv(t)λv. (3.14)

By Abel’s transformation, we have

Tn(t)−Tn−1(t)= pn

PnPn−1

n−1∑
v=1

∆(Pv−1λv)
v∑

r=1
PrAr (t)+ pn

Pn
λn

n∑
v=1

PvAv(t)

=O(1)


 pn

PnPn−1

n−1∑
v=1

(Pvλv−pvλv−Pvλv+1)Pv


+O(1)pnλn

=O(1)


 pn

PnPn−1

n−1∑
v=1

PvPvλv− pn

PnPn−1

n−1∑
v=1

Pvpvλv+pnλn




=O(1)
{
Tn,1(t)+Tn,2(t)+Tn,3(t)

}
.

(3.15)

Since

|Tn,1(t)+Tn,2(t)+Tn,3(t)|k ≤ 3k
{|Tn,1(t)|k+|Tn,2(t)|k+|Tn,3(t)|k

}
, (3.16)

to complete the proof of Theorem 3.5, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1
|Tn,r (t)|k <∞, for r = 1,2,3. (3.17)
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Now, applying Hölder’s inequality with indices k and k′, where 1/k+1/k′ = 1 and by
using (3.7), we get that

m+1∑
n=2

(
Pn

pn

)k−1
|Tn,1(t)|k ≤

m+1∑
n=2

pn

PnPn−1




n−1∑
v=1

PvPv∆λv


×


 1
Pn−1

n−1∑
v=1

PvPv∆λv



k−1

.

=O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

PvPv∆λv

=O(1)
m∑

v=1
PvPv∆λv

m+1∑
n=v+1

pn

PnPn−1

=O(1)
m∑

v=1
Pv∆λv =O(1) asm �→∞,

(3.18)

m+1∑
n=2

(
Pn

pn

)k−1
|Tn,2(t)|k ≤

m+1∑
n=2

pn

PnPn−1




n−1∑
v=1

(Pvλv)kpv


×


 1
Pn−1

n−1∑
v=1

pv



k−1

.

=O(1)
m+1∑
v=2

pn

PnPn−1

n−1∑
v=1

(Pvλv)kpv

=O(1)
m∑

v=1
(Pvλv)kpv

m+1∑
n=v+1

pn

PnPn−1

=O(1)
m∑

v=1
(Pvλv)k

pv

Pv

=O(1)
m∑

v=1
(Pvλv)k−1pvλv

=O(1)
m∑

v=1
pvλv =O(1) asm �→∞,

(3.19)

by virtue of the hypotheses and Lemma 3.2. Finally, as in Tn,1(t), we have that

m∑
n=1

(
Pn

pn

)k−1
|Tn,3(t)|k =

m∑
n=1

(Pnλn)k−1pnλn

=O(1)
m∑

n=1
pnλn =O(1) asm �→∞,

(3.20)

Therefore, we get that

m∑
n=1

(
Pn

pn

)k−1
|Tn,r (t)|k =O(1) asm �→∞, for r = 1,2,3. (3.21)

This completes the proof of Theorem 3.5.

As a special case the following results can be obtained from Theorem 3.5.
(1) If we take pn = 1 for all values of n, then we get a result concerning the |C,1|k

summability factors of Fourier series.
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(2) If we take k= 1 andpn=1/n, thenwe get another new result related to |R, logn,1|
summability factors of Fourier series.
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