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ABSTRACT. For L a continuous lattice with its Scott topology, the functor (; makes every
regular L-topological space into a regular space and so does the functor wy the other
way around. This has previously been known to hold in the restrictive class of the so-
called weakly induced spaces. The concepts of H-Lindel6fness (4 la Hutton compactness)
is introduced and characterized in terms of certain filters. Regular H-Lindel6f spaces are
shown to be normal.
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1. Introduction. The two functors that provide a working link between the category
TOP(L) of L-(fuzzy)-topological spaces and TOP are the Lowen functors (; and wjy.
For a wide class of lattices L’s, (1 is a right adjoint and left inverse of w;. Therefore,
it is of interest to know how various L-topological invariants behave with respect to
these functors.

In this paper, we show that when L is a continuous lattice with its Scott topology
then (; maps the category Reg(L) of L-regular spaces onto the category Reg of regular
spaces. This improves upon and extends a result of Liu and Luo [6] which showed (with
different but equivalent terminology) that (; maps weakly induced L-regular spaces to
regular spaces (with L a completely distributive lattice with its upper topology). As a
consequence, we have that w; (Reg) consists precisely of L-regular spaces of w;(TOP).
Some generalities about L-regular spaces are included and stated in a slightly more
general situation, viz. for L-topologies that admit a certain type of approximating
relation. This captures complete L-regularity and zero-dimensionality.

We also introduce the concept of H-Lindel6fness (compatible with compactness in
the sense of Hutton [2]) and characterize it in terms of closed filters. Finally, we prove
that H-Lindel6f and L-regular spaces are L-normal.

2. Notation and some terminology. All the fuzzy topological concepts that con-
cern us are standard. We nevertheless recall some of them.

Let L = (L,") be a complete lattice (bottom denoted 0) endowed with an order-
reversing involution . Thus L satisfies the de Morgan laws. For X a set, LX is the
set of all maps from X to L (called L-sets). Then (L¥,’) is a complete lattice under
pointwisely defined ordering and the order-reversing involution. The de Morgan laws
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are also inherited by LX. An L-topology on X is a family of elements of LX (called open
L-sets) such that any supremum and any finite infimum of open L-sets are open. The
L-topology of an L-topological space (L-ts) X is denoted o (X). Members of k (X) = {k €
LX: k' € 0(X)} are called closed. For each a € LX, we let Inta = \/{u € o(X) : u < a}
and a = (Int(a’))’. If X and Y are two L-ts’s, then f : X — Y is continuous if uf (the
composition of f and u) is in 0(X) whenever u € 0(Y). The weakest L-topology on X
making f continuous is denoted by f~(0(Y)). We say that S ¢ LY generates o(X) if
o(X)=({T:S cT,an L-topology on X}.If 7 is a family of L-topologies on X, then the
supremum L-topology V J is generated by UJ. In particular, Vc; ; (0(Xj)) is the
product L-topology on [ ] ;c; X; (17, being the jth projection). The set of all restrictions
{u]A:u €o0(X)} is the subspace L-topology on A C X.

Given «, B € L we let « < B whenever for any B C L with 8 < \/B there is a finite
By € B such that o < \/By. Then L is called continuous if &« = \/{f € L : B < «} for
every « € L. We write fax = {B € L : B < «} and dually for f«. Each continuous L
has the interpolation property: ¢ < f implies ¢ < y <« B for some y € L. The Scott
topology o (L) on a continuous L is one which has {{ «: o« € L} as a base. We write XL
for (L,o (L)) (see [1] for details).

We also recall that L is a frame provided x A\ B = \/{xAB: B € B} for every x € L
and B C L.

GivenaelXandaxel, welet[a>x]l={xeX:a(x)>»«},[atx]={x¢€
X :a(x) £ o}, etc. The constant member of LX with value « is denoted « as well,
and «ls = @ A 14, where 1, is the characteristic function of A ¢ X. If o4 ¢ LX, we let
A ={a :acd}, d=1{a:ac s}, and similarly for Intsi. We include for record.

REMARK 2.1. Let L be acomplete lattice and X a nonempty set. The following state-
ments are equivalent:

(1) L is continuous;

(2) a=Vger Xlasq for every a € LY;

(3) [a £ ] = Upgala > B] for every a € L* and « € L.

3. L-topologies with approximating relation. Let L = (L,”) be a complete lattice.
An L-ts X is called L-regular [3] if for every u € o(X) there exists " C 0(X) such that
u=\V¥ and V < u for all v € V. This is the case if and only if u = /¥ = V¥.

It is clear that X is L-regular if and only if for every basic open u one has u = \/{v €
o(X): v <ul.

To avoid repetitions of some argument used in [5], we introduced an auxiliary rela-
tion < on the L-topology o(X) of an L-ts X.

DEFINITION 3.1. Let < be a binary relation on o (X) satisfying the following condi-
tions for all u,v,w;,w> € o(X):

(1) 0<u;

(2) v < u implies v < u;

3) w1 =v <u <w>, implies w; < wo;

4) wiy <u and wy < u imply wy Vw, < u;

(5) u<w; and u < wp imply u < wy A ws.
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We say X is <-regular if for each open u there exists ¥ C o(X) such that u = \/V
and v < u for all v e V.

EXAMPLES. (1) X is L-regular if and only if it is <-regular with v < u defined by
V< U.

(2) X is completely L-regular [3] if and only if it is <-regular, where v < u if and only
if v <L) f <Rof <u for some f € C(X,I(L)); see [5] for details and notice that (4)
and (5) of Definition 3.1 require L to be meet-continuous (cf. Section 5).

(3) X is zero-dimensional if and only if it is <-regular and v < u, whenever v <w <u
for some closed and open w (cf. [9]).

PROPOSITION 3.2. Let L be a complete lattice and let X be any of <-regular spaces
of Example 3. The following hold
(1) If f:Y — X is continuous, then Y is <-regular with respect to f~(0(X)).
(2) Every subspace of X is <-regular.
If L is a frame, then
(3) u=\V{v:v <u} for every subbasic open u € L.
(4) IfJ is a family of <-regular L-topologies on X, then \/ J is <-regular.
(5) <-regularity is preserved by arbitrary products.

PROOF. The argument given in [5, Remark 2.5 and Lemma 2.3] for the case (2) of
Example 3 goes unchanged in the remaining cases. O

PROPOSITION 3.3. Let L be a continuous lattice. For X an L-topological space, the
following are equivalent:

(1) X is <-regular.

(2) u=\V{v:v <u} forevery (basic) open u.

(3) [u> ] =Uy«ulv > «] for every (basic) open u and «x € L.

4) [u £ «] =Uyp<u [V £ «] for every (basic) open u and x € L.

PROOF. (1)=(2). Obvious.

(2)=(3). Let x < u(x) = V{v(x) : v < u}. Select B € L such that & < B < u(x).
There is a finite family ¥ c 0(X) such that 8 < (V7)) (x) and w < u for every w € V.
Putv = V9. Then v < u and & < B < v(x). Thus o < v(x) with v < u. This proves
the nontrivial inclusion of (3).

3)=4). If u(x) « «, there is a f such that § < u(x) and S « . By 3), B < v (x)
for some v < u. Then v (x) £ «, i.e., [u £ &] C U,y [V £ «]. The reverse inclusion is
obvious.

(4)=(1).Letu # 0. Then A = {(x,B) € XXL:u(x) £ B} = 0. For every pair (x,8) € A
select vyg < u such that vyg(x) £ B. Clearly, V{vxp : (x,B8) € A} < u. To show the
converse, assume there exists y € X such that

y =\ {vxp(¥): (x,B) € A} £ u(y). 3.1)

Then (y,y) € A, hence v,,(y) £ y. But from (3.1) we have vy g(y) < y for all (x,) €
A, in particular vy, () <y, a contradiction. O
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REMARK 3.4. (1) The proof of (4)=>(1) is a complete lattice proof. Since there is a
direct and obvious complete lattice argument for (2)=>(4), therefore (1)< (2)<(4)
hold true for any complete lattice L.

(2) With L a complete chain without elements isolated from below (e.g., with L =
[0,1]), conditions (3) and (4) coincide. When expressed in terms of fuzzy points (these
are L-sets of the form «1y}) and with v < u if and only if v < u, these conditions be-
come the definitions of fuzzy regularity given by numerous authors, e.g., [10], thereby
showing that all those definitions are equivalent to the one of Hutton-Reilly [3].

(3) For L a frame, the open L-set u in conditions (3) and (4) of Proposition 3.3
can be assumed to be in any family that generates the L-topology (on account of
Proposition 3.2(3)); cf. [8, Lemma 3(iii)].

Now we show that the regularity axiom of Liu and Luo [6] is equivalent to the L-
regularity for any complete L in which primes are order generating. We recall that
p € L is called prime whenever « A B < p implies @ < p or 8 < p. The set of all primes
is order generating if « = A{p > «: p is prime} for every « € L. The dual concept is
that of a coprime element. In our case, i.e., in (L,’), an element g € L is coprime if and
only if q" is prime. We have the following.

REMARK 3.5. Let L be a complete lattice in which primes are order generating. For
X an L-ts, the following are equivalent:

(1) X is L-regular.

(2) (Liu and Luo [6]) for every x € X, coprime g, and k € k(X), whenever k(x) # q,
there exists h € k(X) such that h(x) # q and k < Inth.

PROOF OF REMARK 3.5(2). Observe that condition (4) of Proposition 3.3 (cf. also
Remark 3.4(1)) can be written as follows (with v < u if and only if v <u) : [u £ p]
Uw<u[V £ p] for every open u and each prime p. And this is just the dual form of (2

O =

4. The topological modifications of L-regular spaces. The main topic of this paper
requires the lattice L to carry a topology such that C(Y,L) is an L-topology for every
topological space Y. Among examples of such lattices are the continuous lattices with
their Scott topologies.

If L is a continuous lattice, then 3L is a topological lattice (see [1, Chapter II, Corol-
lary 4.16, Proposition 4.17]). The family [Y,3L] of all continuous functions from a
topological space Y to XL is, therefore, closed under finite suprema and finite infima
(both formed in LY). However, by using the interpolation property of the relation <,
for every ¢ € L and AU C [Y,3L] one has [\VU > «] = U{[VV > «] :V C A is finite},
an open subset of Y. Thus [Y,3L] is an L-topology on the set Y. For every topological
space Y, ws; Y denotes the set Y provided with the L-topology [Y,3L]. One then says
that ws Y is topologically generated from Y.

Now, for X an L-topological space, let (s X be the topological space with X as the
underlying set and with the weak topology generated by o(X) and XL, i.e., (s X has
V{u-(o(L)):u €o0(X)} as a topology. It is called the topological modification of X.

Then ws; : TOP — TOP(L) and ts; : TOP(L) — TOP (with preservation of mappings)
are the Lowen functors (cf. [4, 5]).
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We have 0(X) C o(wsrtsp X) and tsp wsy = idtop. Hence wsy; is an injection. We also
recall that if Y is a topological space, then xY denotes the set Y endowed with the
L-topology {1y : U open in X}. Clearly, sy xY =Y.

Sometimes it may be more convenient to write (X, ws; (T)) for the space topologi-
cally generated from (X, T), and similarly for ts;.

LEMMA 4.1. Let L be a continuous lattice. For every L-regular space X, ts1 X is a
regular topological space.

PROOF. It suffices to show that every point of an arbitrary subbasic open set of ts; Y
has an open neighborhood whose closure is in the set (this is Proposition 3.2(3) with
L =1{0,1}). So, let u be open in X, x € L, and let x € [u > «]. By Proposition 3.3(3)
there is an open v in X such that v < u and x € [v > «]. Select y € L such that
X <y < v(x). Then

xelv>ylcv=y]clu> «l. 4.1)
Now it suffices to note that, by Remark 2.1,

[T >y]l=X\[Int(v') £y'1=X\ |J [Int(v’) > BI. 4.2)
By’

Thus [V = y] is closed, hence (57 X is regular.

Now it is more convenient to write (X, T) for an L-ts X with the L-topology T. In [6],
(X, T) is said to be weakly induced if 1o €T for everyu € T and x € L. Let [T] =
{U c X : 1y € T}. In what follows, we write “L-regular” on account of Remark 3.5.

O

COROLLARY 4.2 [6]. Let L be completely distributive. If (X,T) is a weakly induced
L-regular space, then (X,[T]) is regular.

PROOF. First, recall that a completely distributive L is continuous and the sets
{BeL:B £ o} (xeL)form a subbase for its Scott topology (see [1, e.g., Chapter IV,
Exercise 2.31 and Chapter III, Exercise 3.23]). Thus (X, T) is weakly induced if and only
if sy (T) C [T]. Finally, notice that [T] C ts; (T) always since [1y > «] € {0,U, X} for
every x € L. O

THEOREM 4.3. Let L be a continuous lattice. Then the following hold:

ts; (Reg(L)) = Reg. (4.3)

wsi (Reg) = Reg(L) nwsy (TOP). (4.4)

PROOF. (1) That ts; maps Reg(L) into Reg is stated in Lemma 4.1. The mapping is
onto since for any topological regular X, xX is L-regular and ts; xX = X.

(2) If X is a regular topological space and u is open in ws; X, then for every x € L
there is a family W of open subsets of X such that

[u> ol =JWs =W (4.5)
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By Remark 2.1 and the first equality of (4.5), we obtain

u=\ alpsa =\ <o</\ \ lw)

xeL xel WeWx

SV OV aaw= Vs

ael WeWy axel WeWy

(4.6)

(Note that there is no distributivity used in arriving at the third equality: always « A
VB =\V{xApB:BeB} provided B C {0,1} as is the case above).

Since o1y < o1y, the same argument shows, by using the second equality of (4.5),
that we actually have

u=\ "\ aly=\ \V «ly. 4.7)

axelWeWy aelWeWy

This shows that ws; X is L-regular.
Conversely, if ws; X is L-regular, then X = sy xX is regular by Lemma 4.1. O

REMARK 4.4. (1) Let L be a continuous frame (then it becomes completely distribu-
tive on account of the order reversing involution; cf. [1, Chapter I, Theorem 3.15]).
Then the inclusion ws; (Reg) C Reg(L) obviously follows from Proposition 3.2(4). In-
deed, for X aregular space, the L-topology of ws; X is the supremum of two L-regular
L-topologies: the one of xX and the one consisting of all constant L-sets (cf. [5, Propo-
sition 1.5.1(7)]).

(2) The equality (4.4) of Theorem 4.3 is available in [12] with L = [0, 1] and in [6] with
L completely distributive. Theorem 4.3 is also a supplement to the discussion about
regularity in fuzzy topology given in [7].

(3) We recall that an L-ts X is an L-T3 space if and only if it is L-regular and points of
X can be separated by open L-sets. By [5, Remark 8.4], we obtain: ts; (L-T3) = T3 and
wsr (T3) = L-T3n w3 (TOP).

We close this section with some remarks about maximal L-regular spaces. Following
[11], we say that X is maximal L-regular if the only L-regular L-topology on the set X
which is stronger than the original one is LX (the discrete L-topology).

PROPOSITION 4.5. LetL be a continuous lattice. Every maximal L-regular space with
a nondiscrete topological modification is topologically generated (from a maximal reg-
ular space).

PROOF. Let (X,T) be maximal L-regular and let ts;(T) be nondiscrete. We have
T C wsr(ts(T)) and the latter L-topology is L-regular by Theorem 4.3. Assume
wsp (ts1 (T)) = LX. Then, by acting with ts;, we have ts; (T) = ts; (LX), a discrete topol-
ogy. This contradiction shows that T = wsx; (15 (T)). Thus (X, T) is topologically gen-
erated from (X, (57 (T)). The latter space is maximal regular. For, if (s (T) ¢ S ¢ P(X)
with S regular, then T = wsy (ts1.(T)) & ws(S) ¢ wsr(P(X)) = LX. Since wsy (S) is
L-regular, this contradicts the maximality of T (recall that ws; is injective). O

REMARK 4.6. From the above proof it is clear that Proposition 4.5 can be stated for
any topological property P and any L-topological property L-P for which there holds
a counterpart of Theorem 4.3. This is, for instance, the case of complete L-regularity
by [5, Theorem 8.5]. See also Remark 4.4(3).
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5. H-Lindel6fness. An L-ts X is called H-Lindelof if for every k € k(X), whenever
k < \/U with AU C 0(X), there exists a countable subfamily Uy C AU such that k < \/U.
If U is finite, then X is called H-compact [2]. It is clear that H-Lindelofness is pre-
served under continuous surjections. Also, the characterizations of H-compactness
in terms of certain filters have their counterparts for H-Lindel6f spaces.

DEFINITION 5.1 (cf. [2]). Let & ¢ LX be nonempty and let a € LX. We say that:

(1) & has the countable intersection property relative to a if A%y £ a for every
countable %, C %,

(2) % is a filter if it is closed under finite infima and such that if f € % and f < a,
then a € %. (A filter ¥ is called closed if ¥ C k(X).)

THEOREM 5.2. Let L be a complete lattice and let X be an L-ts. The following are
equivalent:

(1) X is H-Lindelof.

(2) Every family ¥ C k(X) with the countable intersection property relative to an open
u satisfies NI £u.

(3) Every closed filter 3 with the countable intersection property relative to an open
u satisfies NI £ u.

PROOF. (1)=(2). Assume AX < u. Then u’ < /K’ and there is a countable ¢ c ¥’
such that u’ < \/%, a contradiction with the countable intersection property of %.

(2)=>(3). Obvious.

(3)=(1). Let k < \/aU. Assume that AU does not have a countable subfamily which
covers k. Let (") be the closed filter generated by U/, i.e., let

(W) ={f €k(X):3 finite ¢y cU s.t. \€y < f}. (5.1)

We claim that (U’) has the countable intersection property relative to k’. Suppose
that this is not the case. Then for some countable % C (U’) one has A% < k’. Thus

k=\/% = \/ (/\q;f)':\/(uce}) (5.2)

feF feF

and U feg(@;c is a countable subfamily of A, a contradiction with our assumption
about A. Therefore (U’) has the countable intersection property relative to k’, i.e.,
A(U)Y £ k'. Hence k £ \/(W')" and since \/AU < \/{W')’, we conclude that k £ \/A. This
contradiction completes the proof. O

REMARK 5.3. There is no counterpart of Theorem 4.3 for H-Lindel6fness and Lin-
delofness:

(1) The set X = L = [0,1] (with &’ = 1 — &) equipped with the L-topology [0,1/4]¥ u
{1x} is H-Lindelof (as each open cover of a nonzero closed L-set must contain 1y),
while (57 X is an uncountable discrete space.

(2) An L-ts topologically generated from a Lindelof space need not be H-Lindelof.
Indeed, let X be an uncountable Lindel6f topological space. Put L = % (X) with usual
complement as its order-reversing involution (note that % (X) is a continuous lattice).
Then the cover of 1x consisting of all constant L-sets having values {x} with x € X
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(these are all open in ws; X) does not have a countable subcover. Therefore ws; X fails
to be H-Lindelof.

(3) However, if ws; X is H-Lindelo6f, then X is Lindelof. Indeed, x X carries a weaker
L-topology than ws; X, so that xX is H-Lindelof, and the latter is equivalent to the
statement that X is a Lindelof space.

(4) All the above discussion applies unchanged to the case of H-compactness and
compactness.

It is clear that for any complete L, every H-compact and L-regular space X is L-
normal, i.e., whenever k < u (k is closed and u is open), there exists an open v with
k <v <7 < u [3]. In what follows we show that H-compactness can be replaced by
H-Lindelofness provided L is meet-continuous, i.e., for every & € L and every directed
subset @ C L there holds: x AV % = \V/{xAd:6 € D}. We recall that every continuous
L is meet-continuous [1]. Also, on account of the order-reversing involution, the dual
law is valid too.

THEOREM 5.4. Let L be a meet-continuous lattice. Then every L-regular and H-
Lindeldf space is L-normal.

PROOF. Let k be closed, u be open, and k < u in an L-regular H-Lindelof space
X. By L-regularity there exist U C o(X) and ¥ C k(X) such that u = VU = \/U and
k = AN¥ = ANIntX (the latter on account of the de Morgan laws). By H-Lindelofness,
there exist two countable subfamilies Uy C U and Hog C K such that k < \/Uy and
(again by the de Morgan laws) A%y < u. Thus

k<\/U<\/UW and k= \Int¥o =< \¥Ho<u. (5.3)

The rest of the proof is exactly the same as that of [5, Theorem 9.11] which shows
that second countability plus L-regularity implies L-normality. Note that the proof in
[5] uses a result holding for L a meet-continuous lattice. O

REMARK 5.5. By [5, Lemma 3.7], every second countable L-ts is H-Lindel6f for any
complete L. Therefore Theorem 5.4 extends [5, Theorem 9.11].

ACKNOWLEDGEMENT. This work was done while the first author was visiting the
University of the Basque Country, in Summer 1996, supported by the Government of
the Basque Country.

REFERENCES

[1] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, A
Compendium of Continuous Lattices, Springer-Verlag, Berlin, 1980. MR 82h:06005.
Zbl 452.06001.

[2]  B. Hutton, Products of fuzzy topological spaces, Topology Appl. 11 (1980), no. 1, 59-67.
MR 80m:54009. Zbl 422.54006.

[3] B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and
Systems 3 (1980), no. 1, 93-104. MR 81k:54008. Zbl 421.54006.

[4] T. Kubiak, The topological modification of the L-fuzzy unit interval, Applications of cat-

egory theory to fuzzy subsets (Linz, 1989), Kluwer Acad. Publ., Dordrecht, 1992,

pp- 275-305. MR 93f:54007. Zbl 766.54006.

, On L-Tychonoff spaces, Fuzzy Sets and Systems 73 (1995), no. 1, 25-53.

MR 96g:54013. Zbl 867.54005.

[5]



http://www.ams.org/mathscinet-getitem?mr=82h:06005
http://www.emis.de/cgi-bin/MATH-item?452.06001
http://www.ams.org/mathscinet-getitem?mr=80m:54009
http://www.emis.de/cgi-bin/MATH-item?422.54006
http://www.ams.org/mathscinet-getitem?mr=81k:54008
http://www.emis.de/cgi-bin/MATH-item?421.54006
http://www.ams.org/mathscinet-getitem?mr=93f:54007
http://www.emis.de/cgi-bin/MATH-item?766.54006
http://www.ams.org/mathscinet-getitem?mr=96g:54013
http://www.emis.de/cgi-bin/MATH-item?867.54005

REGULAR L-FUZZY TOPOLOGICAL SPACES AND THEIR ... 695

[6] Y. M. Liu and M. K. Luo, Separations in lattice-valued induced spaces, Fuzzy Sets and
Systems 36 (1990), no. 1, 55-66. MR 91e:54021. Zbl 703.54004.
[7] M. Macho Stadler and M. A. de Prada Vicente, Strong separation and strong countabil-
ity in fuzzy topological spaces, Fuzzy Sets and Systems 43 (1991), no. 1, 95-116.
MR 92m:54017. Zbl 760.54004.
[8] Y. W. Peng, Topological structure of a fuzzy function space—the pointwise convergent
topology and compact open topology, Kexue Tongbao (English Ed.) 29 (1984), no. 3,
289-292. MR 86g:54014. Zbl 551.54006.
[9] L.Pujate and A. Sostak, On zero-dimensionality in fuzzy topology, Serdica 16 (1990), no. 3-
4, 285-288. MR 91k:54009. Zbl 724.54010.
[10] M. Sarkar, On fuzzy topological spaces, J. Math. Anal. Appl. 79 (1981), no. 2, 384-394.
MR 82h:54005. Zbl 457.54006.
[11]  A.K.Steiner, The lattice of topologies: Structure and complementation, Trans. Amer. Math.
Soc. 122 (1966), 379-398. MR 32#8303. Zbl 139.15905.
[12] G.P. Wang and L. F. Hu, On induced fuzzy topological spaces, J. Math. Anal. Appl. 108
(1985), no. 2, 495-506. MR 86j:54014. Zbl 578.54004.

KUBIAK: WYDZIAL MATEMATYKI I INFORMATYKI, UNIWERSYTET IM. ADAMA MICKIEWICZA,
MATEJKI, 48/49, 60-769 POZNAN, POLAND
E-mail address: tkubiak@math.amu.edu.pl

DE PRADA VICENTE: DEPARTAMENTO DE MATEMATICAS, UNIVERSIDAD DEL PAis VAsco - Eu-
SKAL HERRIKO UNIBERTSITATEA, APDO. 644, 48080 BILBAO, SPAIN
E-mail address: mtpprvia@lg.ehu.es


http://www.ams.org/mathscinet-getitem?mr=91e:54021
http://www.emis.de/cgi-bin/MATH-item?703.54004
http://www.ams.org/mathscinet-getitem?mr=92m:54017
http://www.emis.de/cgi-bin/MATH-item?760.54004
http://www.ams.org/mathscinet-getitem?mr=86g:54014
http://www.emis.de/cgi-bin/MATH-item?551.54006
http://www.ams.org/mathscinet-getitem?mr=91k:54009
http://www.emis.de/cgi-bin/MATH-item?724.54010
http://www.ams.org/mathscinet-getitem?mr=82h:54005
http://www.emis.de/cgi-bin/MATH-item?457.54006
http://www.ams.org/mathscinet-getitem?mr=32:8303
http://www.emis.de/cgi-bin/MATH-item?139.15905
http://www.ams.org/mathscinet-getitem?mr=86j:54014
http://www.emis.de/cgi-bin/MATH-item?578.54004
mailto:tkubiak@math.amu.edu.pl
mailto:mtpprvia@lg.ehu.es

