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Abstract. For L a continuous lattice with its Scott topology, the functor ιL makes every
regular L-topological space into a regular space and so does the functor ωL the other
way around. This has previously been known to hold in the restrictive class of the so-
called weakly induced spaces. The concepts of H-Lindelöfness (á la Hutton compactness)
is introduced and characterized in terms of certain filters. Regular H-Lindelöf spaces are
shown to be normal.
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1. Introduction. The two functors that provide a working link between the category
TOP(L) of L-(fuzzy)-topological spaces and TOP are the Lowen functors ιL and ωL.
For a wide class of lattices L’s, ιL is a right adjoint and left inverse of ωL. Therefore,
it is of interest to know how various L-topological invariants behave with respect to
these functors.
In this paper, we show that when L is a continuous lattice with its Scott topology

then ιL maps the category Reg(L) of L-regular spaces onto the category Reg of regular
spaces. This improves upon and extends a result of Liu and Luo [6] which showed (with
different but equivalent terminology) that ιL maps weakly induced L-regular spaces to
regular spaces (with L a completely distributive lattice with its upper topology). As a
consequence, we have thatωL (Reg) consists precisely of L-regular spaces ofωL(TOP).
Some generalities about L-regular spaces are included and stated in a slightly more
general situation, viz. for L-topologies that admit a certain type of approximating
relation. This captures complete L-regularity and zero-dimensionality.
We also introduce the concept of H-Lindelöfness (compatible with compactness in

the sense of Hutton [2]) and characterize it in terms of closed filters. Finally, we prove
that H-Lindelöf and L-regular spaces are L-normal.

2. Notation and some terminology. All the fuzzy topological concepts that con-
cern us are standard. We nevertheless recall some of them.
Let L = (L, ′) be a complete lattice (bottom denoted 0) endowed with an order-

reversing involution ′. Thus L satisfies the de Morgan laws. For X a set, LX is the
set of all maps from X to L (called L-sets). Then (LX, ′) is a complete lattice under
pointwisely defined ordering and the order-reversing involution. The de Morgan laws

http://ijmms.hindawi.com
http://www.hindawi.com


688 T. KUBIAK AND M. A. DE PRADA VICENTE

are also inherited by LX . An L-topology on X is a family of elements of LX (called open
L-sets) such that any supremum and any finite infimum of open L-sets are open. The
L-topology of an L-topological space (L-ts)X is denoted o(X). Members of κ(X)= {k∈
LX : k′ ∈ o(X)} are called closed. For each a ∈ LX , we let Inta = ∨{u ∈ o(X) : u ≤ a}
and a = (Int(a′))′. If X and Y are two L-ts’s, then f : X → Y is continuous if uf (the
composition of f and u) is in o(X) whenever u∈ o(Y ). The weakest L-topology on X
making f continuous is denoted by f←(o(Y )). We say that S ⊂ LX generates o(X) if
o(X)=⋂{T : S ⊂ T ,an L-topology on X}. If� is a family of L-topologies onX, then the
supremum L-topology

∨
� is generated by

⋃
�. In particular,

∨
j∈J π←j (o(Xj)) is the

product L-topology on
∏

j∈J Xj (πj being the jth projection). The set of all restrictions
{u |A :u∈ o(X)} is the subspace L-topology on A⊂X.
Given α,β ∈ L we let α� β whenever for any B ⊂ L with β ≤ ∨B there is a finite

B0 ⊂ B such that α ≤ ∨B0. Then L is called continuous if α = ∨{β ∈ L : β� α} for
every α ∈ L. We write �α = {β ∈ L : β � α} and dually for �α. Each continuous L
has the interpolation property: α� β implies α� γ � β for some γ ∈ L. The Scott
topology σ(L) on a continuous L is one which has { �α :α∈ L} as a base. We write ΣL
for (L,σ(L)) (see [1] for details).
We also recall that L is a frame provided α∧∨B =∨{α∧β : β ∈ B} for every α ∈ L

and B ⊂ L.
Given a ∈ LX and α ∈ L, we let [a 
 α] = {x ∈ X : a(x) 
 α}, [a � α] = {x ∈

X : a(x) � α}, etc. The constant member of LX with value α is denoted α as well,
and α1A = α∧1A, where 1A is the characteristic function of A ⊂ X. If � ⊂ LX , we let
�′ = {a′ : a∈�}, �= {a : a∈�}, and similarly for Int�. We include for record.

Remark 2.1. Let L be a complete lattice andX a nonempty set. The following state-
ments are equivalent:
(1) L is continuous;
(2) a=∨α∈L α1[a
α] for every a∈ LX ;
(3) [a�α]=⋃β�α[a
 β] for every a∈ LX and α∈ L.

3. L-topologies with approximating relation. Let L = (L, ′) be a complete lattice.
An L-ts X is called L-regular [3] if for every u∈ o(X) there exists �⊂ o(X) such that
u=∨� and v ≤u for all v ∈�. This is the case if and only if u=∨�=∨�.
It is clear that X is L-regular if and only if for every basic open u one has u=∨{v ∈

o(X) : v ≤u}.
To avoid repetitions of some argument used in [5], we introduced an auxiliary rela-

tion ≺ on the L-topology o(X) of an L-ts X.

Definition 3.1. Let ≺ be a binary relation on o(X) satisfying the following condi-
tions for all u,v,w1,w2 ∈ o(X):
(1) 0≺u;
(2) v ≺u implies v ≤u;
(3) w1 ≤ v ≺u≤w2 implies w1 ≺w2;
(4) w1 ≺u and w2 ≺u imply w1∨w2 ≺u;
(5) u≺w1 and u≺w2 imply u≺w1∧w2.
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We say X is ≺-regular if for each open u there exists � ⊂ o(X) such that u = ∨�

and v ≺u for all v ∈�.

Examples. (1) X is L-regular if and only if it is ≺-regular with v ≺ u defined by
v ≤u.
(2) X is completely L-regular [3] if and only if it is ≺-regular, where v ≺u if and only

if v ≤ L′1f ≤ R0f ≤ u for some f ∈ C(X,I(L)); see [5] for details and notice that (4)
and (5) of Definition 3.1 require L to be meet-continuous (cf. Section 5).
(3)X is zero-dimensional if and only if it is≺-regular and v ≺u, whenever v ≤w ≤u

for some closed and open w (cf. [9]).

Proposition 3.2. Let L be a complete lattice and let X be any of ≺-regular spaces
of Example 3. The following hold
(1) If f : Y →X is continuous, then Y is ≺-regular with respect to f←(o(X)).
(2) Every subspace of X is ≺-regular.
If L is a frame, then
(3) u=∨{v : v ≺u} for every subbasic open u∈ LX .
(4) If � is a family of ≺-regular L-topologies on X, then

∨
� is ≺-regular.

(5) ≺-regularity is preserved by arbitrary products.

Proof. The argument given in [5, Remark 2.5 and Lemma 2.3] for the case (2) of
Example 3 goes unchanged in the remaining cases.

Proposition 3.3. Let L be a continuous lattice. For X an L-topological space, the
following are equivalent:
(1) X is ≺-regular.
(2) u=∨{v : v ≺u} for every (basic) open u.
(3) [u
α]=⋃v≺u[v
α] for every (basic) open u and α∈ L.
(4) [u�α]=⋃v≺u[v �α] for every (basic) open u and α∈ L.

Proof. (1) �⇒(2). Obvious.
(2) �⇒(3). Let α� u(x) = ∨{v(x) : v ≺ u}. Select β ∈ L such that α� β� u(x).

There is a finite family � ⊂ o(X) such that β ≤ (
∨

�)(x) and w ≺ u for every w ∈�.
Put v =∨�. Then v ≺ u and α� β ≤ v(x). Thus α� v(x) with v ≺ u. This proves
the nontrivial inclusion of (3).
(3) �⇒(4). If u(x) � α, there is a β such that β� u(x) and β � α. By (3), β� v(x)

for some v ≺u. Then v(x)�α, i.e., [u �≤α]⊂⋃v≺u[v �α]. The reverse inclusion is
obvious.
(4) �⇒(1). Letu≠ 0. Then∆= {(x,β)∈X×L :u(x)� β}≠ $. For every pair (x,β)∈∆

select vxβ ≺ u such that vxβ(x) � β. Clearly,
∨{vxβ : (x,β) ∈ ∆} ≤ u. To show the

converse, assume there exists y ∈X such that

γ =
∨{

vxβ(y) : (x,β)∈∆}�u(y). (3.1)

Then (y,γ)∈∆, hence vyγ(y) �≤ γ. But from (3.1) we have vxβ(y)≤ γ for all (x,β)∈
∆, in particular vyγ(y)≤ γ, a contradiction.
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Remark 3.4. (1) The proof of (4) �⇒(1) is a complete lattice proof. Since there is a
direct and obvious complete lattice argument for (2) �⇒(4), therefore (1)⇐⇒(2)⇐⇒(4)
hold true for any complete lattice L.
(2) With L a complete chain without elements isolated from below (e.g., with L =

[0,1]), conditions (3) and (4) coincide. When expressed in terms of fuzzy points (these
are L-sets of the form α1{x}) and with v ≺u if and only if v ≤u, these conditions be-
come the definitions of fuzzy regularity given by numerous authors, e.g., [10], thereby
showing that all those definitions are equivalent to the one of Hutton-Reilly [3].
(3) For L a frame, the open L-set u in conditions (3) and (4) of Proposition 3.3

can be assumed to be in any family that generates the L-topology (on account of
Proposition 3.2(3)); cf. [8, Lemma 3(iii)].
Now we show that the regularity axiom of Liu and Luo [6] is equivalent to the L-

regularity for any complete L in which primes are order generating. We recall that
p ∈ L is called prime whenever α∧β≤ p implies α≤ p or β≤ p. The set of all primes
is order generating if α = ∧{p ≥ α : p is prime} for every α ∈ L. The dual concept is
that of a coprime element. In our case, i.e., in (L, ′), an element q ∈ L is coprime if and
only if q′ is prime. We have the following.

Remark 3.5. Let L be a complete lattice in which primes are order generating. For
X an L-ts, the following are equivalent:
(1) X is L-regular.
(2) (Liu and Luo [6]) for every x ∈ X, coprime q, and k ∈ κ(X), whenever k(x) � q,

there exists h∈ κ(X) such that h(x)� q and k≤ Inth.
Proof of Remark 3.5(2). Observe that condition (4) of Proposition 3.3 (cf. also

Remark 3.4(1)) can be written as follows (with v ≺ u if and only if v ≤ u) : [u� p]=⋃
v≤u[v � p] for every open u and each prime p. And this is just the dual form of (2).

4. The topological modifications of L-regular spaces. Themain topic of this paper
requires the lattice L to carry a topology such that C(Y ,L) is an L-topology for every
topological space Y . Among examples of such lattices are the continuous lattices with
their Scott topologies.
If L is a continuous lattice, then ΣL is a topological lattice (see [1, Chapter II, Corol-

lary 4.16, Proposition 4.17]). The family [Y ,ΣL] of all continuous functions from a
topological space Y to ΣL is, therefore, closed under finite suprema and finite infima
(both formed in LY ). However, by using the interpolation property of the relation�,
for every α ∈ L and � ⊂ [Y ,ΣL] one has [

∨
�
 α] =⋃{[∨�
 α] : � ⊂� is finite},

an open subset of Y . Thus [Y ,ΣL] is an L-topology on the set Y . For every topological
space Y ,ωΣLY denotes the set Y provided with the L-topology [Y,ΣL]. One then says
that ωΣLY is topologically generated from Y .
Now, for X an L-topological space, let ιΣLX be the topological space with X as the

underlying set and with the weak topology generated by o(X) and ΣL, i.e., ιΣLX has∨{u←(σ(L)) :u∈ o(X)} as a topology. It is called the topological modification of X.
Then ωΣL : TOP→ TOP(L) and ιΣL : TOP(L)→ TOP (with preservation of mappings)

are the Lowen functors (cf. [4, 5]).
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We have o(X)⊂ o(ωΣLιΣLX) and ιΣLωΣL = idTOP. Hence ωΣL is an injection. We also
recall that if Y is a topological space, then χY denotes the set Y endowed with the
L-topology {1U :U open in X}. Clearly, ιΣLχY = Y .
Sometimes it may be more convenient to write (X,ωΣL(T)) for the space topologi-

cally generated from (X,T), and similarly for ιΣL.

Lemma 4.1. Let L be a continuous lattice. For every L-regular space X, ιΣLX is a
regular topological space.

Proof. It suffices to show that every point of an arbitrary subbasic open set of ιΣLY
has an open neighborhood whose closure is in the set (this is Proposition 3.2(3) with
L = {0,1}). So, let u be open in X, α ∈ L, and let x ∈ [u
 α]. By Proposition 3.3(3)
there is an open v in X such that v ≤ u and x ∈ [v 
 α]. Select γ ∈ L such that
α� γ� v(x). Then

x ∈ [v
 γ]⊂ [v ≥ γ]⊂ [u
α]. (4.1)

Now it suffices to note that, by Remark 2.1,

[v ≥ γ]=X\[Int(v′)� γ′]=X\
⋃

β�γ′
[Int(v′)
 β]. (4.2)

Thus [v ≥ γ] is closed, hence ιΣLX is regular.
Now it is more convenient to write (X,T) for an L-ts X with the L-topology T . In [6],

(X,T) is said to be weakly induced if 1[u�α] ∈ T for every u∈ T and α∈ L. Let [T]=
{U ⊂ X : 1U ∈ T}. In what follows, we write “L-regular” on account of Remark 3.5.

Corollary 4.2 [6]. Let L be completely distributive. If (X,T) is a weakly induced
L-regular space, then (X,[T]) is regular.

Proof. First, recall that a completely distributive L is continuous and the sets
{β∈ L : β� α} (α∈ L) form a subbase for its Scott topology (see [1, e.g., Chapter IV,
Exercise 2.31 and Chapter III, Exercise 3.23]). Thus (X,T) is weakly induced if and only
if ιΣL(T)⊂ [T]. Finally, notice that [T]⊂ ιΣL(T) always since [1U 
α]∈ {$,U,X} for
every α∈ L.

Theorem 4.3. Let L be a continuous lattice. Then the following hold:

ιΣL
(
Reg(L)

)= Reg . (4.3)

ωΣL(Reg)= Reg(L)∩wΣL(TOP). (4.4)

Proof. (1) That ιΣL maps Reg(L) into Reg is stated in Lemma 4.1. The mapping is
onto since for any topological regular X,χX is L-regular and ιΣLχX =X.
(2) If X is a regular topological space and u is open in ωΣLX, then for every α ∈ L

there is a family �α of open subsets of X such that

[u
α]=
⋃

�α =
⋃

�α. (4.5)
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By Remark 2.1 and the first equality of (4.5), we obtain

u=
∨

α∈L
α1[u
α] =

∨
α∈L

(
α∧

∨
W∈�α

1W

)

=
∨

α∈L

∨
W∈�α

α1W ≤
∨

α∈L

∨
W∈�α

α1W .
(4.6)

(Note that there is no distributivity used in arriving at the third equality: always α∧∨
B =∨{α∧β : β∈ B} provided B ⊂ {0,1} as is the case above).
Since α1W ≤ α1W , the same argument shows, by using the second equality of (4.5),

that we actually have

u=
∨

α∈L

∨
W∈�α

α1W =
∨

α∈L

∨
W∈�α

α1W . (4.7)

This shows that ωΣLX is L-regular.
Conversely, if ωΣLX is L-regular, then X = ιΣLχX is regular by Lemma 4.1.

Remark 4.4. (1) Let L be a continuous frame (then it becomes completely distribu-
tive on account of the order reversing involution; cf. [1, Chapter I, Theorem 3.15]).
Then the inclusion ωΣL(Reg)⊂ Reg(L) obviously follows from Proposition 3.2(4). In-
deed, for X a regular space, the L-topology ofωΣLX is the supremum of two L-regular
L-topologies: the one of χX and the one consisting of all constant L-sets (cf. [5, Propo-
sition 1.5.1(7)]).
(2) The equality (4.4) of Theorem 4.3 is available in [12] with L= [0,1] and in [6] with

L completely distributive. Theorem 4.3 is also a supplement to the discussion about
regularity in fuzzy topology given in [7].
(3) We recall that an L-ts X is an L-T3 space if and only if it is L-regular and points of

X can be separated by open L-sets. By [5, Remark 8.4], we obtain: ιΣL(L-T3) = T3 and
ωΣL(T3)= L-T3∩ωΣL(TOP).
We close this section with some remarks about maximal L-regular spaces. Following

[11], we say that X is maximal L-regular if the only L-regular L-topology on the set X
which is stronger than the original one is LX (the discrete L-topology).

Proposition 4.5. Let L be a continuous lattice. Every maximal L-regular space with
a nondiscrete topological modification is topologically generated (from a maximal reg-
ular space).

Proof. Let (X,T) be maximal L-regular and let ιΣL(T) be nondiscrete. We have
T ⊂ ωΣL(ιΣL(T)) and the latter L-topology is L-regular by Theorem 4.3. Assume
ωΣL(ιΣL(T))= LX . Then, by acting with ιΣL, we have ιΣL(T)= ιΣL(LX), a discrete topol-
ogy. This contradiction shows that T =ωΣL(ιΣL(T)). Thus (X,T) is topologically gen-
erated from (X,ιΣL(T)). The latter space is maximal regular. For, if ιΣL(T)� S ��(X)
with S regular, then T = ωΣL(ιΣL(T)) � ωΣL(S) � ωΣL(�(X)) = LX . Since ωΣL(S) is
L-regular, this contradicts the maximality of T (recall that ωΣL is injective).

Remark 4.6. From the above proof it is clear that Proposition 4.5 can be stated for
any topological property P and any L-topological property L-P for which there holds
a counterpart of Theorem 4.3. This is, for instance, the case of complete L-regularity
by [5, Theorem 8.5]. See also Remark 4.4(3).
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5. H-Lindelöfness. An L-ts X is called H-Lindelöf if for every k ∈ κ(X), whenever
k≤∨� with �⊂ o(X), there exists a countable subfamily �0 ⊂� such that k≤∨�0.
If �0 is finite, then X is called H-compact [2]. It is clear that H-Lindelöfness is pre-
served under continuous surjections. Also, the characterizations of H-compactness
in terms of certain filters have their counterparts for H-Lindelöf spaces.

Definition 5.1 (cf. [2]). Let �⊂ LX be nonempty and let a∈ LX . We say that:
(1) � has the countable intersection property relative to a if

∧
�0 � a for every

countable �0 ⊂�,
(2) � is a filter if it is closed under finite infima and such that if f ∈� and f ≤ a,

then a∈�. (A filter � is called closed if �⊂ κ(X).)

Theorem 5.2. Let L be a complete lattice and let X be an L-ts. The following are
equivalent:
(1) X is H-Lindelöf.
(2) Every family �⊂ κ(X) with the countable intersection property relative to an open

u satisfies
∧

��u.
(3) Every closed filter � with the countable intersection property relative to an open

u satisfies
∧

��u.

Proof. (1) �⇒(2). Assume ∧�≤u. Then u′ ≤∨�′ and there is a countable 	⊂�′

such that u′ ≤∨	, a contradiction with the countable intersection property of �.
(2) �⇒(3). Obvious.
(3) �⇒(1). Let k ≤ ∨�. Assume that � does not have a countable subfamily which

covers k. Let 〈�′〉 be the closed filter generated by �′, i.e., let

〈�′〉 = {f ∈ κ(X) : ∃ finite 	f ⊂�′ s.t.
∧

	f ≤ f
}
. (5.1)

We claim that 〈�′〉 has the countable intersection property relative to k′. Suppose
that this is not the case. Then for some countable �⊂ 〈�′〉 one has ∧�≤ k′. Thus

k≤
∨

�′ ≤
∨

f∈�

(∧
	f

)′
=
∨
⋃

f∈�

	′f


 (5.2)

and
⋃

f∈� 	′f is a countable subfamily of �, a contradiction with our assumption
about �. Therefore 〈�′〉 has the countable intersection property relative to k′, i.e.,∧〈�′〉� k′. Hence k�

∨〈�′〉′ and since ∨�≤∨〈�′〉′, we conclude that k�
∨

�. This
contradiction completes the proof.

Remark 5.3. There is no counterpart of Theorem 4.3 for H-Lindelöfness and Lin-
delöfness:
(1) The set X = L= [0,1] (with α′ = 1−α) equipped with the L-topology [0,1/4]X∪
{1X} is H-Lindelöf (as each open cover of a nonzero closed L-set must contain 1X ),
while ιΣLX is an uncountable discrete space.
(2) An L-ts topologically generated from a Lindelöf space need not be H-Lindelöf.

Indeed, let X be an uncountable Lindelöf topological space. Put L = �(X) with usual
complement as its order-reversing involution (note that �(X) is a continuous lattice).
Then the cover of 1X consisting of all constant L-sets having values {x} with x ∈ X
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(these are all open inωΣLX) does not have a countable subcover. ThereforeωΣLX fails
to be H-Lindelöf.
(3) However, if ωΣLX is H-Lindelöf, then X is Lindelöf. Indeed, χX carries a weaker

L-topology than ωΣLX, so that χX is H-Lindelöf, and the latter is equivalent to the
statement that X is a Lindelöf space.
(4) All the above discussion applies unchanged to the case of H-compactness and

compactness.
It is clear that for any complete L, every H-compact and L-regular space X is L-

normal, i.e., whenever k ≤ u (k is closed and u is open), there exists an open v with
k ≤ v ≤ v ≤ u [3]. In what follows we show that H-compactness can be replaced by
H-Lindelöfness provided L is meet-continuous, i.e., for every α∈ L and every directed
subset 
⊂ L there holds: α∧∨
=∨{α∧δ : δ∈
}. We recall that every continuous
L is meet-continuous [1]. Also, on account of the order-reversing involution, the dual
law is valid too.

Theorem 5.4. Let L be a meet-continuous lattice. Then every L-regular and H-
Lindelöf space is L-normal.

Proof. Let k be closed, u be open, and k ≤ u in an L-regular H-Lindelöf space
X. By L-regularity there exist � ⊂ o(X) and � ⊂ κ(X) such that u = ∨� = ∨� and
k = ∧� = ∧ Int� (the latter on account of the de Morgan laws). By H-Lindelöfness,
there exist two countable subfamilies �0 ⊂ � and �0 ⊂ � such that k ≤ ∨�0 and
(again by the de Morgan laws)

∧
�0 ≤u. Thus

k≤
∨

�0 ≤
∨

�0 and k≤
∧
Int�0 ≤

∧
�0 ≤u. (5.3)

The rest of the proof is exactly the same as that of [5, Theorem 9.11] which shows
that second countability plus L-regularity implies L-normality. Note that the proof in
[5] uses a result holding for L a meet-continuous lattice.

Remark 5.5. By [5, Lemma 3.7], every second countable L-ts is H-Lindelöf for any
complete L. Therefore Theorem 5.4 extends [5, Theorem 9.11].
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