Internat. J. Math. & Math. Sci.
Vol. 23,No. 11 (2000) 741-752
S0161171200002088
© Hindawi Publishing Corp.

STATISTICAL LIMIT POINT THEOREMS

JEFF ZEAGER

(Received 4 August 1998)

ABSTRACT. It is known that given a regular matrix A and a bounded sequence x there is
a subsequence (respectively, rearrangement, stretching) y of x such that the set of limit
points of Ay includes the set of limit points of x. Using the notion of a statistical limit
point, we establish statistical convergence analogues to these results by proving that every
complex number sequence x has a subsequence (respectively, rearrangement, stretching)
7 such that every limit point of x is a statistical limit point of . We then extend our re-
sults to the more general A-statistical convergence, in which A is an arbitrary nonnegative
matrix.
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1. Introduction. In [2, 3] Buck characterized convergence by proving that if x is
a nonconvergent sequence, then no regular matrix can sum every subsequence of x.
This result was extended by Agnew [1] who showed that given a regular matrix A and
a bounded sequence X, there is a subsequence 7y of x such that the set of limit points
of Ay includes the set of limit points of x. Analogues to these results were given
by Dawson [6] and Fridy [9] by replacing subsequence with stretching and rearrange-
ment, respectively. In [17], statistical convergence analogues and A-statistical conver-
gence analogues to Buck’s theorem and its variants are given. Now we generalize the
constructions in [17], providing statistical convergence analogues and A-statistical
convergence analogues to Agnew’s theorem and its variants.

If K is a subset of the natural numbers N, let K;, denote the set {k <n:k € K} and
|K, | denote the cardinality of K;,. The natural or asymptotic density of K (see [13,
Chapter 11]) is given by 6 (K) = lim,, (1/n)|K,, |, if the limit exists. A complex number
sequence Xx is said to be statistically convergent to L if for every positive &,

S({k:|xx—L|=¢€})=0. (1.1)

In this case, we write st-limx = L. This notion was first introduced by Fast [7] for real
sequences and has since been studied as a regular summability method by several
authors (cf. [5, 10, 14]). Using natural density, Fridy [11] defined an analogue to the
notion of a limit point of a sequence x. A subsequence v = {x}k of x is said to be non-
thin if K does not have natural density zero, and the number A is said to be a statistical
limit point of x if there exists a nonthin subsequence of x that converges to A.
Natural density was generalized by Freedman and Sember [8] by replacing C; with an
arbitrary nonnegative regular matrix A. Thus, if K is a subset of N, then the A-density
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of K is given by

64(K) =lim > ank (1.2)
"~ kek

if the limit exists. This notion was used by Kolk in [12] to extend statistical convergence
as follows. A complex number sequence x is said to be A-statistically convergent to L
if, for every positive ¢,

Sa({k:|xx—L|=¢€})=0. (1.3)

In this case, we write st4-limx = L. Connor and Kline [4] replaced natural density with
A-density in Fridy’s definition of a statistical limit point. So a subsequence v = {x}k of
the sequence x is called A-nonthin if K does not have A-density zero and the number
A is called an A-statistical limit point of x if there is an A-nonthin subsequence of x
that converges to A.

Before we can state our main results, we must give the following two definitions.

DEFINITION 1.1. A sequence z is called a rearrangement of the sequence x pro-
vided that there is a bijection 77 : N — N such that for each k, zx = X ()-

REMARK 1.2. The word “permutation” is reserved for the reordering of a finite
sequence.

DEFINITION 1.3 (Dawson [6]). Let {m(p)};,":() be an increasing sequence of integers
such that m(0) = 1. We call the sequence w the stretching of x induced by {m(p)}
provided w, = x,, whenever m(p —1) <gq <m(p).

REMARK 1.4. The sequence w has also been called a dilution of x by Sledd [15].

2. Statistical limit point theorems. In|[1] Agnew proved that, given a regular matrix
A and a bounded sequence x, there is a subsequence y of x such that the set of limit
points of Ay includes the set of limit points of x. If x is bounded but divergent, it
has at least two distinct limit points and, so, Ay also has at least those same two
limit points. Therefore y is not A-summable and Buck’s theorem [2, 3] (for bounded
sequences) follows from Agnew’s theorem.

Itis shownin [10, Theorem 1] that a sequence x is statistically convergent if and only
if x is a sequence for which there exists a convergent sequence 7y such that xy = yi
for almost all k, that is, for every k in a set K with §(K) = 1. This implies that if x
is statistically convergent to A then the set of statistical limit points is the singleton
set {A}. In the bounded cases of [16, Theorems 2.1, respectively 2.2, 2.3], we created a
subsequence (respectively, rearrangement, stretching) that had two distinct statistical
limit points and was therefore not statistically convergent. In this section, we general-
ize those constructions in much the same way that Agnew’s work generalized Buck’s
theorem. We begin with the following lemma.

LEMMA 2.1. Ifx is a complex number sequence with a countably infinite set of (finite)
limit points D = {?\j}j"zl, then there is a subsequence y of x such that every Aj in D is
a statistical limit point of y.



STATISTICAL LIMIT POINT THEOREMS 743

PROOF. For every A; in D, there is a subsequence {x}gj of x such that {x}kj
converges to Aj. We construct y by choosing blocks of terms from the sets {x}kj
in the following manner. The first block is chosen from {x}k ). The second block is
selected from {x}k() and the third block comes from {x}k(). In general, the index
of the set from which a block is selected follows the pattern 1,1,2,1,2,3,1,2,3,4,....
The blocks are chosen so that the length of each block (after the initial one) is equal
to the number of terms of y which precede it. We begin by selecting the first block
{1} (a single term) to be the first term of {x}k(). Then we choose the second block
{32} to be the second term of {x}k (). The third block consists of two terms, {y3, a4},
and is chosen from {x}(2) so as to have the index of the x; taken for y; larger than
the indices used for y, and y», and to have y, be any term in {x}k() after x;. For
example, if the first two terms of {x} k(1) are x12 and x30, we must choose for y3 and
¥4 terms x;j and x in {x}k(2) such that j = 31 and k > j. Otherwise, y would not be
a subsequence of x because the original order of the chosen terms would not have
been preserved. The fourth block of terms, {ys,..., s} is chosen from {x} 1) so that
the indices of the terms used are larger than those of any previously chosen x;’s. The
fifth block, {yy9,...,»16} and the sixth block of terms, {y17,...,¥32}, are chosen from
{x}k@) and {x}k(3), respectively, with each term’s index being larger than the indices
of all of the x;’s which precede it. Having selected the nth block of terms from {x}k ),
that is, having constructed {y1,...,y4} with g = 2"-1 we choose the (1 + 1)st block
of terms {y4+1,..., Y24} from the set {x}), where

v

o, if n= >t for some r in N,
1= t=1 (21)

s+1, otherwise.

Here again, we must have each chosen term’s index larger than the indices of all of
the previously selected x;’s. This construction of y = {xy )} guarantees that {n(k)}
is a strictly increasing sequence of indices; so y is, indeed, a subsequence of x. We
now must show that each A; in D is a statistical limit point of y. Consider a fixed
but arbitrary j in N. By selecting the blocks of terms as above, we have ensured that
infinitely many blocks are chosen from {x};). By concatenating these blocks in the
order in which they appear in ), we get a subsequence w of y which converges to A;.
This makes A; a limit point of y. To see that A; is a statistical limit point of y, we show
that w is a nonthin subsequence of y. Notice that by the construction of y, whenever
n = 2 the length of the nth block of terms {y;+1,...,)24} is the same as the portion
of y which precedes it, namely, {y1,...,»4}. So, for any block of terms chosen from
{x}k(j with ending term y,4, we have

(2.2)

N —

%Hksd:ykE{X}KU)H =

Therefore 6({k: yx € {x}k(j}) # 0, and so w is a nonthin subsequence of y. O

We can now state and prove the statistical convergence analogue to Agnew’s original
matrix result in [1].
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THEOREM 2.2. If x is a complex number sequence and Ly is the set of (finite) limit
points of x, then there is a subsequence 'y of x such that every A in Ly is a statistical
limit point of y.

PROOF. If L, is a finite set, say Ly = {e1,...,en}, let D be the countably infinite
sequence {ej,...,en,e1,...,n,...}. If Ly is infinite, we use the separability of complex
plane to find a countably infinite subset D of L, such that the closure D of D is L. In
either case, let y be the subsequence of x created in the proof of Lemma 2.1 using D.
We only need to prove the result for the case when L, is uncountable. Let Ay be a
fixed but arbitrary element of Ly. Because D = Ly, there is a sequence {A;, Yoo, inD
that converges to Ag. By the construction of 7y, there are, whenever i > 1, infinitely
many blocks of terms of y from {x} ki) - Also, since each {x} k(i) is a subsequence
of x which converges to A,(), there are, for any positive number ¢, infinitely many
blocks of terms in y such that |y; —An)| < €/2 for every y; in each block. Moreover,
since lim; A, 5y = Ao, we can find, for any positive ¢, an np in N such that whenever
i > no,|Ani) — Aol < €/2. Therefore, given a positive &, we can find infinitely many
blocks of terms of y such that |y; —Ag| < & for every y; in each block. This then allows
us to construct a nonthin subsequence w of y which converges to Ag. We choose as
our first block of w any block of y such that |y; —Ag| < 1 for all y; in the block. We
then choose the second block of w to be any block of y with |y; —A¢| < 1/2forall y;in
the block and whose terms have indices larger than those of the first block. (We must
concatenate the selected blocks in the order in which they appear in y, otherwise, w is
not a subsequence of y.) Having chosen the first n — 1 blocks of w, we choose the nth
block of w to be any block of y, beyond those already chosen, with |y; — Aol <1/n
for all ; in the block. Clearly, w is a subsequence of y with lim, w,; = A¢. To see that
w is a nonthin subsequence of y, recall from the construction of y in the proof of
Lemma 2.1, that the length of any block of 7y is the same as the length of the portion
of y which precedes it. Let J be the index set of w so that w = {y};. If we consider
any block chosen in the construction of w (say, with ending term y,), then

Diksd:ye )l = 1 2.3)
Therefore, 6(J) + 0 and w is a nonthin subsequence of y. O

We now show that a sequence x has a rearrangement z such that every limit point
of x is a statistical limit point of z. The construction of z is similar in nature to the
construction of y in the proof of Lemma 2.1, the major difference being that with a
rearrangement, we must use every term of x exactly once. As was the case in the proof
of Theorem 2.2, a lemma for the countable case is used in the proof of the general
result.

LEMMA 2.3. Ifx is a complex number sequence with a countably infinite set of (finite)

limit points D = {A; 1 then there is a rearrangement z of x such that every A; in D
is a statistical limit point of z.

PROOEF. For every A; in D, there is a subsequence {x}g;) of x such that {x}k(;
converges to Aj. We construct z in a fashion similar to the construction of the subse-
quence Yy in the proof of Lemma 2.1. We choose blocks of terms from the sets {x} k)
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with the index i following this pattern: 1,1,2,1,2,3,1,2,3,4,.... Each block is chosen
so its length is the same as that of the portion of z which precedes it. In between
the ith and (i + 1)st chosen blocks, we must use the terms of x that were skipped
over while selecting the ith block. We begin by choosing the first block {z;} to be any
term xy (1) of {x}k(1), where n(1) = 2. We then let {z;,...,z,1)} be any permutation
of the unused terms {xi,...,Xn(1)-1}. The second block of terms {z;1)+1,---,22n(1)}
is selected from {x}xa)\{x1,...,Xn1)}, Where x;,2) has the largest index of the cho-
sen terms. Then let {Zzn(1)+1,...,Zn2)} be any permutation of the terms x;j, where
n(l)+1 < j <n(2) -1, that were not selected for the second block. We pick the third
block of terms {zn2)+1,-.-,Z2n@2)} from {x}xe)\{x1,...,Xn@)} with n(3) being the
largest index of the selected x;’s. Let {Z2n(2)+1,-..,2Zn(3)} be any permutation of the
unused x;’s between xy(2)+1 and xn3)-1. Once {z1,...,Znk) } has been constructed,
with the kth block of terms coming from {x}ks), we select the (k+1)st block of terms
{Zn(k)+1 yeey Z22n(k) } from {X}K(i) \ {Xl, <y Xn(k) }, where

,
|, if k= >t for some 7 in N,
i= & (2.4)

s+1, otherwise.

Let n(k+1) be the largest index of the selected terms x;, and let {Zonk)+1,---) Zn(k+1)}
be any permutation of the unused terms x; between Xy k)+1 and X k+1)-1-

By the construction, {z1,...,zx )} is a permutation of {x1,...,Xnk) } whenever k > 1.
Thus z is indeed a rearrangement of x. We now must show that each A; in D is a sta-
tistical limit point of z. Consider a fixed but arbitrary j in N. In constructing z as
above, we have ensured that infinitely many blocks are chosen from {x}g;). By con-
catenating these blocks in the order in which they appear in z, we get a subsequence
v of z which converges to A;. Notice that by the construction of z, whenever i > 2, the
length of the ith block of terms is n(i—1); which is precisely the length of the portion
of z which precedes the ith block. So for any block of terms chosen from {x}; with
ending term z4, we have

1
[{k <d:zx € {x}kp}] z 5. (2.5)

S

Therefore, 6 ({k : zx € {x}k(j}) # 0, so y is a nonthin subsequence of z converging
to Aj. Thus A; is a statistical limit point of z. O

The following theorem is a statistical convergence analogue to Fridy’s rearrangement
version of Agnew’s matrix result. (See [9, Theorem 3].)

THEOREM 2.4. Let x be a complex number sequence and let L be the set of (finite)
limit points of x, then there is a rearrangement z of x such that every A in Ly is a
statistical limit point of z.

PROOF. If L, is a finite set, say, Ly = {ej,...,en}, let D be the countably infi-
nite sequence {ey,...,ey,€1,...,€n,...}. If Ly is infinite, we use the separability of the
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complex plane to find a countably infinite subset D of L, such that the closure D of D
is L. In either case, let z be the rearrangement of x created in the proof of Lemma 2.3
using D. We only need to prove the result for the case when L, is uncountable. Let A(
be a fixed but arbitrary element of L,. Using observations similar to those made in the
proof of Theorem 2.2, we can find, for any positive number &, infinitely many blocks
of terms of z such that |z — Ag| < € for every zi in each block. This then allows us to
create a subsequence y of z by concatenating blocks of z, in the order in which they
appear, where |zy —Ag| < 1/n for all z in the nth block of y. Clearly, v converges to
Ao. To show that Ag is a statistical limit point of z, we need to show that y is a nonthin
subsequence of z. We recall from the construction of z in Lemma 2.3, that the length
of any block in z is equal to that of the portion of z which precedes it. Let J be the
index set of y so that v = {z},. If we consider any block chosen in the construction
of y (say, with ending term z;), then

%Hksd:zke{z}J}\z%. (2.6)

Therefore, 6(J) + 0 and y is a nonthin subsequence of z. Thus Ay is a statistical limit
point of z. 0

To end this section, we give a result concerning stretching that is analogous to
Theorems 2.2 and 2.4. However, before we can state and prove the result, we need to
establish more notation. Let x = {x,,} be a complex number sequence, let {x;, )} be
a subsequence of x, and let w be the stretching of x induced {m(p)};’;:(). Let

M= O {mnk)-1),...,m(n(k)) -1}. (2.7)
k=1

DEFINITION 2.5. The subsequence y[x,k) ] = {w}y of w is called the subsequence
corresponding to {xnk)} in w.

Notice that wg = x» k) whenever m(n(k)—1) < g <m(n(k)). Thus if limg x, ) = L,
then limy v [xn k)] = L.

EXAMPLE 2.6. Consider the sequence x = 1,2,3,4,.... The stretching w of x given
by w =1,1,1,2,3,3,4,4,4,4,... is induced by the sequence m = 1,4,5,7,11,...; that
is, m(0) =1, m(1) =4, m(2) =5, and so on. Let xp ) = 1,4,9,... be the subsequence
of x consisting of the squares, i.e., x, k) = k?. Using the notation from Definition 2.5
above, y[xni1=11,1,1,4,4,4,4,...} = {w}y, where

M=1{1,2,3}u{7,8,9,10}U---. (2.8)

LEMMA 2.7. If x is a complex number sequence, then {2”};’;0 induces a stretching
w of x in which for any subsequence {x, )} of x, ¥[Xnk) ] is a nonthin subsequence
of w.

PROOF. Let {x, } be any subsequence of x and let

M= fanto-1 L 2nto 1} (2.9)
k=1
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Whenever k > 1,

1 1
g 1422 —Lra e M} = 5 Ha =< 2" 1w =
on(k) _1 _onk)-14q on(k)-1 1 (2.10)
h on(k) — 1 = on(k) — 1 > 2"
Thus 6(M) # 0 and hence ¥ [xn«) ] = {w}y is a nonthin subsequence of w. O

Here then is the statistical convergence analogue to Dawson’s stretching version of
Agnew’s theorem. (See [6, Theorem 3].)

THEOREM 2.8. Ifx is a complex number sequence, then {2”};’,":0 induces a stretching
w of x in which every (finite) limit point of x is a statistical limit point.

PROOF. Let A be a (finite) limit point of x, and let w be the stretching of x in-
duced by {2”};":0. Then there is a subsequence {x,k)} of x that converges to A. By
Lemma 2.7, ¥[Xxnk) ] is a nonthin subsequence of w which converges to A. Thus A is
a statistical limit point of w. O

It should be noted that {27} is independent of x, that is, given any sequence x, the
stretching w induced by {27} has the desired statistical limit points. However, the
constructions of a subsequence y and rearrangement z with the appropriate statistical
limit points depended on the given sequence x.

3. A-statistical limit point theorems. In [12, Theorem 2.3], it is shown that for a
nonnegative regular matrix A, a sequence x is A-statistically convergent to A if and
only if there is an infinite index set K with §4(K) = 1 such that {x}x converges to
A. This then implies that if x is A-statistically convergent to A, then A is the only
A-statistical limit point of x. Now, we generalize the constructions given in [17, The-
orem 2, 4, 6] to give A-statistical convergence analogues to Agnew’s theorem [1] and
its analogues for rearrangements [9, Theorem 3] and stretchings [6, Theorem 3]. We
begin by proving the following lemma.

LEMMA 3.1. Let x be a complex number sequence with a countably infinite set of
(finite) limit points D = {Aj}j":]. Given a nonnegative regular matrix A, there exists a
subsequence y of x such that every A; in D is an A-statistical limit point of y.

PROOF. Throughout the proof, A is a fixed but arbitrary nonnegative regular ma-
trix. For every A; in D there is a subsequence {x}y ;) of x such that {x} ;) converges
to Aj. Using this countable collection of sets, we construct the subsequence y in a
manner very similar to the construction found in the proof of Lemma 2.1. Blocks of
terms for y are chosen from the sets {x}u; with the index j following this pattern:
1,1,2,1,2,3,1,2,3,4,.... Using the regularity of A, we select two strictly increasing
sequence of indices {n(i)};>, and {k(i)};>, such that k(0) =0 and

k(i+1) 1
> angisnk > 5 foralli=0,1,2,.... (3.1)
k=1-+k(i)
With these indices, we construct the subsequence y as follows. Let {y1,...,Yk1)}
be the first k(1) terms of {x}a() taken in the order in which they appear in x.
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Let {¥1+k(1),---» Vk(2)} be the next k(2) — k(1) terms of {x}y(1), taken in order. Select
{V1+k@2),---»Vk3)} as the first k(3) —k(2) terms of {x}uy(2), taken in order, whose in-
dices are larger than that of the x, chosen as Y (). The next three blocks {y1+x3),
e Yk@ h AY14k@), - Y5} and {Y14k6)5-- -5 Vi) } are chosen from {x} a1y, {X}Im2)
and {x}nm3), respectively, with each term’s index being larger than the indices of all
of the x;’s which precede it.

Having selected the mth block of terms {¥1+k(m-1),--+» Yk} from {x} ), we then
choose the (m + 1)st block of terms {y11k@m)s---» Vkm+1)} from {x} ), where

,
|, if k= >t for some 7 in N,
i— & (3.2)

s+1, otherwise.

Here again, we must have the index of each chosen term larger than the indices of
all of the previously selected x;’s so that ) is a subsequence of x. We must show
that each A; in D is an A-statistical limit point of ). Consider a fixed but arbitrary j
in N. By selecting the blocks of terms as above, we have ensured that infinitely many
blocks are chosen from {x}y¢;). By concatenating these blocks in the order in which
they appear in y, we get a subsequence z of y which converges to Aj. Thus A; is a
limit point of y. To see that A; is an A-statistical limit point of y, we show that z is an
A-nonthin subsequence of y. Let K = {k: yx € {x}um(j}. Notice that by the selection
of {n(i)} and {k(i)} and by the construction of v, for indices n(d), where yy(4) is the
last term of a block chosen from {x}u;), we have

k(d) 1
Dan@kz D Anidk> - (3.3)
kek k=1+k(d-1)

Thus for infinitely many indices n we have > ;cx anx > 1/2. Therefore 64 (K) # 0, and
so z is an A-nonthin subsequence of y. O

We now state and prove the A-statistical convergence analogue to Agnew’s theo-
rem [1].

THEOREM 3.2. Let x be a complex number sequence and let L be the set of (finite)
limit points of x. Given a nonnegative regular matrix A, there exists a subsequence 'y
of x such that every A in Ly is an A-statistical limit point of 7.

PROOF. If L, is a finite set, say Ly = {e1,...,en}, let D be the countably infinite
sequence {eq,...,en,e1,...,n,...}. If Ly is infinite, we use the separability of the com-
plex plane to find a countably infinite subset D of L, such that the closure D of D is
L,. In either case, let v be the subsequence of x created in the proof of Lemma 3.1
using D. We need only prove the result for the case when L, is uncountable. Con-
sider an arbitrary but fixed A in L. Using observations similar to those made in the
proof of Theorem 2.2, we can find, for any positive number ¢, infinitely many blocks
of terms of y such that | yx —Ag| < € for every yy in each block. This then allows us to
create a subsequence z of y by concatenating blocks of y, in the order in which they
appear, where |yy — Aol < 1/n for all y; in the nth block of z. Clearly, z converges
to Ag.To show that A is an A-statistical limit point of y, we need to show that z is an
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A-nonthin subsequence of y. Let J be the index set of z so that z = {y};. For indices
n(d), where yiq) is the last term of a block chosen for z, we have

k(d) 1
Danakz Y. An@k > > (3.4)
keJ k=1+k(d-1)

Thus for infinitely many indices n, we have > c;anx > 1/2. Therefore

Sa()) =0a({k:yke{x}y}) #0, (3.5)
and so z is an A-nonthin subsequence of y. O

Our next goal is to show that, given a fixed nonnegative regular matrix A, a sequence
x has a rearrangement z such that every limit point of x is an A-statistical limit point
of z. Here again, the construction of the rearrangement z is similar in nature to the
construction of the subsequence y above, the major difference being that with a re-
arrangement, we must use every term of x exactly once. We first prove the following
lemma which is used in the proof of the general result.

LEMMA 3.3. Let x be a complex number sequence with a countably infinite set of
(finite) limit points D = {Aj}571- Given a nonnegative regular matrix A, there exists a
rearrangement z of x such that every Aj in D is an A-statistical limit point of z.

PROOF. Throughout the proof, A is a fixed but arbitrary nonnegative regular ma-
trix. For every A; in D there is a subsequence {x} ;) of x such that {x} ;) converges
to Aj. We construct z by choosing blocks of terms from the sets {x}y; with the in-
dex j following this pattern: 1,1,2,1,2,3,1,2,3,4,.... In between the ith and (i+1)st
chosen blocks, we must use the terms of x that were skipped over while selecting the
ith block. Let J(1) = 1. Choose N(1) and then K(1) such that K(1) > J(1) and

K(1) 1
z ana),k > E (3.6)

k=J(1)
Select {zja),...,2k(1)} as any permutation of the first K(1) terms of {x}y). Let m

be the largest index of the terms xy chosen from {x} 1) for the block and set J(2) =
m + 1. Notice that J(2) > K(2). Next, let {zx1)+1,.--,2J(2)-1} be any permutation of
the unused terms x;, where J(1) < j < J(2) —1. Select N(2) and then K (2) such that
N(2)>N(1),K(2) > J(2) and

K(2) 1
> anek > > (3.7)

k=J(2)
Choose {z;@),...,zx(2)} as any permutation of the first K(2) — J(2) + 1 terms of

{xpma)}\{x1,...,X502)-1}. Let m be the largest index of the terms chosen from {x} 1)
thus far and set J(3) = m + 1. Select {zx(2)+1,---,25(3)-1} as any permutation of the
unused terms x;, where J(2) < j < J(3) — 1. Choose N(3) and then K(3) such that
N(3)>N(2),K(3)>J(3) and

K(3)

1
z an@3),k > E (3.8)
k=J(3)
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Let {z;3),..-,2k3)} be a permutation of the first K(3) — J(3) + 1 terms of
{xme)}\{x1,...,X53)-1}. Let m be the largest index of the terms xj chosen from
{x}m() for the block and set j(4) = m + 1. Choose {zk3)+1,---,2j4)-1} t0 be any
permutation of the unused terms x;, where J(3) < j < J(4)-1.

Having constructed {zi,...,zjm)-1}, with the (n —1)st block {zjn-1),---,ZKkn-1)}
coming from {x}uy(), and thus having chosen indices {N(p)};‘;{, {J(;z))};,‘:1 and
{K(p)}p_1 such that

N(1)<N2)<---<N(mn-1),

3.9
J() <K1) <J2)<---<Jn-1)<Kn-1) < J(n), (-9
choose N(n) and then K(n) such that N(n) > N(n-1), K(n) > J(n) and
K(n) 1
z AN (n),k > E (3.10)
k=J(n)
The nth block of terms {zju),...,zxm)} is chosen as any permutation of the first
K(n)—-J(n)+1 terms of {xpm@)}\{x1,...,X7m)-1}, where
v
1, ifk:ztforsomerinN,
i= i3 3.11)

s+1, otherwise.

Let m be the largest index of the terms xy chosen from {xy(;)} for the block and set
J(m+1) =m+1. Select the block of terms {zgm)+1,---,Zjm+1)-1} a$ any permutation
of the unused terms xj, where J(n) < j<J(n+1)-1.

By the construction, {zi,...,Z;m)-1} is a permutation of {xi,...,X;xu)-1} whenever
n = 1. Thus z is indeed a rearrangement of x. We now must show that each A in D is
an A-statistical limit point of z. Consider a fixed but arbitrary j in N. In constructing z
as above, we have ensured that infinitely many blocks are chosen from {x} ;). By con-
catenating these blocks in the order in which they appear in z, we get a subsequence
v of z which converges to A;. Thus A; is a limit point of z. Let K = {k: zx € {x}m(j)}-
Notice that by the selection of {N(p)};_,,{J(p)},-; and {K(p)},_; and by the con-
struction of z, that for indices N(d), J(d) and K(d), where {z}),...,Zk@)} is a block
of z chosen from {x}j), we have

K(d) 1
Z AaAN(d),k = Z aN(d)k > > (3.12)
kek k=J(d)

Thus for infinitely many indices n, we have > cx an i > 1/2. Therefore d 4 (K) + 0, and
so y is an A-nonthin subsequence of z and A; is an A-statistical limit point of z. O

We now can state and prove the A-statistical convergence analogue to Fridy’s re-
arrangement version of Agnew’s theorem. (See [9, Theorem 3].)

THEOREM 3.4. Let x be a complex number sequence and let L, be the set of (finite)
limit points of x. Given a nonnegative regular matrix A, there exists a rearrangement
z of x such that every A in Ly is an A-statistical limit point of z.
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PROOF. If L, is a finite set, say Ly = {e1,...,e,}, let D be the countably infinite se-
quence {eq,...,en,€1,...,en,... ;. If Ly is infinite, we use the separability of the complex
plane to find a countably infinite subset D of L, such that the closure D of D is L.
In either case, let z be the rearrangement of x created in the proof of Lemma 3.3
using D. We only need to prove the result for the case when L, is uncountable. Con-
sider an arbitrary but fixed A in L. Using observations similar to those made in the
proof of Theorem 2.2, we can find, for any positive number ¢, infinitely many blocks
of terms of z such that |z — Ag| < € for every zi in each block. This then allows us to
create a subsequence y of z by concatenating blocks of z, in the order in which they
appear, where |z —Ag| < 1/n for all z; in the nth block of y. Clearly, v converges
to Ag. To show that A is an A-statistical limit point of z, we need to show that y is
an A-nonthin subsequence of z. Let K be the index set of v so that y = {z}k. If we

consider any block chosen in the construction of y, say {zj),---,Zk @)}, then
K(d) 1
z AN(d),k = Z aAN(d),k > 5 (3.13)
kek k=J(d)

Thus for infinitely many indices n, we have > cx anx > 1/2. Therefore
0a(K) =0a({k:zr € {z}k}) #0, (3.14)

and so y is an A-nonthin subsequence of z. O

To finish the section, we give an A-statistical convergence analogue to Dawson’s
stretching version of Agnew’s theorem. (See [6, Theorem 3].)

THEOREM 3.5. Let x be a complex number sequence and let Ly be the set of (finite)
limit points of x. Given a nonnegative regular matrix A, there exists a stretching w of
x such that every A in Ly is an A-statistical limit point of w.

PROOF. Using the regularity of A, we choose strictly increasing sequences of in-
dices {"m(p)};’j:0 and {N(p)};’j:l such that m(0) =1 and

m(p)-1 1
> ANk > 5 (3.15)
m(p-1)

whenever p > 1. Let w be the stretching induced by {m(p)};_,. Given a fixed but
arbitrary element Ag of Ly, there is subsequence {xyj };‘;1 of x that converges to Ag.
Let

M={J{mmnG) -1),...mn3))-1}. (3.16)
j=1

(See Example 2.6 as an example of this notation.) The subsequence {w}y of w con-
verges to Ag because w,; = xy(j), whenever m(n(j)—1) < q <m(n(j)), so Ag is a limit
point of w. To show that A is an A-statistical limit point of w, we need to show that
{w}py is A-nonthin in w. Notice that whenever j > 1,



752 JEFF ZEAGER

m(n(j))-1

1
Z aANn(j)k = Z an ).k > 5 (3.17)
keM k=mn(j)-1)
Hence 64 (M) + 0 and thus {w} is an A-nonthin subsequence of w. O
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