COMPLETE CONVERGENCE FOR SUMS OF ARRAYS OF RANDOM ELEMENTS

SOO HAK SUNG

(Received 13 October 1997)

ABSTRACT. Let $\{X_{ni}\}$ be an array of rowwise independent B-valued random elements and $\{a_n\}$ constants such that $0 < a_n \uparrow \infty$. Under some moment conditions for the array, it is shown that $\sum_{i=1}^n X_{ni}/a_n$ converges to 0 completely if and only if $\sum_{i=1}^n X_{ni}/a_n$ converges to 0 in probability.

Keywords and phrases. Complete convergence, random elements, Banach space, rowwise independent.

2000 Mathematics Subject Classification. Primary 60B12, 60F15.

1. Introduction. Let (B, ||||) be a real separable Banach space. A separable Banach space B is said to be of type r, $1 \le r \le 2$, if there exists a constants C_r such that

$$E\left\| \sum_{i=1}^{n} X_{i} \right\|^{r} \le C_{r} \sum_{i=1}^{n} E\left\| X_{i} \right\|^{r}$$
(1.1)

for all independent *B*-valued random elements $X_1, ..., X_n$ with mean zero and finite rth moments.

A sequence $\{X_n, n \ge 1\}$ of *B*-valued random elements is said to converge completely to zero if for each $\epsilon > 0$,

$$\sum_{n=1}^{\infty} P(||X_n|| > \epsilon) < \infty. \tag{1.2}$$

Note that complete convergence implies almost surely by the Borel-Cantelli lemma.

Now let $\{X_n, n \ge 1\}$ be a sequence of independent random variables. Let $\psi(t)$ be a positive, even and continuous function such that

$$\frac{\psi(|t|)}{|t|} \uparrow \text{ and } \frac{\psi(|t|)}{|t|^2} \downarrow \text{ as } |t| \uparrow.$$
 (1.3)

Chung [3] strong law of large numbers (SLLN) states that if

$$EX_n = 0$$
 for $n \ge 1$,
$$\sum_{n=1}^{\infty} \frac{E\psi(|X_n|)}{\psi(n)} < \infty$$
 (1.4)

then

$$\frac{\sum_{i=1}^{n} X_i}{n} \to 0 \text{ almost surely.}$$
 (1.5)

Recently, Hu and Taylor [6] proved Chung type SLLN for arrays of rowwise independent random variables. More specifically, let $\{X_{ni},\ 1 \le i \le n,\ n \ge 1\}$ be an array of rowwise independent random variables and let $\{a_n,\ n \ge 1\}$ be a sequence of real numbers with $0 < a_n \uparrow \infty$. Let $\psi(t)$ be a positive, even and continuous function such that

$$\frac{\psi(|t|)}{|t|^p} \uparrow \text{ and } \frac{\psi(|t|)}{|t|^{p+1}} \downarrow \text{ as } |t| \uparrow$$
 (1.6)

for some integer $p \ge 2$. Furthermore, assume that

$$EX_{ni} = 0 \quad \text{for } 1 \le i \le n, \ n \ge 1, \tag{1.7}$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E\psi(|X_{ni}|)}{\psi(a_n)} < \infty, \tag{1.8}$$

$$\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \frac{EX_{ni}^2}{a_n^2} \right)^{2k} < \infty, \tag{1.9}$$

where k is a positive integer. Then the conditions (1.6), (1.7), (1.8), and (1.9) imply

$$\frac{1}{a_n} \sum_{i=1}^n X_{ni} \to 0 \text{ almost surely.}$$
 (1.10)

Many classical theorems hold for *B*-valued random elements under the assumption that the weak law of large numbers (WLLN) holds (see, Kuelbs and Zinn [8], de Acosta [4], Choi and Sung [1, 2], Wang, Rao and Yang [10], Kuczmaszewska and Szynal [7], and Sung [9]).

In this paper, we apply de Acosta [4] inequality to obtain Hu and Taylor's [6] result in a general Banach space under the assumption that WLLN holds.

2. Main Result. To prove our main theorem, we need the following lemma which is due to de Acosta [4].

LEMMA 2.1. For each $p \ge 1$, there exists a positive constant C_p such that for separable Banach space B and any finite sequence $\{X_i, 1 \le i \le n\}$ of independent B-valued random elements with $E\|X_i\|^p < \infty$ $(1 \le i \le n)$, the following inequalities hold.

(i) For $1 \le p \le 2$,

$$E\left|\left|\left|\sum_{i=1}^{n} X_{i}\right|\right| - E\left|\left|\sum_{i=1}^{n} X_{i}\right|\right|\right|^{p} \le C_{p} \sum_{i=1}^{n} E||X_{i}||^{p}.$$
(2.1)

(ii) For p > 2,

$$E\left|\left\|\sum_{i=1}^{n} X_{i}\right\| - E\left\|\sum_{i=1}^{n} X_{i}\right\|\right|^{p} \le C_{p}\left[\left(\sum_{i=1}^{n} E||X_{i}||^{2}\right)^{p/2} + \sum_{i=1}^{n} E||X_{i}||^{p}\right]. \tag{2.2}$$

Throughout this paper, let $\psi(t)$ be a positive, even function such that

$$\frac{\psi(|t|)}{|t|} \uparrow \text{ and } \frac{\psi(|t|)}{|t|^p} \downarrow \text{ as } |t| \uparrow$$
 (2.3)

for some $p \ge 1$.

THEOREM 2.2. Let $\{X_{ni}, 1 \le i \le n, n \ge 1\}$ be an array of rowwise independent *B-valued random elements and* $\{a_n, n \ge 1\}$ *constants such that* $0 < a_n \uparrow \infty$. Assume that

$$\sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E\psi(||X_{ni}||)}{\psi(a_n)} < \infty, \tag{2.4}$$

$$\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \frac{E||X_{ni}||^{2}}{a_{n}^{2}} \right)^{s} < \infty$$
 (2.5)

for some s > 0. Then the following statements are equivalent.

- (i) $(1/a_n)\sum_{i=1}^n X_{ni} \to 0$ in L^1 . (ii) $(1/a_n)\sum_{i=1}^n X_{ni} \to 0$ completely. (iii) $(1/a_n)\sum_{i=1}^n X_{ni} \to 0$ almost surely. (iv) $(1/a_n)\sum_{i=1}^n X_{ni} \to 0$ in probability.

PROOF. (i) \Longrightarrow (ii). Define $Y_{ni} = X_{ni}I(\|X_{ni}\| \le a_n)$ and $Z_{ni} = X_{ni}I(\|X_{ni}\| > a_n)$. Since $\psi(|t|)/|t|$ is an increasing function of |t|, we have by (2.4) that

$$\sum_{n=1}^{\infty} \frac{1}{a_n} E \left\| \sum_{i=1}^{n} Z_{ni} \right\| \leq \sum_{n=1}^{\infty} \frac{1}{a_n} \sum_{i=1}^{n} E \| Z_{ni} \| \\
\leq \sum_{n=1}^{\infty} \frac{1}{\psi(a_n)} \sum_{i=1}^{n} E \psi(\| Z_{ni} \|) \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E \psi(\| X_{ni} \|)}{\psi(a_n)} < \infty. \tag{2.6}$$

It follows that

$$\frac{1}{a_n} \sum_{i=1}^n Z_{ni} \to 0 \text{ completely.}$$
 (2.7)

The proof will be completed by showing that

$$\frac{1}{a_n} \sum_{i=1}^n Y_{ni} \longrightarrow 0 \text{ completely.}$$
 (2.8)

From (i) and (2.6), we have

$$\frac{1}{a_n} E \left\| \sum_{i=1}^n Y_{ni} \right\| = \frac{1}{a_n} E \left\| \sum_{i=1}^n (X_{ni} - Z_{ni}) \right\|
\leq \frac{1}{a_n} E \left\| \sum_{i=1}^n X_{ni} \right\| + \frac{1}{a_n} E \left\| \sum_{i=1}^n Z_{ni} \right\| \to 0.$$
(2.9)

Thus, to prove (2.8), it is enough to show that

$$\frac{1}{a_n} \left\| \sum_{i=1}^n Y_{ni} \right\| - \frac{1}{a_n} E \left\| \sum_{i=1}^n Y_{ni} \right\| \to 0 \text{ completely.}$$
 (2.10)

First consider the case of $1 \le p \le 2$. From Markov's inequality and Lemma 2.1(i), we have

$$\sum_{n=1}^{\infty} P\left(\left|\frac{1}{a_{n}}\right|\left|\sum_{i=1}^{n} Y_{ni}\right|\right| - \frac{1}{a_{n}} E\left|\left|\sum_{i=1}^{n} Y_{ni}\right|\right| > \epsilon\right)$$

$$\leq \frac{1}{\epsilon^{p}} \sum_{n=1}^{\infty} \frac{1}{a_{n}^{p}} E\left|\left|\left|\sum_{i=1}^{n} Y_{ni}\right|\right| - E\left|\left|\sum_{i=1}^{n} Y_{ni}\right|\right|^{p}$$

$$\leq \frac{C_{p}}{\epsilon^{p}} \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E\left|\left|Y_{ni}\right|\right|^{p}}{a_{n}^{p}} \leq \frac{C_{p}}{\epsilon^{p}} \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E\psi(\left|\left|Y_{ni}\right|\right|)}{\psi(a_{n})}$$

$$\leq \frac{C_{p}}{\epsilon^{p}} \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{E\psi(\left|\left|X_{ni}\right|\right|)}{\psi(a_{n})} < \infty,$$
(2.11)

since $\psi(|t|)/|t|^p \downarrow$ and (2.4). Thus (2.10) holds.

Now consider the case of p > 2. Note that $\psi(|t|)/|t|^p \downarrow \text{implies } \psi(|t|)/|t|^q \downarrow \text{ for each } q \ge p$. Let $q = \max\{p, 2s\}$. Then we have by Markov's inequality and Lemma 2.1(ii) that

$$\sum_{n=1}^{\infty} P\left(\left\|\frac{1}{a_{n}}\right\| \sum_{i=1}^{n} Y_{ni} - \frac{1}{a_{n}} E\left\|\sum_{i=1}^{n} Y_{ni}\right\| > \epsilon\right) \\
\leq \frac{1}{\epsilon^{q}} \sum_{n=1}^{\infty} \frac{1}{a_{n}^{q}} E\left\|\sum_{i=1}^{n} Y_{ni} - E\right\| \sum_{i=1}^{n} Y_{ni} \right\|^{q} \\
\leq \frac{C_{q}}{\epsilon^{q}} \sum_{n=1}^{\infty} \frac{1}{a_{n}^{q}} \left[\left(\sum_{i=1}^{n} E\|Y_{ni}\|^{2}\right)^{q/2} + \sum_{i=1}^{n} E\|Y_{ni}\|^{q}\right] \\
= \frac{C_{q}}{\epsilon^{q}} \sum_{n=1}^{\infty} \left(\frac{\sum_{i=1}^{n} E\|Y_{ni}\|^{2}}{a_{n}^{2}}\right)^{q/2} + \frac{C_{q}}{\epsilon^{q}} \sum_{n=1}^{\infty} \frac{1}{a_{n}^{q}} \sum_{i=1}^{n} E\|Y_{ni}\|^{q}. \tag{2.12}$$

Since $q \ge p$, $\psi(|t|)/|t|^p \downarrow$ implies $\psi(|t|)/|t|^q \downarrow$, and so

$$\sum_{n=1}^{\infty} \frac{1}{a_n^q} \sum_{i=1}^n E||Y_{ni}||^q \le \sum_{n=1}^{\infty} \sum_{i=1}^n \frac{E\psi(||Y_{ni}||)}{\psi(a_n)} \le \sum_{n=1}^{\infty} \sum_{i=1}^n \frac{E\psi(||X_{ni}||)}{\psi(a_n)} < \infty.$$
 (2.13)

Also,

$$\sum_{n=1}^{\infty} \left(\frac{\sum_{i=1}^{n} E||Y_{ni}||^{2}}{a_{n}^{2}} \right)^{q/2} \leq \left[\sum_{n=1}^{\infty} \left(\frac{\sum_{i=1}^{n} E||Y_{ni}||^{2}}{a_{n}^{2}} \right)^{s} \right]^{q/2s}$$

$$\leq \left[\sum_{n=1}^{\infty} \left(\frac{\sum_{i=1}^{n} E||X_{ni}||^{2}}{a_{n}^{2}} \right)^{s} \right]^{q/2s} < \infty,$$
(2.14)

since $q \ge 2s$ and (2.5). Combining (2.12), (2.13), and (2.14) yields (2.10). Thus (i) \Longrightarrow (ii) is proved. Since the implications (ii) \Longrightarrow (iii) and (iii) \Longrightarrow (iv) are obvious, it remains to show that (iv) \Longrightarrow (i).

Assume that (iv) holds. From Lemma 2.1(i) and (2.5)

$$E\left|\frac{1}{a_n}\right|\left|\sum_{i=1}^n X_{ni}\right| - \frac{1}{a_n}E\left|\left|\sum_{i=1}^n X_{ni}\right|\right|\right|^2 \le \frac{C_2}{a_n^2}\sum_{i=1}^n E||X_{ni}||^2 \to 0,$$
 (2.15)

which entails

$$\frac{1}{a_n} \left\| \sum_{i=1}^n X_{ni} \right\| - \frac{1}{a_n} E \left\| \sum_{i=1}^n X_{ni} \right\| \to 0 \text{ in probability.}$$
 (2.16)

It follows by (iv) that $E\|\sum_{i=1}^n X_{ni}\|/a_n \to 0$, and so (i) holds. Thus the proof of Theorem 2.2 is completed.

The following theorem states that Theorem 2.2 holds even if the condition (2.5) is replaced by

$$\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \frac{E||X_{ni}||^r}{a_n^r} \right)^s < \infty, \tag{2.17}$$

for some $1 \le r \le 2$ and s > 0.

THEOREM 2.3. Let $\{X_{ni}, 1 \le i \le n, n \ge 1\}$ be an array of rowwise independent *B*-valued random elements and $\{a_n, n \ge 1\}$ constants such that $0 < a_n \uparrow \infty$. Assume that (2.4) and (2.17) hold. Then the following statements are equivalent.

- (i) $(1/a_n) \sum_{i=1}^n X_{ni} \to 0 \text{ in } L^1$.
- (ii) $(1/a_n)\sum_{i=1}^n X_{ni} \to 0$ completely.
- (iii) $(1/a_n) \sum_{i=1}^n X_{ni} \to 0$ almost surely.
- (iv) $(1/a_n)\sum_{i=1}^n X_{ni} \to 0$ in probability.

PROOF. Let $\{Y_{ni}\}$ and $\{Z_{ni}\}$ be as in the proof of Theorem 2.2. From the proof of (i) \Rightarrow (ii) in Theorem 2.2, we have

$$\sum_{n=1}^{\infty} \frac{1}{a_n} E \left\| \sum_{i=1}^{n} Z_{ni} \right\| < \infty, \tag{2.18}$$

which implies $\sum_{i=1}^{n} Z_{ni}/a_n \to 0$ in L^1 , completely, almost surely, and in probability. Hence, it is enough to show that

$$\frac{1}{a_n} \sum_{i=1}^n Y_{ni} \to 0 \text{ in } L^1 \iff \frac{1}{a_n} \sum_{i=1}^n Y_{ni} \to 0 \text{ completely}$$

$$\iff \frac{1}{a_n} \sum_{i=1}^n Y_{ni} \to 0 \text{ almost surely}$$

$$\iff \frac{1}{a_n} \sum_{i=1}^n Y_{ni} \to 0 \text{ in probability.}$$
(2.19)

Since $Y_{ni} = X_{ni}I(\|X_{ni}\| \le a_n)$, it follows that $E\psi(\|Y_{ni}\|) \le E\psi(\|X_{ni}\|)$ and

$$\sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \frac{E||Y_{ni}||^{2}}{a_{n}^{2}} \right)^{s} \leq \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \frac{E||Y_{ni}||^{r}}{a_{n}^{r}} \right)^{s} \leq \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \frac{E||X_{ni}||^{r}}{a_{n}^{r}} \right)^{s}. \tag{2.20}$$

Thus $\{Y_{ni}\}\$ satisfies the conditions of Theorem 2.2, and so (2.19) holds by Theorem 2.2.

COROLLARY 2.4. Let $\{X_{ni}, 1 \le i \le n, n \ge 1\}$ be an array of rowwise independent *B*-valued random elements and $\{a_n, n \ge 1\}$ constants such that $0 < a_n \uparrow \infty$. Assume that $EX_{ni} = 0$ and *B* is of type $r(1 \le r \le 2)$. Then (2.4) and (2.17) imply that

$$\frac{1}{a_n} \sum_{i=1}^n X_{ni} \to 0 \text{ almost surely.}$$
 (2.21)

PROOF. By Theorem 2.3, it is enough to show that

$$\frac{1}{a_n} \sum_{i=1}^n X_{ni} \to 0 \text{ in } L^1.$$
 (2.22)

Since *B* is of type r and $EX_{ni} = 0$, it follows by (2.17) that

$$E\left\|\frac{1}{a_n}\sum_{i=1}^n X_{ni}\right\|^r \le \frac{C_r}{a_n^r}\sum_{i=1}^n E||X_{ni}||^r \to 0,$$
(2.23)

and so (2.22) holds.

REMARK 2.5. The condition (2.3) is weaker than (1.6). Hu and Chung [5] proved Corollary 2.4 under the stronger condition (1.6).

REFERENCES

- B. D. Choi and S. H. Sung, On Chung's strong law of large numbers in general Banach spaces, Bull. Austral. Math. Soc. 37 (1988), no. 1, 93-100. MR 89b:60018. Zbl 628.60012.
- [2] ______, On Teicher's strong law of large numbers in general Banach spaces, Probab. Math. Statist. **10** (1989), no. 1, 137-142. MR 90f:60013. Zbl 686.60007.
- [3] K. L. Chung, Note on some strong laws of large numbers, Amer. J. Math. 69 (1947), 189– 192. MR 8,471a. Zbl 034.07103.
- [4] A. de Acosta, *Inequalities for B-valued random vectors with applications to the strong law of large numbers*, Ann. Probab. **9** (1981), no. 1, 157–161. MR 83c:60009. Zbl 449.60002.
- [5] T. C. Hu and H. C. Chang, Strong laws of large numbers for arrays of random elements, Soochow J. Math. 20 (1994), no. 4, 587–594. MR 95k:60012. Zbl 861.60014.
- [6] T. C. Hu and R. L. Taylor, On the strong law for arrays and for the bootstrap mean and variance, Internat. J. Math. Math. Sci. 20 (1997), no. 2, 375–382. MR 97k:60011. Zbl 883.60024.
- [7] A. Kuczmaszewska and D. Szynal, *On complete convergence in a Banach space*, Internat. J. Math. Sci. **17** (1994), no. 1, 1-14. MR 95d:60012. Zbl 798.60006.
- [8] J. Kuelbs and J. Zinn, Some stability results for vector valued random variables, Ann. Probab. 7 (1979), no. 1, 75-84. MR 80h:60014. Zbl 399.60007.
- [9] S. H. Sung, Complete convergence for weighted sums of arrays of rowwise independent B-valued random variables, Stochastic Anal. Appl. 15 (1997), no. 2, 255–267.
 MR 98c:60007. Zbl 902.60011.
- [10] X. C. Wang, M. B. Rao, and X. Y. Yang, Convergence rates on strong laws of large numbers for arrays of rowwise independent elements, Stochastic Anal. Appl. 11 (1993), no. 1, 115–132. MR 94a:60007. Zbl 764.60037.

Sung: Department of Applied Mathematics, Pai Chai University, Taejon 302-735, South Korea

E-mail address: sungsh@mail.paichai.ac.kr