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AN APPLICATION OF ALMOST INCREASING SEQUENCES
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Abstract. We extended a theorem of Mishra and Srivastava (1983–1984) on |C,1|k sum-
mability factors, using almost increasing sequences, to |N̄,pn|k summability under weaker
conditions.
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Let
∑
an be a given infinite series with partial sums (sn). We denote by zn the nth

(C,1)mean of the sequence (sn). The series
∑
an is said to be summable |C,1|k, k≥ 1,

if (see [2])

∞∑
n=1

nk−1
∣∣zn−zn−1∣∣k <∞. (1)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑
v=0

pv �→∞, as n �→∞, (P−i = p−i = 0, i≥ 1). (2)

The sequence-to-sequence transformation

tn = 1
Pn

n∑
v=0

pvsv (3)

defines the sequence (tn) of the (N̄,pn) mean of the sequence (sn), generated by the
sequence of coefficients (pn) (see [3]). The series

∑
an is said to be summable |N̄,pn|k,

k≥ 1, if (see [1])
∞∑
n=1

(
Pn
pn

)k−1∣∣tn−tn−1∣∣k <∞. (4)

In the special case when pn = 1 for all values of n (resp., pn = 1/(n+1)), |N̄,pn|k
summability is the same as |C,1|k (resp., |N̄,1/(n+1)|k) summability.
Concerning the |C,1|k summability factors the following theorem is known.
Theorem 1 (see [4]). Let (Xn) be a positive nondecreasing sequence and let (βn)

and (λn) be sequences such that

|∆λn| ≤ βn, (5)

βn �→ 0, as n �→∞, (6)
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∞∑
n=1

n|∆βn|Xn <∞, (7)

|λn|Xn =O(1), as n �→∞. (8)

If

m∑
n=1

1
n
|sn|k =O

(
Xm

)
, asm �→∞, (9)

then the series
∑
anλn is summable |C,1|k, k≥ 1.

The aim of this paper is to extend Theorem 1 to |N̄,pn|k summability under weaker
conditions. Thus we need the concept of almost increasing sequence. A positive se-
quence (bn) is said to be almost increasing if there exists a positive increasing se-
quence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn. Obviously
every increasing sequence is almost increasing but the converse need not be true as
can be seen from the example bn =ne(−1)n .
Now, we shall prove the following theorem.

Theorem 2. Let (Xn) be an almost increasing sequence and let the condition (9) of
Theorem 1 be satisfied. If the sequences (βn) and (λn) such that conditions (5), (6), (7),
and (8) of Theorem 1 are satisfied. If (pn) is a sequence such that

m∑
n=1

pn
Pn

∣∣sn∣∣k =O(Xm), asm �→∞, (10)

then the series
∑
anλn is summable |N̄,pn|k, k≥ 1.

We need the following lemma for the proof of our theorem.

Lemma 3. Under the conditions on (Xn), (βn), and (λn) as taken in the statement
of the theorem, the following conditions hold, when (7) is satisfied,

nβnXn =O(1), as n �→∞, (11)
∞∑
n=1

βnXn <∞. (12)

Proof. Let Acn ≤Xn ≤ Bcn, where (cn) is an increasing sequence. In this case,

nXnβn ≤nBcn
∣∣∣∣∣

∞∑
v=n

∆βv

∣∣∣∣∣≤nBcn
∞∑
v=n

∣∣∆βv∣∣

≤ B
∞∑
v=n

vcv
∣∣∆βv∣∣≤ B

A

∞∑
v=n

v
∣∣∆βv∣∣Xv.

(13)

Hence nβnXn =O(1) as n→∞. Again
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∞∑
n=1

Xnβn ≤ B
∞∑
n=1

cnβn = B
∞∑
n=1

cn

∣∣∣∣∣
∞∑
v=n

∆βv

∣∣∣∣∣
≤ B

∞∑
n=1

cn
∞∑
v=n

∣∣∆βv∣∣= B
∞∑
v=1

∣∣∆βv∣∣
v∑
n=1

cn

≤ B
∞∑
v=1

vcv
∣∣∆βv∣∣≤ B

A

∞∑
v=1

vXv
∣∣∆βv∣∣<∞.

(14)

Hence
∑∞
n=1Xnβn <∞.

Proof of the theorem. Let (Tn) be the sequence of (N̄,pn) mean of the series∑
anλn. Then, by definition, we have

Tn = 1
Pn

n∑
v=0

pv
v∑
i=0
aiλi = 1

Pn

n∑
v=0

(
Pn−Pv−1

)
avλv. (15)

Then, for n≥ 1, we have

Tn−Tn−1 = pn
PnPn−1

n∑
v=1

Pv−1avλv. (16)

By Abel’s transformation, we have

Tn−Tn−1 =− pn
PnPn−1

n−1∑
v=1

∆
(
Pv−1λv

)
sv+ pnsnλnPn

= pn
PnPn−1

n−1∑
v=1

pvsvλv− pn
PnPn−1

n−1∑
v=1

Pvsv∆λv+ pnsnλnPn

= Tn,1+Tn,2+Tn,3,

(17)

let us denote the three terms in (17) by Tn,1, Tn,2, and Tn,3.
Since

∣∣Tn,1+Tn,2+Tn,3∣∣k ≤ 3k(|Tn,1|k+|Tn,2|k+|Tn,3|k), (18)

to complete the proof of the theorem, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)k−1∣∣Tn,r∣∣k <∞, for r = 1,2,3. (19)

Since |λn| = O(1/Xn) = O(1), by (8), applying Hölder’s inequality with indices k and
k′, where (1/k)+(1/k′)= 1 and k > 1, we get
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m+1∑
n=2

(
Pn
pn

)k−1∣∣Tn,1∣∣k ≤
m+1∑
n=2

pn
PnPkn−1


n−1∑
v=1

pv
∣∣λv∣∣∣∣sv∣∣



k

≤
m+1∑
n=2

pn
PnPn−1


n−1∑
v=1

pv
∣∣λv∣∣k∣∣sv∣∣k




 1
Pn−1

n−1∑
v=1

pv



k−1

=O(1)
m∑
v=1

pv
∣∣λv∣∣k∣∣sv∣∣k

m+1∑
n=v+1

pn
PnPn−1

=O(1)
m∑
v=1

pv
Pv

∣∣λv∣∣k∣∣sv∣∣k

=O(1)
m∑
v=1

pv
Pv

∣∣λv∣∣∣∣λv∣∣k−1∣∣sv∣∣k

=O(1)
m∑
v=1

pv
Pv

∣∣λv∣∣∣∣sv∣∣k

=O(1)
m−1∑
v=1

∆
∣∣λv∣∣

v∑
i=1

pi
Pi

∣∣si∣∣k+O(1)∣∣λm∣∣
m∑
v=1

pv
Pv

∣∣sv∣∣k

=O(1)
m−1∑
v=1

∣∣∆λv∣∣Xv+O(1)∣∣λm∣∣Xm
=O(1), asm �→∞,

(20)

by virtue of (5), (8), (10), and (12). Again applying Hölder’s inequality, as in Tn,1, we
have

m+1∑
n=2

(
Pn
pn

)k−1∣∣Tn,2∣∣k ≤
m+1∑
n=2

pn
PnPkn−1


n−1∑
v=1

Pv
∣∣∆λv∣∣∣∣sv∣∣



k

≤
m+1∑
n=2

pn
PnPkn−1


n−1∑
v=1

Pv
∣∣sv∣∣βv



k

≤
m+1∑
n=2

pn
PnPn−1

n−1∑
v=1

Pv
∣∣sv∣∣kβv


 1
Pn−1

n−1∑
v=1

Pvβv



k−1

=O(1)
m+1∑
n=2

pn
PnPn−1

n−1∑
v=1

Pv
∣∣sv∣∣kβv

=O(1)
m∑
v=1

Pv
∣∣sv∣∣kβv

m+1∑
n=v+1

pn
PnPn−1

=O(1)
m∑
v=1

∣∣sv∣∣kβv
=O(1)

m∑
v=1

vβv
1
v
∣∣sv∣∣k

=O(1)
m−1∑
v=1

∆
(
vβv

) v∑
u=1

1
u
∣∣su∣∣k+O(1)mβm

m∑
v=1

1
v
∣∣sv∣∣k
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=O(1)
m−1∑
v=1

∣∣∆(vβv)∣∣Xv+O(1)mβmXm

=O(1)
m−1∑
v=1

v
∣∣∆βv∣∣Xv+O(1)

m−1∑
v=1

βv+1Xv+O(1)mβmXm

=O(1), asm �→∞, (21)

by virtue of (5), (7), (9), (11), and (12). Finally, as in Tn,1, we have that

m∑
n=1

(
Pn
pn

)k−1∣∣Tn,3∣∣k =O(1)
m∑
n=1

pn
Pn

∣∣λn∣∣∣∣sn∣∣k =O(1), asm �→∞. (22)

Therefore we get (19). This completes the proof of the theorem.

It should be noted that if we take (Xn) is a positive nondecreasing sequence and
pn = 1 for all values of n in this theorem, then we get Theorem 1. In this case the
condition (10) reduces to the condition (9). Also, if we take pn = 1/(n+ 1) in this
theorem, then we get a result concerning the |N̄,1/(n+1)|k summability factors.
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