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Abstract. The Laplace transform of the functions tν(1+ t)β, Reν > −1, is expressed in
terms of Whittaker functions. This expression is exploited to evaluate infinite integrals
involving products of Bessel functions, powers, exponentials, and Whittaker functions.
Some special cases of the result are discussed. It is also demonstrated that the famous
identity

∫∞
0 sin(ax)/xdx =π/2 is a special case of our main result.
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1. Introduction. The Laplace transform of the functions tν(1+t)β, Reν >−1, can
be expressed in terms of the confluent hypergeometric function ψ [4, p. 268]. Some
special cases of the Laplace transform of these functions are listed in the literature
[2, 3]. For β = −1, see [2, p. 137] and for β = ν , −ν + (1/2), see [2, p. 319]. In this
paper, we exploit the relationship between the Whittaker and the confluent hyperge-
ometric functions to express the Laplace transform of certain functions in terms of
the Whittaker functions. Some useful special cases, which do not seem to be listed in
the literature, are discussed.
The representation of the Laplace transform of these functions in terms of Whit-

taker functions is further exploited to evaluate infinite integrals involving products
of Bessel functions, powers, exponentials, andWhittaker functions. Some special cases
are discussed. For example, it is proved that

∫∞
0
xα−1Jα(ax)dx = Γ(α)2

(
2
a

)α
, Reα> 0, a > 0, (1.1)

which generalizes the famous identity
∫∞
0 sin(ax)/xdx =π/2, Rea> 0.

2. Main Results

Lemma 2.1. Let L be the Laplace transform operator. Then,

L
{
tν(1+t)β;x

}
= Γ(ν+1)x−(β+ν+2)/2ex/2W(β−ν)/2,(β+ν+1)/2(x) (ν >−1). (2.1)

Proof. According to [4, p. 268],
∫∞
0
e−xttα−1(1+t)γ−α−1dt = Γ(α)ψ(α,γ;x) (α > 0). (2.2)
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Substituting α= ν+1 and γ = ν+β+2 in (2.2), we get
L
{
tν(1+t)β;x}= Γ(ν+1)ψ(ν+1,ν+β+2;x) (ν >−1). (2.3)

However, according to [1, p. 264],

ψ(ν+1,ν+β+2;x)= x−(β+ν+2)/2ex/2W(β−ν)/2,(β+ν+1)/2(x). (2.4)

From (2.3) and (2.4), the lemma follows.

Corollary 2.1. We have

L
{
tn(1+t)m; x}= (n!)(m!)x−(n+m+1)Gnm(x), (2.5)

where Gnm(x) are the polynomials defined by

Gnm(x)=
m∑
k=0

(
m+n−k

n

)
xk

k!
. (2.6)

Proof. This follows from the lemma when we substitute ν = n, β =m and use
the fact that

Gnm(x)=
1
m!
ex/2xaWb,a+1/2(x), a= m+n

2
, b = m−n

2
. (2.7)

In particular, when we take n= 0 in (2.5), we get
L
{
(1+t)m;x}=m!x−m−1em(x) (2.8)

where

em(x)=
m∑
k=0

xk

k!
. (2.9)

Remark. It should be noted that the representation of the Laplace transform in
terms of the G-polynomials is interesting and does not seem to be available in the
present form in the literature. This representation could be useful for the research
workers in probability theory when f(t) = Ctν(1+t)β is considered as a probability
density function.

Corollary 2.2. We have

L
{
tν(1+t)ν ; x}= Γ(ν+1)√

π
x−(1/2)νex/2K(ν+1)/2

(
x
2

)
(Reν >−1). (2.10)

Proof. This follows from Lemma 2.1 when we take β= ν and use the relation [4,
p. 279].

Corollary 2.3. See [2, p. 137]

L
{
(1+t)β; x}= x−β−1exΓ(β+1,x). (2.11)

Proof. This follows from Lemma 2.1 when we take ν = 0 and use the fact that
Wβ/2,(β+1)/2(x)= x−β/2ex/2Γ(β+1,x). (2.12)
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Theorem 2.1. Let Reν >−1, Reµ > 0, and p > 0. Then,∫∞
0
xν−1ex/2Wα,α+ν+1/2(x)J2α+2µ+2ν(2

√
px)dx

= Γ(2µ)
Γ(ν+1)p

(ν−1)/2ep/2W(2α−2µ+ν+1)/2,(2α+2µ+ν)/2(p).
(2.13)

Proof. Let us define a function f(t) by

f(t)= tν(1+t)2α+ν (Reν >−1). (2.14)

Replacing t by 1/t in (2.14) and multiplying both sides by t2µ+2ν+2α−1, we get

t2µ+2ν+2α−1f
(
1
t

)
= t2µ−1(1+t)2α+ν (Reµ > 0). (2.15)

By using the property [2, p. 132] of the Laplace transformation, we get from (2.15) that∫∞
0
tν−1et/2Wα,α+ν+1/2(t)J2α+2µ+2ν

(
2
√
pt
)
dt = pν+ν+α

Γ(ν+1) L
{
t2µ−1(1+t)2α+ν ; p}.

(2.16)

However, according to Lemma 2.1, we have

L
{
t2µ−1(1+t)2α+ν ; p

}
= Γ(2µ)p−(2µ+2α+ν+1)/2ep/2W(2α−2µ+ν+1)/2,(2α+2µ+ν)/2(p).

(2.17)

From (2.16) and (2.17), the theorem follows.

Corollary 2.4. We have∫∞
0
tµ−1/2et/2Kν+1/2

(
t
2

)
J2µ+2ν

(
2
√
pt
)
dt

=√π Γ(2µ)
Γ(ν+1)p

(ν−1)/2ep/2W(1+ν−2µ)/2,(ν+2µ)/2(p).
(2.18)

Proof. This follows from the theorem when we take α = 0 and use the fact [4,
p. 279] that

W0,ν(t)=
√
t
π
Kν

(
t
2

)
. (2.19)

Corollary 2.5. We have∫∞
0
xα−1Jα(ax)dx = Γ(α)2

(
2
a

)α
(Reα> 0). (2.20)

Proof. This follows from (2.18) when we take ν = 0, µ = α/2, p = a2/4 and use
the transformation t = x2.
In particular, when α= 1/2 in (2.20), we have√

2
aπ

∫∞
0

sin(ax)
x

dx =
√
π
2a

(Rea> 0), (2.21)

which implies that (see [3, p. 405, (3.721) (1)])∫∞
0

sin(ax)
x

dx = π
2
, (Rea> 0). (2.22)
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Remark. The result (2.20) can be regarded as a generalization of the famous iden-
tity (2.22) occurring in a variety of engineering problems. Moreover, using (2.20) and
the identity [2, p. 148, (11)], we get a new integral formula

∫∞
0
xα−2ν+1Jα(ax) lnxdx =

(
2
a

)α−2ν Γ(α−ν+1)
a2Γ(ν)

[
ψ(α−ν+1)+ψ(ν)− ln

(
a2

4

)]
,

(a > 0,ν > 0,α−ν+1> 0),
(2.23)

of product of logarithmic and Bessel functions. Several special cases of (2.23) can be
listed. In particular, for a= 2 and ν = 1 in (2.23), we get

∫∞
0
xα−1Jα(2x) lnxdx = Γ(α)4

[
ψ(α)−γ] (α > 0), (2.24)

where γ is the Euler constant [3, p. 946]. The substitution α= 1 in (2.24) leads to the
integral representation

γ =−2
∫∞
0
J1(2x) lnxdx (2.25)

of the Euler constant. If we substitute α= ν = 1 in (2.23), the classical result [3, p. 767
(6.772)(2)],

∫∞
0
J1(ax) lnxdx =− 1a

[
γ+ ln

(
a
2

)]
, (2.26)

is recovered.
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