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Abstract. Notions of a boundedly convex function and of a Lipschitz-continuous function
are extended to the case of functions on pseudo-topological vector spaces. It is proved
that for “good” pseudo-topologizers Ψ , any continuous Ψ -boundedly convex function is
Ψ -differentiable and its derivative is Ψ -Lipschitz-continuous. As a corollary, it is shown
that any boundedly convex function is Hyers-Lang differentiable.
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1. Introduction. In [5] Joachim Focke, proved that for any continuous boundedly-
convex function f on a Banach space B, its Fréchet derivative f ′ : B→ B∗ (which always
exists for such functions) is Lipschitz-continuous, that is, there existsM > 0, such that
for every x1,x2 from B,

‖f ′(x1)−f ′(x2)‖ ≤M‖x1−x2‖. (1.1)

Recall that a convex function f : B→R is called boundedly-convex if there existsM > 0
such that, for any x1,x2 from B and any λ1,λ2 ≥ 0 with λ1+λ2 = 1,

(0≤)λ1f(x1)+λ2f(x2)−f(λ1x1+λ2X2)≤ 1
2Mλ1λ2‖x1−x2‖2. (1.2)

Thismeans that the “deviation from linearity” for f is not greater than for (1/2)M‖·‖2,
in the case of a norm generated by a scalar product. See Remark 3.2. Notice that we
can take M from (1.2) as M for (1.1).
We extend this result to the case of functions f defined on arbitrary pseudo-topologi-

cal (in particular topological) vector spaces (One often uses the term “convergence
space” as a synonym to “pseudo-topological space”. Below, we recall necessary defini-
tions concerning pseudo-topological vector spaces. For more details, see [6].) For this
end, we have to do three things:
(1) extend the notion of bounded convexity,
(2) extend the notion of Lipschitz-continuity,
(3) specify the definition of differentiability we use since, as it is well-known, the

notion of Fréchet differentiability can be extended to the case of nonnormable
spaces by many different ways.

We do these things by appealing the notion of a pseudo-topologizer, whichwas intro-
duced in [4] and was thoroughly investigated in [1]. In those papers, it was attached
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to each pseudo-topologizer Ψ a corresponding notion of differentiability (called Ψ -
differentiability). Here, we attach to each pseudo-topologizer Ψ notions of Ψ -bounded
convexity and of Ψ -Lipschitz-continuity. Besides, we introduce an extension of the no-
tion of bounded convexity (that does not append pseudo-topologizers). We prove that,
roughly speaking, for “good” pseudo-topologizers Ψ , any continuous Ψ -boundedly
convex function on a pseudo-topological vector space is Ψ -differentiable and that
its derivative is Ψ -Lipschitz-continuous. Furthermore, we see that both the pseudo-
topologizer Fs of convergence on a linear filter system S and their onion modification
F#s are “good”. As a consequence, we derive that any continuous boundedly convex
function on a topological vector space is Hyers-Lang differentiable.
The Focke’s result corresponds to the case where Ψ is the pseudo-topologizer Fb of

convergence on a system of bounded sets.

Notation. Throughout, we use the following notation:
R the reals, R+ := [0,+∞)
It := [−t,t],I+t := [0, t] for t ∈R+; in particular I1 = [−1,1],I+1 = [0,1]
r the filter of the neighborhoods of zero in R
r+ the trace of the filter r on R+

X# the onion modification of X (see below)
[A] the filter in a set X, generated by a subset A ⊂ X, i.e., the filter of all the
subsets of X that contain A
[x] the (trivial ultra-) filter generated by a singleton {x}
F(X,Y) the set of all mappings from X into Y
L(X,Y) the set of all continuous linear mappings from X into Y

If there enter filters in an expression, then this expression is to be interpreted as the
image of the product of these filters by the corresponding mapping.
For example, if x is a filter in a vector space X, then r x denotes the image of the

filter r×x (that is, of the filter with the basis consisting of all the products I×U , where
I ∈ r, U ∈ x) under the multiplication mapping R×X →X, (t,x)� tx, that is the filter
with basis consisting of sets of the form ItU , where t > 0, U ∈ x(ItU := {τx|τ ∈ It,
x ∈U}).
As another example, if f is a filter in F(X,Y) and x is a filter inX, then f(x) denotes the

image of the filter x×f under the evaluation mapping X×F(X,Y)→ Y , (x,f )� f(x),
that is, the filter with basis consisting of all sets of the form F(U), F ∈ f, U ∈ x(F(U) :=
{f(x)∣∣f ∈ F,x ∈U}).

Preliminary notions. A pseudo-topology (or a convergence structure)ψ in a set
X is a mapping from X into the power set of the set of all filters in X, that satisfies
the following conditions (where we write x ↓

x
ψ instead of “x ∈ψ(x)”; one reads this

relation as “the filter x convergent to the point x in the pseudo-topology ψ”):
(a) ∀x ∈X : [x] ↓

x
ψ;

(b) x1 ↓x ψ,x2 ⊃ x1⇒ x2 ↓x ψ;
(c) x1 ↓x ψ,x2 ↓x ψ⇒ x1∩x2 ↓x ψ.

A pseudo-topological space (or a convergence space) is the pair (X,ψ), where X is a
set, and ψ is a pseudo-topology in X. Usually, we simply write X instead of (X,ψ),
and x ↓

x
X or x ↓

x
instead of x ↓

x
ψ.
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The pseudo-topology generated in a natural sense by a topology, is being identified
with this topology.
A net {xı}ı∈I in a pseudo-topological space X is said to converge to a point x if x ↓

x
X,

where x is the filter of “tails” of the net, that is A∈ x :� ∃ı0 ∈ I :A⊃ {xı|ı� ı0}.
A mapping f from a pseudo-topological space X into a pseudo-topological space Y

is called continuous at a point x ∈ X if x ↓
x
X ⇒ f(x) ↓

f(x)
Y , and is called continuous

if it is continuous at each point. The pseudo-topology ψ′ induced on a subset X′ ⊂X
by a pseudo-topology ψ in X is defined as follows: x ↓

x
ψ′ :� i(x) ↓

x
ψ, where i is the

inclusion mapping.
A pseudo-topological vector space (p.v.s.) is a vector spaceX equipped with a pseudo-

topology that is compatible with the vector structure in X (in the sense that the op-
erations of addition and multiplication by a scalar are continuous, the real line being
equipped with its natural topology).
If we weaken the compatibility conditions by replacing the requirement of continuity

of the multiplication mapping by the following two conditions:
(a) x ↓

x
X,t ∈R⇒ tx ↓

tx
X,

(b) x ↓
0
X,t ↓

t
R⇒ tx ↓

0
X,

we obtain the notion of a pseudo-topological vector group (p.v.g.). In p.v.s.’s it holds,
besides, the condition

∀x ∈X : rx ↓
0
X. (1.3)

For p.v.g.’s, we simply write x ↓ instead of x ↓
0
.

A filter x in a p.v.g. is called bounded if rx ↓. A set B in a p.v.g. is called bounded if
the filter [B] is bounded (that is, if rB ↓). A point x in a p.v.g. is called bounded if the
set {x} is bounded (that is if rx ↓). Thus, a p.v.s. is a p.v.g. such that all its points are
bounded.
For every p.v.g. X, the associated onion (or equable) p.v.g. X# is defined by the fol-

lowing conditions: as a vector space X# coincides with X, and x ↓ X# :� (∃y ↓ X : x ⊃
y= ry

)
.

It is clear that the pseudo-topology of X# is stronger than the pseudo-topology of
X, that is the identity mapping X# →X is continuous.
Any topological vector space (t.v.s.) X is a p.v.s. and satisfies the condition X# =X.

2. Pseudo-topologizers

Definition 2.1 [1]. LetA and B be subcategories of the category PVG of all p.v.g.’s
with the continuous linear mappings as morphisms. A pseudo-topologizer Ψ on A×B
is a covariant functor Ψ :A◦×B→ PVG (where A◦ denotes the dual category to A) that
satisfies the following conditions:
(a) for any two objects X and Y from A and B, respectively, Ψ(X,Y) is (as a vector

space) the vector subspace in F(X,Y) that contains L(X,Y);
(b) for any two morphisms u∈ L(X2,X1) and v ∈ L(Y1,Y2) of the categories A and

B, respectively, and for any mapping f ∈ Ψ(X1,Y1),Ψ(u,v)(f )= v ◦f ◦u.
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For any pseudo-topologizer Ψ , the formula Ψ#(X,Y) = Ψ(X,Y)# defines a pseudo-
topologizer Ψ# which is called the onion modification of Ψ .

Definition 2.2 [1]. Let A be a subcategory of PVG. We say that a linear filter
system S in A is given if, for any p.v.g. X from A, a nonempty set S(X) of filters in X
is given such that the following conditions are fulfilled:
(a) for each X and Y from A, if x∈ S(X) and l∈ L(X,Y), then l(x)∈ S(Y);
(b) for each X from A, if x,y∈ S(X), then x+y∈ S(X).

In the case where, for every X, all filters form S(X) are filters of the from [A], where
A is a subset of X, we say about a set system.
Important examples of linear filter systems are:

B ···B(X) is the set of all bounded filters in X;
C ···C (X) is the set of all convergent filters in X;
b ···b(X) is the set of all bounded sets in X.

Definition 2.3 [1]. Let S be a filter system in A. We define the pseudo-topologizer
Fs (of convergence on S) on A×PVG by the conditions:
(a) Fs(X,Y)= F(X,Y) and
(b) f ↓ Fs(X,Y)�∀x∈ S(X)f(x) ↓ Y .
Lemma 2.4. Let X be a p.v.g., let Y be a p.v.s., and let f : X → Y be a continuous

mapping. Then f is a bounded point in F#c (X,Y), see [1].

Definition 2.5 (See [1]). We say that a pseudo-topologizer Ψ on A×B possesses
the property (EXP) if the well-known algebraical isomorphism

F(X1×X2,Y )≈ F
(
X2,F(X1,Y )

)
(2.1)

(the exponential law, YX1×X2 = (YX1)X2 ) is a PVG isomorphism for any object Y from
B and for any objects X1 and X2 from A such that X1×X2 is also an object from A. We
say that Ψ possesses the property (IMB) if, for any X from A and for any Y1,Y2 from B,

Y1 ⊂ Y2⇒ Ψ(X,Y1)⊂ Ψ(X,Y2). (2.2)

Here, “imbedding” X1 ⊂ X2 means that X1 is a vector subspace in X2 and that the
pseudo-topology of X1 coincides with the pseudo-topology induced from X2.

Definition 2.6. We say that a pseudo-topologizer Ψ on A×B possesses the prop-
erty (SAT) if the following condition is fulfilled: for any X from A and any Y from B,

f ↓ Ψ(X,Y)⇐⇒ f̂ ↓ Ψ(X,Y), (2.3)

where the “saturation” f̂ of a filter f in F(X,Y) is defined as the filter generated by the
filter basis {F̂ | F ∈ f}, the set F̂ being for any F ⊂ F(X,Y) defined by the formula

F̂ := {f ∈ F(X,Y) | ∀x ∈X, f(x)∈ F(x)}. (2.4)

(The fact that the sets F̂ ,F ∈ f , are really a filter basis follows from the relation F̂1∩F̂2 ⊃
(F1∩F2)∧.)
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Theorem 2.7. For any linear filter system S, the pseudo-topologizers FS and F#S
possess the properties (EXP), (IMB), and (SAT).

Proof. The assertion on (EXP) and (IMB) was proved in [1, Thm. 1.41]. Let us prove
the assertion on (SAT). It is clear from (2.4) that

F̂(U)= F(U) ∀F ⊂ F(X,Y) ∀U ⊂X. (2.5)

It follows at once from (2.5) that for any filter f in F(X,Y), any filter x in X, and any
set U in X, we have

f̂(x)= f(x), (2.6)

f̂(U)= f(U). (2.7)

The fact that f ↓ FS(X,Y) ⇒ f̂ ↓ FS(X,Y) follows now from (2.6) and Definition 2.3.
That f ↓ F#S (X,Y)⇒ f̂ ↓ F#S (X,Y) follows from (2.7) and the following characterization
of convergence in F#S (X,Y) (see [1, Lem. 1.40]):

f ↓ F#S (X,Y)⇐⇒∀x∈ S(X)∃y ↓ Y #∀V ∈ y∃U ∈ x f(U)⊃ rV. (2.8)

This completes the proof.

3. Ψ -bounded convexity and Ψ -Lipschitz-continuity. Here, we introduce the no-
tions of bounded convexity, Ψ -bounded convexity, and Ψ -Lipschitz-continuity and re-
call the notion of Ψ -differentiability.

Definition 3.1. Let Ψ be a pseudo-topologizer on a category A of p.v.g.’s con-
taining R as an object, and let X be a p.v.g. We say that a convex function f : X → R
is boundedly convex if there exists a continuous homogeneous function of degree 2
q : X → R such that for any x1,x2 from X and any nonnegative numbers λ1,λ2 with
λ1+λ2 = 1,

(0≤)λ1f(x1)+λ2f(x2)−f(λ1x1+λ2x2)≤ λ1λ2q(x2−x1). (3.1)

If, in addition, q is a bounded point in Ψ(X,R), we say that f is Ψ -boundedly convex.

Remark 3.2. For any nonnegatively definite quadratic form (f(x)= b(x,x), where
b is a symmetric bilinear form, such that b(x,x)≥ 0 for all x),

λ1f(x1)+λ2f(x2)−f(λ1x1+λ2x2)= λ1λ2f(x1−x2)(≥ 0), (3.2)

so that such forms satisfy condition (3.1) with the last “≤” changed by “=” and with
q = f .

Remark 3.3. It is evident that the addition, to f , of a constant or a linear function
does not disturb the validity of (3.1), and that a translation of f by any vector h (that
is, the pass from f to the function x� f(x−h)) also does not disturb (3.1).
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Remark 3.4. It is easy to see that for normed spaces X, the definition of a bound-
edly convex function reduces to the usual one given in the introduction.

Definition 3.5. Let Ψ be a pseudo-topologizer onA×B, and let X and Y be p.v.g.’s
from A and B, respectively. We say that a mapping f :X → Y is Ψ -Lipschitz-continuous
if the set fR+,X is bounded in Ψ(X,Y), that is

rfR+,X ↓ Ψ(X,Y), (3.3)

where

fR+,X =
{
ft,x | t ∈R+, x ∈X

}
, (3.4)

ft,x being (for t ∈R+ and x ∈X) a mapping from X into Y defined as follows: ft,x = 0
if t = 0, and

ft,x(h)= f(x+th)−f(x)t
if t > 0. (3.5)

This definition is indeed an extension of the usual one that is seen from the following
lemma.

Lemma 3.6. Let X and Y be normed spaces. Then a mapping f : X → Y is Ψb-
Lipschitz-continuous if and only if f is Lipschitz continuous in the usual sense, that
is, if and only if there exists M > 0 such that for any x1,x2 from X,

∥∥f(x2)−f(x1)∥∥≤M∥∥x2−x1∥∥. (3.6)

Proof. First of all, notice that equation (3.3) for Ψ = Ψb means that for every
bounded set B in X, the set

fR+,X(B)=
{
f(x+th)−f(x)

t

∣∣∣∣t ∈R+, x ∈X, h∈ B
}

(3.7)

is bounded in Y.
Now, let f satisfy (3.6). Then for each t ∈R+ and each x ∈X, we have

∥∥∥∥f(x+th)−f(x)t

∥∥∥∥≤ 1t M‖th‖ =M‖h‖, (3.8)

so that, any bounded B, the set (3.7) is bounded in Y .
Conversely, let the set (3.7) be bounded for any bounded B. Take the unit ball as B.

Let the norms of all elements of the corresponding set (3.7) do not exceed M . Then
for any x and h,

∥∥f(x+h)−f(x)∥∥≤M‖h‖. (3.9)

Indeed, any h can be written in the form h = ‖h‖e, where ‖e‖ = 1. Without loss of
generality, we can assume that ‖h‖ =:α> 0. So, we have

∥∥f(x+h)−f(x)∥∥=α
∥∥∥∥f(x+αe)−f(x)α

∥∥∥∥≤αM =M‖h‖. (3.10)
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Definition 3.7 [4]. Let Ψ be a pseudo-topologizer on A×B and let X and Y be
p.v.g.’s from A and B, respectively. We say that a mapping f :X → Y is Ψ -differentiable
at a point x ∈X if f admits the representation

f(x+h)= f(x)+f ′(x)h+r(h) (h∈X), (3.11)

where f ′(x)∈ L(X,Y) (the derivative of f at x) and r satisfies the condition

rt �→ 0 in Ψ(X,Y) as t �→+0, (3.12)

that is,

rr+ ↓ Ψ(X,Y), (3.13)

where rt (for t ∈ R+) is a mapping from X into Y defined as follows: rt = 0 if t = 0,
and

r1(h) := r(th)t if t > 0. (3.14)

Notice that FB-differentiability (respectively, Fc-differentiability) is the so-called
Frölicher-Bucher (respectively, Michal-Bastiani) differentiability and that, for normed
spaces, Fb-differentiability is just Fréchet differentiability.

Remark 3.8. As shown in [2], for the case of topological vector spaces F#C -differenti-
ability coincides with F#B -differentiability. This is the so-called Hyers-Lang differentia-
bility.

4. The main results. Here is the exact formulation of our results. Comparing with
the above roughly speaking formulation in the introduction, a condition of continuity
appears now twice.

Theorem 4.1. Let Ψ be a pseudo-topologizer on PLG×PLG that possesses the prop-
erties (EXP), (IMB), and (SAT). LetX be an arbitrary p.v.s. If a continuous convex function
f : X → R is Ψ -boundedly convex, the corresponding function q (see Definition 3.1) be-
ing also continuous, then f is everywhere Ψ -differentiable and its derivative f ′ : X →
L(X,R) is Ψ -Lipschitz continuous, L(X,R) being supplied with the pseudo-topology in-
duced from Ψ(X,R).

Proof. We have the following steps.
Step 1. Here we show that f is everywhere Gateaux differentiable. Since f is convex,

the restriction of f onto each straight line is a convex continuous function. As is well-
known (see, e.g., [7]), for this restriction, there exist both one-sided derivatives at each
point of the straight line. This means that our function f is differentiable at each point
x in any direction h. Denote the corresponding mapping

h � �→ dhf(x) := lim
t↓0

f(x+th)−f(x)
t

, X �→ Y (4.1)

by f ′(x). We need to verify that this mapping is linear and continuous. It is evident
that it is positively homogeneous. By Remark 3.3, we may assume that x = 0 and
f(0)= 0.
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Step 2. Now, we show that the mapping f ′(0) is linear. Put x1 = th1, x2 = th2 (0<
t < 1,h1,h2 ∈X) in (3.1) and divide by t:

0≤ λ1 f(th1)t
+λ2 f(th2)t

− f
(
t(λ1h1+λ2h2)

)
t

≤ 1
t
λ1λ2q

(
t(h2−h1)

)= tλ1λ2q(h2−h1),
(4.2)

(we have used the fact that q is homogeneous of degree 2). As t ↓ 0, we obtain
0≤ λ1f ′(0)h1+λ2f ′(0)h2−f ′(0)

(
λ1h1+λ2h2

)≤ 0. (4.3)

So,

f ′(0)(λ1h1+λ2h2)= λ1f ′(0)h1+λ2f ′(0)h2 (4.4)

for all h1,h2 from X and all nonnegative λ1,λ2 with λ1+λ2 = 1. If we take h1 =−h2 =
−h·λ1 = λ2 = 1/2, we obtain

f ′(0)(−h)=−f ′(0)h. (4.5)

(f ′(0)0 = 0 by the mentioned homogeneity of f ′(0)). The desired linearity follows
from (4.4), (4.5), and from the homogeneity of f ′(0).

Step 3. Here, we verify that f ′(0) is continuous. Take x1 = 0, x2 = h, λ1 = 1−t, λ2 =
t(0< t < 1, h∈X) in (3.1):

0≤ tf (h)−f(th)≤ t(1−t)q(h), (4.6)

whence it follows that

0≤−f(th)
t

+f(h)≤ (1−t)q(h). (4.7)

As t ↓ 0, we obtain
0≤−f ′(0)h+f(h)≤ q(h). (4.8)

If h → 0, then f(h) and q(h) tend to zero by the supposed continuity of f and q.
Hence, f ′(0)h→ 0 if h→ 0, that is, f ′(0) is continuous at 0 and, thereby, everywhere.
Thus, we have proved that f is everywhere Gateaux differentiable.
Step 4. Now, we prove that f is Ψ -differentiable at each point x. By Remark 3.3

and the fact that the addition of continuous affine functions and translations do not
disturb Ψ -differentiability, we may assume that x = 0,f (0)= 0,f ′(0)= 0 (where f ′(0)
is the Gateaux derivative at 0 which was proved to exist). We need to verify that

rt �→ 0 in Ψ(X,Y) as t ↓ 0, (4.9)

where

rt : h � �→ f(th)−f(0)
t

= f(th)
t

, X �→ Y . (4.10)

Take x1 =−th,x2 = th,(0< t < 1,h∈X) in (3.1)
0≤ 1

2f(−th)+ 1
2f(th)≤ 1

4q(2th)= t2q(h). (4.11)
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Since the function f is convex and f(0) = 0 and f ′(0) = 0, both the values f(−th)
and f(th) are nonnegative. Hence,

0≤ f(th)
t

≤ 2tq(h), (4.12)

that is,

0≤ rt ≤ 2tq. (4.13)

If t ↓ 0, then tq→ 0 in Ψ(X,Y) since q is Ψ -bounded. Therefore, also rt → 0 in Ψ(X,Y).
Step 5. Now, we show that, for any x1,x2 from X,

0≤ f(x2)−f(x1)−f ′(x1)·(x2−x1)≤ q(x2−x1). (4.14)

Again, we may assume, without loss of generality, that x = 0,f (0)= 0, and f ′(0)= 0
(since equation (4.8) does not disturb by the addition to f of constants and linear
functions). The relation to be proved takes then the form (if we put x2 = h)

0≤ f(h)≤ q(h) (4.15)

for any h∈X. But this follows at once from (4.8).
Step 6. Now, we go to the proof of the main assertion on Ψ -Lipschitz continuity of

our derivative. We need to show that

rf ′R+,X ↓ Ψ
(
X,L(X,R)Ψ

)
. (4.16)

By the properties (EXP) and (IMB) which are fulfilled for Ψ by the assumption, equa-
tion (4.16) is equivalent to the relation

rf ′R+,X ↓ Ψ
(
X×X,R), (4.17)

where f ′R+,X is the set in F(X×X,R), that corresponds to the set f ′R+,X by the canonical
isomorphism

F
(
X,F(X,R)

)= F(X×X,R). (4.18)

In the next step, we show that

f ′R+,X ⊂ I1
(
1
2q◦π1+2q◦π2

)
, (4.19)

where I1 = [−1,1], and π1 and π2 are the canonical projections of the product X×X
onto the factors. It follows from (4.19) that

rf ′R+,X ⊃ r
(
1
2q◦π1+2q◦π2

)
⊃ (rq)◦π1+(rq)◦π2. (4.20)

But rq ↓ Ψ(X,R) by the fact that q is Ψ -bounded. Hence, both the terms in the right-
hand side of (4.20) converge to 0 in F(X ×X,R) by condition (b) of Definition 2.1.
Thereby, (4.17) is proved.

Step 7. It remains to show equation (4.19). We have, for t ∈R+ and x,h1,h2 ∈X,

f ′t,x(h1,h2)= f ′t,x(h1)·h2 =
f ′(x+th1)−f ′(x)

t
·h2. (4.21)

(Here, the bar is to be understood in the same sense as in equation (4.17) above.) Put
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x1 = x, x2 = x+th1, x3 = x+th2, x4 = x+th1−th2, x0 = x+(1/2)th1, so that x0 is
the center of the parallelogram with the vertices x1, . . . ,x4. By (3.1),

1
2f(x1)+ 1

2f(x2)−f(x0)≤ 1
4q(th1)= 1

4 t
2q(h1). (4.22)

By convexity of f ,

0≤ 1
2f(x3)+ 1

2f(x4)−f(x0). (4.23)

By (4.14),

f(x3)−f(x1)−f ′(x1)·(+th2)≤ q(th2)= t2q(h2), (4.24)

f(x4)−f(x2)−f ′(x2)·(−th2)≤ q(th2)= t2q(h2). (4.25)

If we take the sum of the four inequalities from (4.22) to (4.25), the first two being
multiplied by 2 and −2, respectively, then we obtain

f ′(x2)·th2−f ′(x1)·th2 ≤ t
2

2
q(h1)+2t2q(h2), (4.26)

whence it follows that

1
t
[
f ′(x+th1)−f ′(x)

]·h2 ≤ 12q(h1)+2q(h2). (4.27)

If we substitute here h2 by −h2, then we find that the left-hand side of (4.27) times
−1 also does not exceed the right-hand side of (4.27). So, the left-hand side belongs
to I1(1/2q(h1)+2q(h2)). Therefore, (see (4.21))

f ′t,x(h1,h2)∈ I1
(
1
2q(h1)+2q(h2)

)
= I1

(
1
2q◦π1+2q◦π2

)
(h1,h2). (4.28)

So, if we put, for short,

1
2q◦π1+2q◦π2 =: p, (4.29)

then

∀h1,h2 f ′t,x(h1,h2)∈ I1p(h1,h2), (4.30)

whence it follows that

∀t,α∈R+∀x,h1,h2 ∈X, Iαf ′t,x(h1,h2)⊂ Iαp(h1,h2). (4.31)

Therefore,

Rf ′R+,X ⊃ (rp)∧. (4.32)

But (rp)∧ ↓ Ψ(X,R) since rp ↓ Ψ(X,r), and Ψ satisfies (SAT). Hence, rf ′R+,x ↓ Ψ(X,R).
The theorem is proved.

Corollary 4.2. Let S be a linear filter system in a category A of p.v.g.’s, let X be a
p.v.g. from A, and let f : X → R be a continuous convex function. If f is Fs -boundedly
convex, then f is everywhere F#s -differentiable and its derivative f ′ : X → L(X,R) is
Fs -Lipschitz-continuous, L(X,R) being supplied with the pseudo-topology induced from
F#s (X,R).
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Proof. If the function q that appears in Definition 3.1 is a bounded point in
Fs(X,R), then q is also a bounded point in F#S (X,R) since rq ↓ FS(X,R)⇒ rq ↓ F#S (X,R)
by the definition of the onion modification. So, the assertion of Corollary 4.2 follows
from Theorem 4.1.

Corollary 4.3. Let X be a p.v.g., and let f : X → R be a continuous convex func-
tion. If f is boundedly convex, then f is everywhere Hyers-Lang differentiable and its
derivative f ′ : X → L(X,R) is F#C -Lipschitz-continuous, L(X,R) being supplied with the
pseudo-topology induced from F#C(X,R).

Proof. This follows from Lemma 2.4 and Remark 3.8.

Remark 4.4. Since F#C coincides, for normed spaces, with fb (see [2]) and Hyers-
Lang differentiability coincides, for normed spaces, with Fréchet differentiability (see
[3]), Corollary 4.3 reduces, in the case of a normed space X, (in view of Lemma 3.6) to
the result of Focke [5].
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Averbuch: Silesian University, Bezručovo nám. 13, 74601 Opava, Czech Republic
E-mail address: Vladimir.Averbuch@fpf.slu.cz

http://www.ams.org/mathscinet-getitem?mr=55:6469
http://www.emis.de/cgi-bin/MATH-item?364.46054
http://www.ams.org/mathscinet-getitem?mr=86m:46041
http://www.emis.de/cgi-bin/MATH-item?592.46061
http://www.ams.org/mathscinet-getitem?mr=39:7424
http://www.emis.de/cgi-bin/MATH-item?179.19103
http://www.ams.org/mathscinet-getitem?mr=45:9131
http://www.emis.de/cgi-bin/MATH-item?244.46057
http://www.ams.org/mathscinet-getitem?mr=57:17430
http://www.emis.de/cgi-bin/MATH-item?386.46038
http://www.ams.org/mathscinet-getitem?mr=35:4723
http://www.emis.de/cgi-bin/MATH-item?156.38303
http://www.ams.org/mathscinet-getitem?mr=43:445
http://www.emis.de/cgi-bin/MATH-item?193.18401
mailto:Vladimir.Averbuch@fpf.slu.cz

