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ABSTRACT. Lemma introduced the Abel-type matrix Ay, defined by a,x = (ki"‘ ) e+l (-

tn)**1 where « > —1,0 < t,, < 1, for all n, and lim¢, = 1; and studied it as mappings into
{. In this paper, we extend our study of this matrix and investigate its translativity in the
0-£ setting.
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1. Background. In [1], Borwein proved that the Abel-type power series method
of summability denoted by Ay(x > —1), is translative in the ordinary summability
(c-c) setting. So, it natural to ask if there is a theory in the £-f setting that parallel
the theory of A, in the c-c setting. The answer is affirmative, and have provided the
present study.

2. Basic notation and definitions. Let A = (a,x) be an infinite matrix defining a
sequence to a sequence summability transformation given by

(AX)n = D ankXk, (2.1)
k=0

where (Ax), denotes the nth term of the image sequence Ax. Let iy be a complex
number sequence. Throughout this paper, we use the following basic notations and
definitions:
(i) ¢ = {the set of all convergent complex number segences},
(ii) € =1{y: 3% vkl converges,
(i) £(A) ={y:Ay el},
(iv) c(A) = {y :y is summable by A}.

DEFINITION 1. If X and Y are sets of complex number sequences, then the matrix
A is called an X-Y matrix if the image Au of u under the transformation A is in Y
whenever u is in X.

DEFINITION 2. The summability matrix A is said to be f-translative for the se-
quence u in £(A) provided that each of the sequences T, and S, is in £(A), where
T, = {ui,uz,us,...} and Sy, = {0, ug, u1,...}.
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3. The main results
PROPOSITION 1. Every {-f Ay, matrix is {-translative for each sequence x € {.

THEOREM 1. Every 0-f Ay matrix is £-translative for those sequences x € £(Ayxyt)
for which {xy/k} € £,k =1,2,3,....

PROOF. Suppose that x is a sequence in £(Ay;) for which {x;/k} € £. We show
that
(1) Tx € £(Ayy), and
(2) Sy € €(Aq1), where Ty and Sy are as defined in Definition 2. Let us first show
that (1) holds.

Note that
= (k+«
(AaaT)n | = (1) Z( )xkﬂtn
o\ Kk
_ a+1 *®
= % > (kza)xhltﬁ“
n k=0
_ x+1 | *® _
_d-t)* Z(k 1+D(>xktfl
L =R 3.1)
(1—t,)x"t i <k+(x) X
el — Xkty ——
tn k=1 k "k+
_ 0=t $ (ke k< a)
= :, };( X )xktn 1 o
<A, +B,,
where
_ a+1 *©
An:% Z(kza>xktﬁ (3.2)
n k=1
and
a6t [ & (k) X,
Bn = th kg:l k k+0(tn . (3.3)

The use of the triangle inequality in equation (3.1) is legitimate as the radii of con-
vergence of the two power series are at least 1. Now if we show that both A and B
are in £, then (1) holds. But the conditions that A € £ and B € ¥ follow easily from
the hypotheses that x € £(Ax,;) and {xy/k} € ¥, respectively. Next, we show that (2)
holds as follows. We have

3 (k + cx) Xtk
k=

i k+o+1 k!
k+1 "

k=0

—

|(Ao(,th n| = _tn 1x+1
o(+1
n
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C(1—ty)"! o (k+ k+1<k+o<+1)
(1-t,) g( B} ) L (3.4)
_ _ ¢x+1 i k+0( k+1< (6.4 )
tn g( ) Xty 1+7k+1
<E,+Fy,,
where
En=(1-tn)*" Z(k“")xkt’; (3.5)
k=0 k
and
ye| = (k+a\ xK .
Fn=(1-ty) Z( )kHt“ (3.6)

The use of the triangle inequality in (3.4) is justified as above. If we show that E and
F are in £, then (2) holds. But the hypothesis that x € £(Ay;) and {xx/k} € £ implies
that both E and F are in £, respectively, and hence the theorem follows. O

Here, we remark that a sequence x defined by xi = (—1)¥/k is one of the sequences
which satisfies the condition of Theorem 1.

THEOREM 2. Suppose that —1 < « < 0, then every -0 Ay matrix is £-traslative for
each Ay-summable sequence x in £(Ax,).

PROOF. Let x € c(Ay) N¥(Ayt). We show that

(1) Tx e (Axs),

(2) Sx e l(Axr).

First, let us show that (1) holds. Since the case o« = 0 was already proved by J. Fridy
in [2], here we only consider the case —1 < & < 0. Note that

S (k+«
[ (AxtTx)p | = (l—tn)a+1 Z X1t
k
k=0
1-t,)*! | & (k+«
:% Z( ' )Xk+1tk+l
n k=0
(1—t,)*! w(k—1+o() X
=— Xty
tn k; k-1 (3.7)
(1—t,)x+! i(kﬂx) ‘
= Xktk——
tn o\ k
L (1-t)* | & [kt k( B )
a tn I;( k )xkt I+«
<A, +B,,
where
S (k+«
An=(1—tn o+l Z( K )th‘lr(l (38)
k=1
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and

Bn:_ _tn ¢x+1

(3.9)

i k + (k Xk

= "kt
Now if we show that both A and B are in £, then (1) holds. But the condition that A € ¢
follows from the hypothesis that x € £(An,;) and B € £ are shown as follows. Observe

that
B < (1= )" xa | + (1= t) ! i (k+°‘) kk’i"a = Cp+ Dy, (3.10)
where
Cn = Ix11(1 )" (3.11)
and
Dy = (1—t,)"" i (k+0(> kk)iko( _ (3.12)

By [3, Thm. 1], the hypothesis that A, ¢-f implies that C € ¥, hence there remains
only to show D € £ to show that B € £. Observe that

_ o+1 © tn
D, = % Z k+ o Xk J thro=1 ¢
tn i\ K 0
, (3.13)
— (l—tn)OHI J " < k+ o k+o—1
= |/ dat EZ p )Xt )

The interchanging of the integral and the summation is legitimate as the radius of
convergence of the power series

z (’” "‘) xptkral (3.14)

is at least 1 by [3, Prop. 1], and hence the power series converges absolutely and
uniformly for 0 <t < t;,. Now we let

F(t)=> (kz(x>xktk*°‘1. (3.15)
k=2

Then, we have

F(t)(1-6)%1 = (1—1)**! Z(k“") xptkroct (3.16)

and the hypothesis that x € c(Ay) implies that

tliIEF(t)(lft)"‘“ = A (finite) for0<t <1. (3.17)
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We also have

ltiII&F(t)(l—t)"‘“ =0. (3.18)
Now equations (3.17) and (3.18) yield that
|F(t)(1-t)*"| <M; for some M; >0, (3.19)
and hence
IF(t)] <My (1—t)~**D, (3.20)
So, we have
Dn = % OtnF(t)dt‘

tn
st(l—tn)o‘“J0 |F(t)|dt for some M, > 0,

tn

leMz(l—tn)MlL (1-t)~ b ag (3.21)
MM MM

= (=) = = (1)

- 2M1 M, (1 *tn)wl-

By [3, Thm. 1], the hypothesis that Ay, ¢-¢ implies that (1 —t)**! € £, and hence
D € {. Next we show that (2) holds. We have
ad (k +

| (AD(,tSX)n| = (1 _tn)uﬂ k )xkltﬁ

M

= (l_tn)o(ﬂ z(
— (1) i (k+o<>xl(tk+1<k+o<+1)’ (3.22)
n k n

_ (l_tn)o(+1 i

<E,+Fy,,

where

(3.23)

and

Fo=-(1-tn)" "« ) (3.24)

i (k;cx) % et
k=0

Now if we show that both E and F are in £, then (2) follows. But the hypothesis that
x € {(Aq;) implies that E € £, and F € £ follows using the same technique used in
showing D € £ in (1) in the proof of Theorem 2. Hence the theorem is proved. O




194 MULATU LEMMA

COROLLARY 1. Suppose that —1 < « < 0; then every £-0Ay; matrix is L-translative
for the class of all sequence x whose partial sum is bounded.

PROOF. By [3, Thm. 8], x is in £(Ay;) and it is easy to see that x is also in ¢(Ay).
Hence the assertion follows by Theorem 2. O

COROLLARY 2. Suppose that —1 < « < 0; then every £-0Ay; matrix is L-translative
for the unbounded sequence x defined by

ck+o+1

xtl (3.25)

xx=(-1)

PROOF. Since x € c(Ax) N (Aq;), the corollary easily follows by Theorem 2. O

THEOREM 3. Suppose that « > 0 and (1-t) € ¥; then every £-(Ay; matrix is {-
translative for each Ay-summable sequence in €(Ayy).

PROOF. Suppose that x € c(Ay) N€(Ax¢). To prove the theorem, we need to show
that both Ay Ty and Ay Sy are in £. We have

S (k+«
|(A<x,th)n| = (l—tn)OHl Z ( K >Xk+1tfl (3.26)
k=0
and by referring to the proof of Theorem 1, we can express |(Ax:Tx)nl as
| (AqtTx)y, | < An+ By, (3.27)
where
_ a+1 *©
k=1
and
A=t &kt K
Bn = [ g k+(xtn i (3.29)

Now if we show that both A and B are in #, then Ay Ty is in €. The condition that
A € { follows easily since Ay, is an £-f matrix and x € £(Ay,). The condition that
B € ¢ is shown as follows. Using the triangle inequality, we have

By < Cp+Dy, (3.30)
where
Cn = alx1 | (1-t,) " (3.31)
and
D= x(1—1,)*"" ki (kzo‘) tk k’i"a . (3.32)
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We have B € ¥, if we show that both C and D are in £. The condition that C € € follows
easily as (1 —t)**! € ¢ by [3, Thm. 1], and D € £ can be shown as follows. Note that
following exactly the same steps as in the proof of (1) of Theorem 2, we can easily
show that

- M M>

MM,
Dy < (1—tn) — —=2 (1 —t,) . (3.33)
16 o

Now since (1 —t) € £ is given and Ay is an £-£ matrix implies that (1 —t)**! is
in € by [3, Thm. 1], it follows that D € . Also using the same techniques as in the
proof of (2) of Theorem 2, we can easily show that Ay ¢Sy € € and hence the assertion

follows. O

COROLLARY 3. Suppose that x> 0,q > 1, and t, =1 - (n+2)"19, then every Ay
matrix is -translative for each Ay-summable sequence x in €(Ayy).

PROOF. Since by [3, Thm. 5], An, is an £-¢ matrix, the corollary easily follows by
Theorem 3. O

EXAMPLE 1. Suppose that x; = (—1)* and (1 —t) € ¥; then every #-fA,; matrix is
{-translative for the sequence x. Note that x € c¢(Ay) N €(Ays). If =1 < & < 0, then
every £-f A, matrix is f-translative for the sequence x by Theorem 2. If « > 0, then
every {-f A matrix is £-translative for the sequence x by Theorem 3.

EXAMPLE 2. Suppose that « > 0, g > 1, and t, = 1 — (n +2)~1. Then every Ay
matrix is £-translative for the unbounded sequence x defined by

_1)kk+o<+1

(3.34)
x+1

Xk = (

Since x € c(Ax) N¥(Axy), the assertion follows by Corollary 3.
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