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A NOTE ON COMMUTATIVITY OF NONASSOCIATIVE RINGS
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Abstract. A theorem on commutativity of nonassociate ring is given.
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In 1968, Johnsen, Outcalt, and Yaqub [3] have established that a nonassociative
ring R with identity 1 satisfying the relation (xy)2 = x2y2 for every x and y in
R, is commutative. Gupta [2] has shown that if R is a nonassociative 2-torsion free
ring with unity 1 satisfying (xy)2 = (yx)2 for all x,y in R, then R is commutative.
Later, Yuanchun [4] proved that a Baer-semisimple ring R is commutative if and only if
(xy)2−xy2x is central. The existence of noncommutative ringR withR2 ⊆ Z(R), cen-
ter of R, rules out the possibility that (xy)2−xy2xεZ(R)might yield commutativity
even in associative rings. As an example, consider A3 = {(aij)/aij are integers with
aij = 0, i ≥ j}. Then A3 is a noncommutative nilpotent ring of index 3 in which
(xy)2−xy2x is central for all x,y in A3.
This naturally gives rise to the following question: what additional conditions are

needed to insure the commutativity of R when R is an arbitrary ring? With this moti-
vation, Ashraf, Quadri, and Zelinsky [1] established the following result.

Theorem 1. Let R be an associative ring with unity 1 satisfying (xy)2 =yx2y for
all x,y in R, then R is commutative.

They used very complicated combinatorial arguments. In this connection we prove
the following results.

Theorem 2. Let R be a nonassociative ring with unity 1 satisfying (xy)2 = (xy2)x
for all x,y in R. Then R is commutative.

Proof. Replacing y+1 for y in (xy)2 = (xy2)x, we obtain

(
x(y+1))2 = (x(y+1)2)x, which yields x(xy)= (xy)x. (1)

Repeating this argument for x+1 in place of x, equation (1) gives

x(xy)+xy = (xy)x+yx. (2)

Thus equation (2) together with equation (1), shows that R is commutative.
Similarly, we can prove the following theorem.
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Theorem 3. Let R be a nonassociative ring with unity 1 satisfying (xy)2 = (yx2)y
for all x,y in R. Then R is commutative.

If we drop the restriction of unity 1 in the hypothesis, R may be badly noncommu-
tative.

Example. Let

R =



αI+B

∣∣∣∣∣∣ I =



1 0 0
0 1 0
0 0 1


 , B =



0 β γ
0 0 δ
0 0 0


 , α,β,γ,δ∈ Zp



, (3)

p is a prime such that p/n if n odd or 2p/n if n even, and Zp is the ring of integers
modulo p. Then B3 = 0, for n≥ 3 and

(αI+B)n =αnI+nαn−1B+ n(n−1)
2!

αn−2B2+··· =αnI, (4)

because n= 0 and n(n−1)/2!= 0 in Zp , where p/n and 2p/n(n−1).
However, R need not be commutative.
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