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Abstract. Some related fixed points theorems for set valued mappings on two complete
and compact metric spaces are proved.
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We let (X,d) be a complete metric space and let B(X) be the set of all nonempty sub-
sets of X. As in [1, 2], we define the function δ(A,B) with A and B in B(X) by δ(A,B)=
sup{d(a,b) : a∈A,b ∈ B}. If A consists of a single point a we write δ(A,B)= δ(a,B).
If B also consists of single point b, we write δ(A,B) = δ(a,B) = δ(a,b) = d(a,b). It
follows immediately that δ(A,B)= δ(B,A)≥ 0, and δ(A,B)≤ δ(A,C)+δ(C,B) for all
A, B in B(X).
Now if {An : n = 1,2, . . .} is a sequence of sets in B(X), we say that it converges to

the set A in B(X) if
(i) each point a ∈ A is the limit of some convergent sequence {an ∈ An : n =
1,2, . . .},

(ii) for arbitrary ε > 0, there exists an integerN such that An ⊂Aε for n>N , where
Aε is the union of all open spheres with centers in A and radius ε.

The set A is then said to be the limit of the sequence {An}.
The following lemma was proved [1].

Lemma. If {An} and {Bn} are sequences of bounded subsets of a complete metric
space (X,d) which converge to the bounded subsets A and B, respectively, then the
sequence {δ(An,Bn)} converges to δ(A,B).
Now, let F be a mapping of X into B(X). We say that the mapping F is continuous at

a point X if whenever {xn} is a sequence of points in X converging to x, the sequence
{Fxn} in B(X) converges to Fx in B(X). We say that F is continuous mapping of X
into B(X) if F is continuous at each point x in X. We say that a point z in X is a fixed
point of F if z is in Fz. If A is in B(X), we define the set FA=⋃a∈AFa.

Theorem 1. Let (X,d1) and (Y ,d2) be complete metrics spaces, let F be mapping
of X into B(Y) and let G be mapping of Y into B(X) satisfying the inequalities

δ1
(
GFx,GFx′

)≤ cmax
{
d1
(
x,x′

)
,δ1(x,GFx),δ1

(
x′,GFx′

)
,δ2
(
Fx,Fx′

)}
, (1)

http://ijmms.hindawi.com
http://www.hindawi.com


206 B. FISHER AND D. TÜRKOḠLU

δ2
(
FGy,FGy ′

)≤ cmax
{
d2
(
y,y ′

)
,δ2(y,FGy),δ1

(
y ′,FGy ′

)
,δ1
(
Gy,Gy ′

)}
(2)

for all x,x′ in X and y,y ′, where 0 ≤ c < 1. If F is continuous, then GF has a unique
fixed point z in X and FG has a unique fixed point w in Y .

Proof. Let x1 be an arbitrary point in X. Define sequences {xn} and {yn} in X
and Y , respectively, as follows. Choose a point y1 in Fx1 and then a point x2 in Gy1.
In general, having chosen xn in X and yn in Y choose xn+1 in Gyn and then yn+1 in
Fxn+1 for n= 1,2, . . . . Then,
d1
(
xn+1,xn+2

)≤ δ1
(
GFxn,GFxn+1

)

≤ cmax
{
d1
(
xn,xn+1

)
,δ1
(
xn,GFxn

)
, δ1

(
xn+1,GFxn

)
,

δ1
(
xn+1,GFxn+1

)
,δ2
(
Fxn,Fxn+1

)}

≤ cmax
{
δ1
(
GFxn−1,GFxn

)
,δ1
(
GFxn,GFxn+1

)
,δ2
(
Fxn,Fxn+1

)}

= cmax
{
δ1
(
GFxn−1,GFxn

)
,δ2
(
Fxn,Fxn+1

)}

(3)

and, similarly,

d2
(
yn+1,yn+2

)≤ δ2
(
FGyn,GFyn+1

)

≤ cmax
{
δ2
(
FGyn−1,FGyn

)
,δ1
(
Gyn,Gyn+1

)}
.

(4)

It follow that, for r = 1,2, . . . ,
d1
(
xn+1,xn+r+1

)≤ δ1
(
GFxn,GFxn+r

)

≤ δ1
(
GFxn,GFxn+1

)+···+δ1
(
GFxn+r−1,GFxn+r

)

≤ (cn+cn+1+···+cn+r−1)δ1
(
x1,GFx1

)
< ε

(5)

for n greater than some N , since c < 1. The sequence {xn} is, therefore, a Cauchy
sequence in the complete metric space X and so has a limit z in X. Similarly, the
sequence {yn} is a sequence in complete metric space Y and so has a limit w in Y .
Further

δ1
(
z,GFxn

)≤ d1
(
z,xm+1

)+δ1
(
xm+1,GFxn

)

≤ d1
(
z,xm+1

)+δ1
(
GFxm,GFxn

)
,

(6)

since xm+1 ∈GFxm. Thus, on using inequality (5), we have

δ1
(
z,GFxn

)≤ d1
(
z,xm+1

)+ε (7)

form, n≥N . Lettingm tends to infinity it follows that

δ1
(
z,GFxn

)
< ε (8)

for n>N and so

lim
n→∞GFxn = {z} (9)

since ε is arbitrary. Similarly,

lim
n→∞FGyn = {w} = lim

n→∞Fxn (10)
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since xn+1 is in Gyn. Using the continuity of F , we see that

lim
n→∞Fxn = Fz = {w}. (11)

Using inequality (1), we now have

δ1
(
GFxn,GFz

)≤ cmax
{
d1(xn,z),δ1

(
xn,GFxn

)
,δ1(z,GFz),δ2

(
Fz,Fxn

)}
. (12)

Letting n tends to infinity and using (9) and (11), we have

δ1(z,GFz)≤ cδ1(z,GFz). (13)

Since c < 1, δ1(z,GFz)= 0 and, so, we must have GFz = {z}, proving that z is a fixed
point of GF .
Further, using (11), we have

FGw = FGFz = Fz =w, (14)

proving that w is a fixed point of FG.
Now suppose that GF has a second fixed point z′. Then using inequalities (1) and

(2), we have

δ1
(
z′,GFz′

)≤ δ1
(
GFz′,GFz′

)

≤ cmax
{
d1
(
z′,z′

)
,δ1
(
z′,GFz′

)
,δ2
(
Fz′,Fz′

)}

= cδ2
(
Fz′,Fz′

)≤ cδ2
(
Fz′,FGFz′

)≤ cδ2
(
FGFz′,FGFz′

)

≤ c2max
{
δ2
(
Fz′,Fz′

)
,δ2
(
Fz′,FGFz′

)
,δ1
(
GFz′,FGz′

)}

= c2δ2
(
GFz′,GFz′

)

(15)

and so Fz′ is a singleton and GFz′ = {z′}, since c < 1. Thus,
d1
(
z,z′

)= δ1
(
GFz,GFz′

)

≤ cmax
{
d1
(
z,z′

)
,δ1(z,GFz),δ1

(
z′,GFz′

)
,δ2
(
Fz,Fz′

)}

= cd2
(
Fz,Fz′

)
.

(16)

But

d2
(
Fz,Fz′

)≤ δ2
(
FGFz,FGFz′

)

≤ cmax
{
δ2
(
Fz,Fz′

)
,δ2(Fz,FGFz),δ2

(
Fz′,FGFz′

)
,δ1
(
GFz,GFz′

)}

= cmax
{
d2
(
Fz,Fz′

)
,d2(Fz,Fz),d2

(
Fz′,Fz′

)
,d1

(
z,z′

)}

= cd1
(
z,z′

)

(17)

and so

d1
(
z,z′

)≤ c2d1
(
z,z′

)
. (18)

Since c < 1, the uniqueness of z follows.
Similarly, w is the unique fixed point of FG. This completes the proof of the

theorem.
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If we let F be a single valuedmapping T ofX into Y andG be a single valuedmapping
of Y into X, we obtain the following result given in [3].

Corollary 1. Let (X,d1) and (Y ,d2) be completemetric spaces. If T is a continuous
mapping of X into Y , and S is a mapping of Y into X satisfying the inequalities

d1
(
STx,STx′

)≤ cmax
{
d1
(
x,x′

)
,d1(x,STx),d1

(
x′,STx′

)
,d2

(
Tx,Tx′

)}
,

d2
(
STy,STy ′

)≤ cmax
{
d2
(
y,y ′

)
,d2(y,TSy),d2

(
y ′,TSy ′

)
,d1

(
Sy,Sy ′

)} (19)

for all x, x′ in X and y,y ′ in Y , where 0 ≤ c < 1, then ST has a unique fixed point z
in X and TS has a unique fixed point w in Y . Further Tz =w and Sw = z.

Theorem 2. Let (X,d1) and (Y ,d2) be compact metric spaces. If F is a continuous
mapping of X into B(Y), and G is a continuous mapping of Y into B(X) satisfying the
inequalities

δ1(GFx,GFx′) <max
{
d1
(
x,x′

)
,δ1(x,GFx),δ1

(
x′,GFx′

)
,δ2
(
Fx,Fx′

)}
,

δ2
(
FGy,FGy ′

)
<max

{
d2
(
y,y ′

)
,δ2
(
y ′,FGy

)
,δ2
(
y ′,FGy ′

)
,δ1
(
Gy,Gy ′

)} (20)

for all x,x′ in X and y,y ′ in Y for which the right-hand sides of the inequalities are
positive. Then FG has a unique fixed point z in X and GF has a unique fixed point w
in Y . Further FGz = {z} and GFw = {w}.

Proof. Let us denote the right-hand side of inequalities (20) by h(x,x′) and
k(y,y ′), respectively. First of all suppose that h(x,x′) �= 0 for all x,x′ ∈ X and
k(y,y ′) �= 0 for all y,y ′ ∈ Y . Define the real-valued function f(x,x′) on X2 by

f
(
x,x′

)= δ1
(
GFx,GFx′

)

h
(
x,x′

) . (21)

Then if
{
(xn,x′n)

}
is an arbitrary sequence in X2 converning to (x,x′), it follows

from the lemma and the continuity of F and G the sequence {f(xn,x′n)} converges to
f(x,x′). The function f is therefore a continuous function defined on the compact
metric spaceX2 and so achieves its maximum value c1. Because of inequality (9), c1 < 1
and so

δ1
(
GFx,GFx′

)≤ c1max
{
d1
(
x,x′

)
,δ(x,GFx),δ1

(
x′,GFx′

)
,δ2
(
Fx,Fx′

)}
(22)

for all x,x′ in X.
Similarly, there exists c2 < 1 such that

δ2
(
FGy,FGy ′

)≤ c2max
{
d2
(
y,y ′

)
,δ2(y,FGy),δ2

(
y ′,FGy ′

)
,δ1
(
Gy,Gy ′

)}
(23)

for all y,y ′ in Y . It follows that the conditions of Theorem 2 are satisfied with c =
max{c1,c2} and, so, once again there exist z in X andw in Y such that GFz = {z} and
FGw = {w}.
Now, suppose that h(x,x′)= 0 for some x,x′ in X. Then GFx =GFx′ = {x} = {x′}

is a singleton {z} and then Fz is a singleton {w}. It follows that z is a fixed point of
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GF and GFz = {z}. Further,
FGw = FGFz = Fz = {w} (24)

and so w is a fixed point of FG.
It follows similarly that if k(y,y ′)= 0 for some y,y ′ in Y , then again GF has a fixed

point z and FG has a fixed point w.
Now let us suppose that GF has a second fixed point z′ in X so that z′ is in GFz′.

Then on using inequalities (20), we have, on assuming that δ2(Fz′,Fz′) �= 0,
δ1
(
z′,GFz′

)≤ δ1
(
GFz′,GFz′

)

<max
{
d1
(
z′,z′

)
,δ1
(
z′,GFz′

)
,δ2
(
Fz′,Fz′

)}

= δ2
(
Fz′,Fz′

)≤ δ2
(
Fz′,FGFz′

)≤ δ2
(
FGFz′,FGFz′

)

<max
{
δ2
(
Fz′,Fz′

)
,δ2
(
Fz′,FGFz′

)
,δ1
(
GFz′,FGz′

)}

= c2δ2
(
GFz′,GFz′

)

(25)

a contradiction and so Fz′ is a singleton and GFz′ = {z′}. Thus, if z �= z′

d1
(
z,z′

)= δ1
(
GFz,GFz′

)

<max
{
d1
(
z,z′

)
,δ1(z,GFz),δ1

(
z′,GFz′

)
,δ2
(
Fz,Fz′

)}

= d2
(
Fz,Fz′

)
.

(26)

But if Fz �= Fz′, we have

d2
(
Fz,Fz′

)≤ δ2
(
FGFz,FGFz′

)

<max
{
δ2
(
Fz,Fz′

)
,δ2(Fz,FGFz),δ2

(
Fz′,FGFz′

)
,δ1
(
GFz,GFz′

)}

=max
{
δ2
(
Fz,Fz′

)
,d2(Fz,Fz),d2

(
Fz′,Fz′

)
,d1

(
z,z′

)}

= d1
(
z,z′

)

(27)

and so

d1
(
z,z′

)
<d1

(
z,z′

)
, (28)

a contradiction. The uniqueness of z follows.
Similarly, w is the unique fixed point of FG. This completes the proof of the theo-

rem.

If we let F be a single valuedmapping T ofX into Y andG be a single valuedmapping
of Y into X, we obtain the following result given in [3].

Corollary 2. Let (X,d1) and (Y ,d2) be compact metric spaces. If T is a contin-
uous mapping of Y into X, and S is a continuous mapping of Y into X satisfying the
inequalities

d1
(
STx,STx′

)
<max

{
d1
(
x,x′

)
,d1(x,STx),d1

(
x′,STx′

)
,d2

(
Tx,Tx′

)}
,

d2
(
TSy,TSy ′

)
<max

{
d2
(
y,y ′

)
,d2(y,TSy),d2

(
y ′,TSy ′

)
,d1

(
Sy,Sy ′

)} (29)
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for all x,x′ in X and y,y ′ in Y for which the right-hand sides of the inequalities are
positive, then ST has a fixed point z in X and TS has a unique fixed point w in Y .
Further, Tz =w and Sw = z.
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