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ABEL-TYPE WEIGHTED MEANS TRANSFORMATIONS INTO ¢
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ABSTRACT. Let gy = (k?") for « > -1 and Qpn = I}_,qk. Suppose Ag = {ank}, where

ank = qkx/Qn for 0 < k < n and 0 otherwise. A, is called the Abel-type weighted mean
matrix. The purpose of this paper is to study these transformations as mappings into £. A
necessary and sufficient condition for A, to be £-£ is proved. Also some other properties
of the A4 matrix are investigated.
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1. Introduction. Throughout this paper, we assume that « > —1 and Q, is the
partial sums of the sequence {qi}, where gi is as above. Let A; = {anx}. Then the
Abel-type weighted mean matrix, denoted by Ay, is defined by

Ak for 0 <k <n,

ank =4 2n (1.1)
0 for k > n.

The A; matrix is the weighted mean matrix that is associated with the Abel-type
matrix introduced by M. Lemma in [5]. It is regular, indeed, totally regular.

2. Basic notation and definitions. Let A = (a,x) be an infinite matrix defining a
sequence summability transformation given by

(AX)n = D ankXk, (2.1)
k=0

where (Ax), denotes the nth term of the image sequence Ax. Let v be a complex
number sequence. Throughout this paper, we use the following basic notation and
definitions:
(i) ¢ = {The set of all convergent complex sequences},

(i) €=1{y: I olyl < oo},

(iiD) €7 ={y: 330 |vklP < oo},

(iv) (A) ={y:Ay e},

V) G={y:yx=0(@@%) for somer € (0,1)},

i) Gw = {y:yr =0 (k) for some r € (0,w), 0 <w < 1}.
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DEFINITION 1. If X and Y are sets of complex number sequences, then the matrix
A is called an X-Y matrix if the image Au of u under the transformation A is in Y,
whenever u is in X.

3. Some basic facts. The following facts are used repeatedly.
(1) For any real number « > —1 and any nonnegative integer k, we have

k+«a k&

(2) For any real number « > —1, we have

ok + o n+o+1
kzo( k):( o ) (3.2)

(3) Suppose {a,} is sequence of nonnegative numbers with ay > 0, that

n
Ay = Z ax — oo, (3.3)
k=0
Let
a(x) = > arx*,  A(x) =D Agxk, (3.4)
k=0 k=0
and suppose that
a(x) <o for0<x<l1. 3.5)
Then it follows that
(1-x)A(x)=a(x) forO<x<1. (3.6)

4. The main results
LEMMA 1. If A, is an £-€ matrix, then 1/Q € L.

PROOF. By the Knopp-Lorentz theorem [4], A, is an £-f matrix implies that
> lanol < oo, (4.1)
k=0

and consequently we have 1/Q € 4. O
LEMMA 2. We have that 1/Q € ¥ if and only if o« > 0.
PROOF. By using (3.1), we have

1 T(a+2)

Qn no+l (4.2)

and hence the assertion easily follows. O
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LEMMA 3. If1/Q € ¥, then A, is an £-8 matrix.

PROOF. By Lemma 2, we have « > 0. To show that A, is an ¢-f matrix, we must
show that the condition of the Knopp-Lorentz theorem [4] holds. Using (3.1), we have

ad k+a) = 1 k+a) o 1
Son- (1) S - (V) S

n=0 = n=k
<MK* > for some M; > 0,
=, no+l (4.3)
“d
< Mlek‘xJ X for some M, > 0,
k xo(+1
MM
-
Hence, by the Knopp-Lorentz theorem [4], A, is an £-¢ matrix. O

THEOREM 1. The following statements are equivalent:
(1) Aq is an £-0 matrix;

2 1/Qe?;

(3) x>0.

PROOF. The theorem easily follows by Lemmas 1, 2, and 3. O

REMARK 1. In Theorem 1, we showed that A, is an £-f matrix if and only if 1/Q € ¥.
But the converse is not true in general for any weighted mean matrix W,, that corre-
sponds to a sequence-to-sequence variant of the general J, power series method of
summability [1]. To see this, let

pr = (In(k+2))%, «a>1. 4.4)

We show that 1/P € £ but W, is not an £-f matrix. We have

(In(k+2))"

M=

p, =

=
Il
(=}

n o (4.5)
~Jy (In(x+2))"dx (by[6, Thm. 1.20])

~m+2)(In(n+2))%,

using integration by parts repeatedly. This yields

1 1
Py (n+2)(In(n+2))" “o

and by the condensation test, it follows that 1/P € ¥.
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Next, we show that W, is not an £-f matrix by showing that the condition of the
Knopp-Lorentz theorem [4] fails to hold. Using (4.6), it follows that

00 [ee] 1
2. lanel = (In(k+2))* 3 o
n=0 n=k "
1(In(k+2))% > 1 for some M; > 0
e (m+2)( (In(m+2))“ (4.7)
® dx
> MM, (In(k +2 “J fi M; >0
1Mo (In( )) L X1 (Inx 1)) or some M, >
= 22 (1 k4 2)).
Thus, we have
sup<| > an ]» 4.8)
and hence W, is not an £-f matrix. O

COROLLARY 1. A is an £-0 matrix.

PROOF. Since Q, = ("*;’l‘“) and o > —1 implies that «+1 > 0, the assertion easily
follows by Theorem 1. O

COROLLARY 2. A, is an £-0 matrix if and only iflim, (Q,/ngy) < 1.

PROOF. By Theorem 1, A, is an ¢- matrix implies that « > 0, and as a consequence
we have 1/(x+1) < 1. Now using (3.1), we have

[ Qn\ . n™(x+1) 1
hrrzn<nqn) _hvgnr((x+2)n°‘+1 = il <1. 4.9)

Conversely, if lim, (Q,/ngy,) < 1, then it follows from (4.9) that 1/(x+1) < 1 and
consequently we have « > 0, and hence, by Theorem 1, A, is an £-¢ matrix. O

COROLLARY 3. Suppose that zy = (kzﬁ) and « < B; then A, is an £-f matrix when-
ever A, is an £-f matrix.

PROOF. The corollary follows easily by Theorem 1. O

LEMMA 4. If the Abel-type matrix Aq, [5] is an £-0 matrix, then Ax.1 is also an £-¢
matrix.

PROOF. By the Knopp-Lorentz theorem [4], Ay, is an £-f matrix implies that
sup<|z Iank|}<oo. (4.10)
k n=0
This is equivalent to

sup{(kJra) t5(1—tn)“”}<oo. (4.11)
P k

n=0
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Now from (4.11), we can easily conclude that

sup{(k+z+l) Zt,’;(l—tn)“*z}<oo. 4.12)
n=0

k

Hence, Axs1, is an £-f matrix. O
The next theorem compares the summability fields of the matrices A; and Ay, [5].
THEOREM 2. If Ax; and A, are £-f matrices, then £(Ag) < €(Awy).

PROOF. Let x € £(A;). Then we show that x € £(Aq;). Let  be the Aj-transform
of the sequence x. Then we have

n
YnQn = > qrXk. (4.13)
k=0

Now since y,,Q, is the partial sums of the sequence gy, using (3.6) it follows that

00

(1—tn) D, Qktk = > qexitk. (4.14)
k=0 k=0

This yields

(1 _tn)ou—z

=
iMe

Qivith = (1=t,)"" S qrxitk, (4.15)
k=0

and as a consequence we have (Ay+1tY)n = (AxtX)n. By Lemma 4, Ay is an -
matrix implies that Ay1, is also an £-f matrix, and from the assumption that x €
£(Ay), it follows that y € £. Consequently, we have Ay,1,:y € £ and this is equivalent
to Ayx € £. Thus, x € £(Ay;) and hence our assertion follows. O

REMARK 2. Theorem 2 gives an important inclusion result in the £-£ setting that
parallels the famous inclusion result that exists between the power series method of
summability and its corresponding weighted mean in the c-c setting [1].

LEMMA 5. Suppose A = {an} is an £-0 matrix such that an, =0 fork > n,m > s
(both positive integers); then £(A%) < £(A™), where the interpretation for AS and A™
is as given in [6, p. 28].

THEOREM 3. If B = A, is an £-f matrix, then B™ is also an £-f matrix (for m a
positive integer greater than 1.)

PROOF. Let x € £. B is an #-f matrix implies that x € £(B). By Lemma 5, we have
£(B) < £(B™) and hence it follows that x € £(B™). Hence, B™ is an {-f matrix. O

REMARK 3. Theorem 3 gives a result that goes parallel to a c-c result given on [6,
Thm. 2.4, p. 28].

In Corollary 1, we showed that A is an £-f matrix. Here, a question may be raised
as to whether Ap maps ¢¥ into ¢ for p > 1. But this is answered negatively by the
following theorem.
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THEOREM 4. Ag does not map £* into £ for p > 1.

PROOE. Let Ag = {bnx}. Note that if Ag « maps ¢7 into ¢, then by [3, Thm. 2], we
must have

lim > |bni| = 0. (4.16)
ko
Let
n
Rn=> Qy, (4.17)
k=1

then it follows that
- k+o+1) = 1 k+o+1) < 1
o (U8 2 - ()2
n=1 k :kR" k n=k
o1

. (n+:l<+2)
> M ko1 for some M; > 0
Ek not? (4.18)

“d
> MlMgko‘*lj X for some M, >0
k

Xa+2
MM
x+1
Thus, it follows that
lim > bkl > 0, (4.19)
k n=1
and hence A does not map #* into £ for p > 1 by [3, Thm. 2]. O

Our next theorem has the form of an extension mapping theorem. It indicates that
a mapping of A, from G or G, into ¥ can be extended to a mapping of ¢ into £.

THEOREM 5. The following statements are equivalent:
(1) Aq is an £-€ matrix;

(2) A4 is a G-€ matrix;

(3) Ag is a Gy -f matrix.

PROOF. Since G is a subset of £ and G,, a subset of G, (1)=(2)=(3) follow easily.
The assertion that (3)=(1) follows by [7, Thm. 1.1] and Theorem 1. O

COROLLARY 4. (1) Aq is a G-{ matrix.
(2) Ag a Gy -f matrix.

PROOF. Since A, is an £-f matrix by Corollary 1, the assertion follows by
Theorem 5. O

COROLLARY 5. (1) If A, is a G-G matrix, then A, is an £-0 matrix.
(2) If Aq is a Gy -Gy matrix, then A, is an £-€ matrix.

PROOF. The assertion follows easily by Theorem 5. O
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THEOREM 6. A, is a G-G matrix if and only if 1/Q € G.

PROOF. If A, is a G-G matrix, then the first column of A, is must in G. This gives
1/Q € G since ay,o = qo/Qn. Conversely, suppose 1/Q € G. Then 1/Q, < Mir™ for
M; > 0and » € (0,1). Now let u € G, say |ux| < M»t* for some M> > 0 and t € (0,1).
Let Y be the A,-transform of the sequence u. Then we have

o (k+
|Ynl < MiMor™ > ( } )t" <MiMor™(1—t)~ D < Mz¥™  for someM; > 0.
k=0
(4.20)
Therefore, Y € G and hence it follows that A, is a G-G matrix. O
THEOREM 7. Ay is a Gy -Gy matrix if and only if 1/Q € Gy,.

PROOF. The proof follows easily using the same steps as in the proof of Theorem 6
by replacing G with G, . O

LEMMA 6. If the Abel-type matrix Ax, [5] is a G-G matrix, then Ay1, is also a G-G
matrix.

PROOF. By [5, Thm. 7], Ay, is G-G implies that (1 —t)**! € G. But (1 —t)**! €
G vyields (1 —t)**2 € G, and hence by [5, Thm. 7], it follows that Ays1, is a G-G
matrix. O

LEMMA 7. If the Abel-type matrix Ay [5] is a Gy -Gy matrix, then Ax+1, IS also a
Gy -Gy matrix.

PROOF. The assertion easily follows by replacing G with G, in the proof of
Lemma 6. O

THEOREM 8. If Ay [5] and A, are G-G matrices, then the G(Ax,) contains G(Ay).

PROOF. The proof easily follows using the same techniques as in the proof of
Theorem 3 by replacing £ with G and applying Lemma 6. O

THEOREM 9. IfAy; [3] and A, are Gy -Gy matrices, then Gy, (Aw,t) contains Gy (Ag).

PROOF. The proof easily follows using the same techniques as in the proof of
Theorem 3 by replacing £ with G,, and applying Lemma 7. O
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