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Abstract. Let qk =
(
k+α
k

)
for α > −1 and Qn = Σnk=0qk. Suppose Aq = {ank}, where

ank = qk/Qn for 0 ≤ k ≤ n and 0 otherwise. Aq is called the Abel-type weighted mean
matrix. The purpose of this paper is to study these transformations as mappings into �. A
necessary and sufficient condition for Aq to be �-� is proved. Also some other properties
of the Aq matrix are investigated.
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1. Introduction. Throughout this paper, we assume that α > −1 and Qn is the
partial sums of the sequence {qk}, where qk is as above. Let Aq = {ank}. Then the
Abel-type weighted mean matrix, denoted by Aq, is defined by

ank =


qk

Qn
for 0≤ k≤n,

0 for k >n.
(1.1)

The Aq matrix is the weighted mean matrix that is associated with the Abel-type
matrix introduced by M. Lemma in [5]. It is regular, indeed, totally regular.

2. Basic notation and definitions. Let A = (ank) be an infinite matrix defining a
sequence summability transformation given by

(Ax)n =
∞∑

k=0
ankxk, (2.1)

where (Ax)n denotes the nth term of the image sequence Ax. Let y be a complex
number sequence. Throughout this paper, we use the following basic notation and
definitions:
(i) c = {The set of all convergent complex sequences},
(ii) � = {y :∑∞

k=0 |yk|<∞},
(iii) �P = {y :∑∞

k=0 |yk|P <∞},
(iv) �(A)= {y :Ay ∈ �},
(v) G = {y :yk =O(rk) for some r ∈ (0,1)},
(vi) Gw = {y :yk =O(rk) for some r ∈ (0,w), 0<w < 1}.
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Definition 1. If X and Y are sets of complex number sequences, then the matrix
A is called an X-Y matrix if the image Au of u under the transformation A is in Y ,
whenever u is in X.

3. Some basic facts. The following facts are used repeatedly.
(1) For any real number α>−1 and any nonnegative integer k, we have

(
k+α
k

)
∼ kα

Γ(α+1) (as k �→∞). (3.1)

(2) For any real number α>−1, we have
n∑

k=0

(
k+α
k

)
=
(
n+α+1

n

)
. (3.2)

(3) Suppose {an} is sequence of nonnegative numbers with a0 > 0, that

An =
n∑

k=0
ak �→∞. (3.3)

Let

a(x)=
∞∑

k=0
akxk, A(x)=

∞∑
k=0

Akxk, (3.4)

and suppose that

a(x) <∞ for 0<x < 1. (3.5)

Then it follows that

(1−x)A(x)= a(x) for 0<x < 1. (3.6)

4. The main results

Lemma 1. If Aq is an �-� matrix, then 1/Q∈ �.

Proof. By the Knopp-Lorentz theorem [4], Aq is an �-� matrix implies that

∞∑
k=0
|an,0|<∞, (4.1)

and consequently we have 1/Q∈ �.

Lemma 2. We have that 1/Q∈ � if and only if α> 0.

Proof. By using (3.1), we have

1
Qn

∼ Γ(α+2)
nα+1 (4.2)

and hence the assertion easily follows.
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Lemma 3. If 1/Q∈ �, then Aq is an �-� matrix.

Proof. By Lemma 2, we have α > 0. To show that Aq is an �-� matrix, we must
show that the condition of the Knopp-Lorentz theorem [4] holds. Using (3.1), we have

∞∑
n=0

|ank| =
(
k+α
k

) ∞∑
n=k

1
Qn

=
(
k+α
k

) ∞∑
n=k

1(
n+α+1

n

)

≤M1Kα
∞∑

n=k

1
nα+1 for some M1 > 0,

≤M1M2kα
∫∞
k

dx
xα+1 for some M2 > 0,

= M1M2

α
.

(4.3)

Hence, by the Knopp-Lorentz theorem [4], Aq is an �-� matrix.

Theorem 1. The following statements are equivalent:
(1) Aq is an �-� matrix;
(2) 1/Q∈ �;
(3) α> 0.

Proof. The theorem easily follows by Lemmas 1, 2, and 3.

Remark 1. In Theorem 1, we showed thatAq is an �-�matrix if and only if 1/Q∈ �.
But the converse is not true in general for any weighted mean matrix Wp that corre-
sponds to a sequence-to-sequence variant of the general Jp power series method of
summability [1]. To see this, let

pk =
(
ln(k+2))α, α > 1. (4.4)

We show that 1/P ∈ � but Wp is not an �-� matrix. We have

Pn =
n∑

k=0

(
ln(k+2))α

∼
∫ n

0

(
ln(x+2))αdx (by [6, Thm. 1.20])

∼ (n+2)( ln(n+2))α,
(4.5)

using integration by parts repeatedly. This yields

1
Pn
∼ 1

(n+2)( ln(n+2))α (4.6)

and by the condensation test, it follows that 1/P ∈ �.
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Next, we show that Wp is not an �-� matrix by showing that the condition of the
Knopp-Lorentz theorem [4] fails to hold. Using (4.6), it follows that

∞∑
n=0

|ank| =
(
ln(k+2))α ∞∑

n=k

1
Pn

≥M1
(
ln(k+2))α ∞∑

n=k

1

(n+2)( ln(n+2))α for some M1 > 0

≥M1M2
(
ln(k+2))α

∫∞
k

dx
(x+2)( ln(x+2))α for some M2 > 0

= M1M2

α−1
(
ln(k+2)).

(4.7)

Thus, we have

sup
k




∞∑
n=0

ank


=∞, (4.8)

and hence Wp is not an �-� matrix.

Corollary 1. AQ is an �-� matrix.

Proof. Since Qn =
(
n+α+1

n

)
and α>−1 implies that α+1> 0, the assertion easily

follows by Theorem 1.

Corollary 2. Aq is an �-� matrix if and only if limn(Qn/nqn) < 1.

Proof. By Theorem 1,Aq is an �-�matrix implies thatα> 0, and as a consequence
we have 1/(α+1) < 1. Now using (3.1), we have

lim
n

(
Qn

nqn

)
= lim

n

nα+1Γ(α+1)
Γ(α+2)nα+1 =

1
α+1 < 1. (4.9)

Conversely, if limn(Qn/nqn) < 1, then it follows from (4.9) that 1/(α+1) < 1 and
consequently we have α> 0, and hence, by Theorem 1, Aq is an �-� matrix.

Corollary 3. Suppose that zk =
(
k+β
k

)
and α < β; then Az is an �-� matrix when-

ever Aq is an �-� matrix.

Proof. The corollary follows easily by Theorem 1.

Lemma 4. If the Abel-type matrix Aα,t [5] is an �-� matrix, then Aα+1,t is also an �-�
matrix.

Proof. By the Knopp-Lorentz theorem [4], Aα,t is an �-� matrix implies that

sup
k




∞∑
n=0

|ank|

<∞. (4.10)

This is equivalent to

sup
k



(
k+α
k

) ∞∑
n=0

tkn
(
1−tn

)α+1<∞. (4.11)
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Now from (4.11), we can easily conclude that

sup
k



(
k+α+1

k

) ∞∑
n=0

tkn
(
1−tn

)α+2<∞. (4.12)

Hence, Aα+1,t is an �-� matrix.

The next theorem compares the summability fields of the matrices Aq and Aα,t [5].

Theorem 2. If Aα,t and Aq are �-� matrices, then �(Aq)⊆ �(Aα,t).

Proof. Let x ∈ �(Aq). Then we show that x ∈ �(Aα,t). Let y be the Aq-transform
of the sequence x. Then we have

ynQn =
n∑

k=0
qkxk. (4.13)

Now since ynQn is the partial sums of the sequence qx , using (3.6) it follows that

(
1−tn

) ∞∑
k=0

Qkyktkn =
∞∑

k=0
qkxktkn. (4.14)

This yields

(
1−tn

)α+2 ∞∑
k=0

Qkyktkn =
(
1−tn

)α+1 ∞∑
k=0

qkxktkn, (4.15)

and as a consequence we have (Aα+1,ty)n = (Aα,tx)n. By Lemma 4, Aα,t is an �-�
matrix implies that Aα+1,t is also an �-� matrix, and from the assumption that x ∈
�(Aq), it follows that y ∈ �. Consequently, we have Aα+1,ty ∈ � and this is equivalent
to Aα,tx ∈ �. Thus, x ∈ �(Aα,t) and hence our assertion follows.

Remark 2. Theorem 2 gives an important inclusion result in the �-� setting that
parallels the famous inclusion result that exists between the power series method of
summability and its corresponding weighted mean in the c-c setting [1].

Lemma 5. Suppose A = {ank} is an �-� matrix such that ank = 0 for k > n,m > s
(both positive integers); then �(As) ⊆ �(Am), where the interpretation for As and Am

is as given in [6, p. 28].

Theorem 3. If B = Aq is an �-� matrix, then Bm is also an �-� matrix (for m a
positive integer greater than 1.)

Proof. Let x ∈ �. B is an �-� matrix implies that x ∈ �(B). By Lemma 5, we have
�(B)⊆ �(Bm) and hence it follows that x ∈ �(Bm). Hence, Bm is an �-� matrix.

Remark 3. Theorem 3 gives a result that goes parallel to a c-c result given on [6,
Thm. 2.4, p. 28].

In Corollary 1, we showed that AQ is an �-� matrix. Here, a question may be raised
as to whether AQ maps �P into � for p > 1. But this is answered negatively by the
following theorem.
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Theorem 4. AQ does not map �P into � for p > 1.

Proof. Let AQ = {bnk}. Note that if AQ,α maps �P into �, then by [3, Thm. 2], we
must have

lim
k

∞∑
n=1

|bnk| = 0. (4.16)

Let

Rn =
n∑

k=1
Qk, (4.17)

then it follows that

∞∑
n=1

bnk =
(
k+α+1

k

) ∞∑
n=k

1
Rn

=
(
k+α+1

k

) ∞∑
n=k

1(
n+α+2

n

)

≥M1kα+1
∞∑

n=k

1
nα+2 for some M1 > 0

≥M1M2kα+1
∫∞
k

dx
xα+2 for some M2 > 0

= M1M2

α+1 > 0.

(4.18)

Thus, it follows that

lim
k

∞∑
n=1

|bnk|> 0, (4.19)

and hence AQ does not map �P into � for p > 1 by [3, Thm. 2].

Our next theorem has the form of an extension mapping theorem. It indicates that
a mapping of Aq from G or Gw into � can be extended to a mapping of � into �.

Theorem 5. The following statements are equivalent:
(1) Aq is an �-� matrix;
(2) Aq is a G-� matrix;
(3) Aq is a Gw -� matrix.

Proof. Since G is a subset of � and Gw a subset of G, (1)⇒(2)⇒(3) follow easily.
The assertion that (3)⇒(1) follows by [7, Thm. 1.1] and Theorem 1.

Corollary 4. (1) AQ is a G-� matrix.
(2) AQ a Gw -� matrix.

Proof. Since AQ is an �-� matrix by Corollary 1, the assertion follows by
Theorem 5.

Corollary 5. (1) If Aq is a G-G matrix, then Aq is an �-� matrix.
(2) If Aq is a Gw -Gw matrix, then Aq is an �-� matrix.

Proof. The assertion follows easily by Theorem 5.
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Theorem 6. Aq is a G-G matrix if and only if 1/Q∈G.

Proof. If Aq is a G-G matrix, then the first column of Aq is must in G. This gives
1/Q ∈ G since an,0 = q0/Qn. Conversely, suppose 1/Q ∈ G. Then 1/Qn ≤ M1rn for
M1 > 0 and r ∈ (0,1). Now let u∈ G, say |uk| ≤M2tk for some M2 > 0 and t ∈ (0,1).
Let Y be the Aq-transform of the sequence u. Then we have

|Yn| ≤M1M2rn
n∑

k=0

(
k+α
k

)
tk <M1M2rn(1−t)−(α+1) < M3rn for someM3 > 0.

(4.20)

Therefore, Y ∈G and hence it follows that Aq is a G-G matrix.

Theorem 7. Aq is a Gw -Gw matrix if and only if 1/Q∈Gw .

Proof. The proof follows easily using the same steps as in the proof of Theorem 6
by replacing G with Gw .

Lemma 6. If the Abel-type matrix Aα,t [5] is a G-G matrix, then Aα+1,t is also a G-G
matrix.

Proof. By [5, Thm. 7], Aα,t is G-G implies that (1− t)α+1 ∈ G. But (1− t)α+1 ∈
G yields (1− t)α+2 ∈ G, and hence by [5, Thm. 7], it follows that Aα+1,t is a G-G
matrix.

Lemma 7. If the Abel-type matrix Aα,t [5] is a Gw -Gw matrix, then Aα+1,t is also a
Gw -Gw matrix.

Proof. The assertion easily follows by replacing G with Gw in the proof of
Lemma 6.

Theorem 8. If Aα,t [5] and Aq are G-G matrices, then the G(Aα,t) contains G(Aq).

Proof. The proof easily follows using the same techniques as in the proof of
Theorem 3 by replacing � with G and applying Lemma 6.

Theorem 9. IfAα,t [3] andAq areGw -Gw matrices, thenGw(Aα,t) containsGw(Aq).

Proof. The proof easily follows using the same techniques as in the proof of
Theorem 3 by replacing � with Gw and applying Lemma 7.
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