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1. Introduction. The concept of entropy is fundamental in the foundation of sta-
tistical physics. It first appeared in thermodynamics through the second law of ther-
modynamics. The notion of entropy has been broadened by the advent of statistical
mechanics and has been still further broadened by the later advent of information
theory.
In statistical mechanics, Boltzmann was the first to give a statistical or a probabilis-

tic definition of entropy. Boltzmann entropy is defined for a macroscopic state of a
system while Gibbs entropy is defined over an ensemble, that is over the probabil-
ity distribution of macrostates. Both Boltzmann and Gibbs entropies are, in fact, the
pillars of the foundation of statistical mechanics and are the basis of all the entropy
concepts in modern physics. A lot of work on the mathematical analysis and practical
applications of both Boltzmann and Gibbs entropies was done [13], yet the subject is
not closed, but is open awaiting a lot of work on their characterization, interpretation,
and generalization.
In this paper, we have considered three problems. The first is the axiomatic charac-

terization of Boltzmann entropy. Basis of this characterization is the Carnop’s notion
of “degree of disorder” [2]. The second is concerned with the derivation of Gibbs en-
tropy from Boltzmann entropy, its generalization, and axiomatic characterization and
the third deals with the derivation of Boltzmann entropy for classical system consis-
tent with the above formalism.

2. Boltzmann entropy: axiomatic characterization. In statistical mechanics, we
are interested in the disorder in the distribution of the system over the permissible
microstates [1]. Themeasure of disorder first provided by Boltzmann principle (known
as Boltzmann entropy) is given by

S =K lnW, (2.1)

where K is the thermodynamic unit of measurement of entropy and is known as
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Boltzmann constant. K = 1.33×10−16 erg/◦C. W , called thermodynamic probability
or statistical weight, is the total number of microscopic complexions compatible with
the macroscopic state of the system. We avoid the name thermodynamic probability
for the term W as it leads to many confusions [10]. Following Carnop [2], we, how-
ever, call the quantity “W” the “degree of disorder”. Let us now derive the expression
(2.1) axiomatically which is independent of any micromodel of the system, classical
or quantal. For this, we make the following two axioms in conformity with our intu-
itions [9].

Axiom (i). The entropy S of the system is a monotonic increasing function of “de-
gree of disorder” W , that is, S(W)≤ S(W +1).

Axiom (ii). The entropy S is assumed to be an additive function for two statistically
independent systems with degrees of disorder W1 and W2, respectively. The entropy
of the composite system is given by S(W1 ·W2)= S(W1)+S(W2).

Theorem 2.1. If the entropy function S(W) satisfies the above two axioms (i) and
(ii), then S(W) is given by

S =K lnW, (2.2)

where K is a positive constant depending on the unit of measurement of entropy.

Proof. Let us assume thatW > e. Then, for any integern, we can define the integer
m(n) such that

em(n) ≤Wn ≤ em(n)+1 (2.3)

or

m(n)
n

≤ lnW ≤ m(n)+1
n

. (2.4)

Consequently,

lim
n→∞

m(n)
n

= lnW. (2.5)

Let S denote a function that satisfies axioms (i) and (ii), then, by axiom (i),

S(W1)≤ S(W2) (2.6)

for W1 <W2. Combining (2.3) with (2.6), we get

S
(
em(n)

)≤ S(Wn)≤ S(em(n)+1). (2.7)

By axiom (ii), we get

S
(
Wn)=nS(W). (2.8)

Here,

S
(
em(n)

)=m(n)S(e), (2.9)

S
(
em(n)+1

)= (m(n)+1)S(e). (2.10)

Applying (2.8) and (2.9) to the inequality (2.7), we get

m(n)S(e)≤nS(W)≤ (m(n)+1)S(e) (2.11)
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and consequently,

lim
n→∞

m(n)
n

= S(W)
S(e)

. (2.12)

Comparing (2.12) with (2.5), we conclude that

S(W)=K lnW, (2.13)

where K = S(e) is a positive constant depending on the unit of measurement of en-
tropy. Thus, if the number of microscopic complexions or statistical weightW is taken
as the measure of the “degree of disorder”, then Boltzmann entropy provides the in-
terrelation between the concepts of disorder and entropy.

The Boltzmann entropy (2.1) and its axiomatic derivation need some further ex-
planation. Boltzmann entropy plays a crucial role in the connection of the nonme-
chanical science of thermodynamics with mechanics through statistics. In spite of its
great importance, little attention is paid to the derivation of this entropy rigorously.
In thermodynamics, two fundamental properties of Boltzmann entropy are (see [11]):

(i) its nondecrease: if no heat enters or leaves a system, its entropy cannot de-
crease;

(ii) its additivity: the entropy of two systems, taken together, is the sum of their
separate entropies.

However, in statistical mechanics of finite system, it is impossible to satisfy both
the properties exactly. It is only for an infinitely large system that the properties
can be reconciled and an appropriate expression of entropy can be derived [11]. In
most of the books on statistical physics [11], the expression of Boltzmann entropy is
derived from the additivity property of entropy. But this is not correct. The axioms
we have assumed are variant forms of the above thermodynamic properties (i) and
(ii), and the method of derivation of the Boltzmann entropy is in conformity with the
statistical mechanical requirement of an infinitely large system and Hartley measure
of information [9].

3. Boltzmann-Gibbs entropy: axiomatic characterization. Boltzmann entropy S
is defined for a macroscopic state whereas Gibbs entropy is defined over a statisti-
cal ensemble. It is, in fact, the entropy of a coarse-grained distribution and can be
expressed in terms of the probability distribution of the observational states of the
system. More formally, let us introduce a more general definition of Gibbs entropy
and call it “Generalized Boltzmann-Gibbs Entropy” or simply, BG entropy [8].

Definition. Let Ω = {A1,A2, . . . ,An} be a denumerable set of macroscopic or ob-
servable states of a system, ℘ a σ -algebra of the elements of Ω, andW(A),(A∈ ℘) is a
measure on℘. ThemeasureW is uniquely defined by its valuesW(An), (n= 0,1,2, . . .).
We call themeasureW(An) the statistical weight or the structure function of the obser-
vational state An which is nothing but the total number of microscopic complexions
compatible with the observational state An in the definition of Boltzmann entropy.
We consider the class Pn of all probability measures P(A) on ℘ absolutely continuous
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with respect to W

Pn =
{
P(A), A∈ ℘ | P(Ω)= 1, P �w

}
. (3.1)

By Radon-Nikodym theorem, we may write

P(A)=
∑
AnεA

ρ(An)W(An) for all A∈ ℘ and P ∈ Pn, (3.2)

where

ρn = P(An)
W(An)

(n= 0,1,2, . . .). (3.3)

This is analogous to the coarse-grained density of microstates defined over the phase-
space of the usual definition of Gibbs entropy. Then, we define BG entropy as

S =−
∑
An

P(An) ln
P(An)
W(An)

. (3.4)

The BG entropy S, defined by (3.4), reduces to the form of Boltzmann entropy

S =K lnW(An), (3.5)

if the probability distribution P(An) is so sharp that P(An)= 1 for a particular event or
observational state An. Thus, the BG entropy becomes identical to Boltzmann entropy
when we know in which observational or microscopic state An the system belongs to.
The Boltzmann entropy is thus a boundary value of BG entropy.
Now let us turn to the axiomatic derivation of the BG entropy S given by (3.4). Let

us assume that the entropy of the system is given by

S =K
∑
i
P(Ai)fi

[
P(Ai)

]
, (3.6)

where the uncertainty function fi is a continuous function of its argument and is
determined on the basis of some axioms or postulates. We make the following two
axioms.

Axiom (i). For the simultaneous events of the two systems having observational
states Ai and Aj with weights W(Ai) and W(Aj), respectively, we make the additivity
postulate

fij
(
P(Ai)·P

(
Aj
))= fi0(P(Ai))+f0j(P(Aj)), (3.7a)

where

0≤ P(Ai), P
(
Aj
)≤ 1. (3.7b)

Axiom (ii). The uncertainty function fi0 and f0j associated with the observational
states Ai and Aj having weights W(Ai) and W(Aj), respectively, satisfy the boundary
conditions

fi0(1)= lnW(Ai), f0j(1)= lnW(Aj). (3.8)
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Axiom (ii) takes account of the post-observational uncertainty, i.e., the uncertainty or
the disorder of the microstates, measured by Boltzmann entropy, that remains even
after the system has been found in a microscopic state. Then, we have the following
theorem.

Theorem 3.1. If the entropy function S, given by (3.6), satisfy the above two axioms,
then S is given by

S =−
∑
An

P(An) ln
P(An)
W(An)

. (3.9)

Proof. First let us take P(Aj)= 1. Then, (3.7a) and (3.7b) give

fij
(
P(Ai)

)= fi0(P(Ai))+f0j(1)= fi0(P(Ai))+ lnW(Aj). (3.10)

Similarly, taking P(Ai)= 1, we get

fij
(
P(Aj)

)= f0j(P(Aj))+ lnW(Aj). (3.11)

So, we have

fi0
(
P(Ai)

)= fij(P(Ai))− lnW(Aj),
f0j
(
P(Aj)

)= fij(P(Aj))− lnW(Ai).
(3.12)

Then we take P(Ai)= P(Aj)= 1. Then, (3.7a) and (3.7b) give

fij(1)= lnW(Ai)+ lnW
(
Aj
)
. (3.13)

Thus, from (3.7a), (3.7b), and (3.13), we can write

fij
(
P(Ai)·P

(
Aj
))= [fijP(Ai)− lnW(Aj)]+[fijP(Aj)− lnW(Ai)], (3.14a)

where 0≤ P(Ai), P(Aj)≤ 1,

fij(1)= lnW(Ai)+ lnW
(
Aj
)
. (3.14b)

Writing

fij
(
P
(
Aj
))= F(P(Ai))+ lnW(Ai)+ lnW(Aj),

fij
(
P
(
Aj
))= F(P(Aj))+ lnW(Ai)+ lnW(Aj),

fij
[
P(Ai)·P

(
Aj
)]= F[P(Ai)·P(Aj)]+ lnW(Ai)+ lnW(Aj),

(3.15)

the system of equations reduces to Cauchy’s functional equation

F(x ·y)= F(x)+F(y) (3.16a)

with boundary conditions

0<x, y ≤ 1, F(1)= 0, (3.16b)
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where

x = P(Ai), y = P(Aj). (3.17)

The solution of the functional equation (3.16a), subject to the boundary condition
(3.16b), is given by F(x)=− lnx. Hence,

fij
(
P(Ai)

)=− lnP(Ai)+ lnW(Ai)+ lnW(Aj). (3.18)

Using (3.13), we get

fi0
(
P(Ai)

)= ln P(Ai)
W(Ai)

. (3.19)

So, the entropy S, given by (3.6), reduces to the form of (3.4)

S =−K
∑
An

P(An) ln
P(An)
W(An)

. (3.20)

We can express BG entropy S as

S =−K
∑
An

P(An) lnP(An)+K
∑
An

P(An) lnW(An). (3.21)

The first term represents the uncertainty about the macroscopic or the observational
states of the system. The second term represents the average of Boltzmann entropy
(measuring microscopic uncertainty) which remains even when we know the macro-
state the system belongs to. Thus, the BG entropy S, defined by (3.4), measures the
total uncertainty or disorder associated with the microscopic and macroscopic states
of the system [12]. It is, therefore, an example of total entropy introduced by Jumarie
[8] in Information theory.

4. Boltzmann-Gibbs entropy: classical system. Let us consider a system consist-
ing of N elements (molecules, organisms, etc.) classified into n classes (energy-states,
species, etc.) Q(i = 1,2, . . . ,n). Let Ni be the occupation number of the ith class.
The macroscopic state of the system is given by the set of occupation number An =
(N1,N2, . . . ,Nn). The statistical weight or degree of disorder of the macrostate An is
given by

W(An)= N !
Πni=1Ni!

, (4.1)

representing the total number of microscopic states or complexions compatible with
the constraints the system is subjected to. For large Ni, Boltzmann entropy (2.1), with
W(An) given by (4.1), reduces to the form of Shannon entropy [9]

S =−KN
n∑
i=1
Pi lnPi, (4.2)

where Pi =Ni/N is the relative frequency of the ith class or energy state. For large N ,
it is the probability that a molecule lies in the ith energy-state. Shannon entropy (4.2)
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is the basis of the subjective formalism of statistical mechanics initiated by Jaynes
[7], Ingarden and Kossakowski [6].
Returning to the occupation numbers Ni, the entropy (4.2) can be written as

S =−K
n∑
i=1
Ni ln

(
Ni
N

)
=−K

n∑
i=1
Ni lnNi+KN lnN. (4.3)

The expression (4.3) has, however, a drawback. It does not satisfy the additive or the
extensive property of Boltzmann entropy postulated in Section 2. This fallacy is, in
fact, due to Gibbs paradox [3, 4]. To remove this fallacy, we have to subtract K lnN !≈
KN(lnn−1) from the right-hand side of (4.3). This leads to the correct expression of
Boltzmann entropy of a classical system

S =−K
n∑
i=1
Ni lnNi+KN, (4.4)

which evidently satisfy the additivity property. The subtraction of the term lnN ! from
(4.3) is equivalent to omitting the term N ! in the expression (4.1) of statistical weight
or degrees of disorder. So, the correct expression of the statistical weight of classical
system should be

W(An)=
n∏
i=1

(
1
Ni!

)
. (4.5)

Now, we consider open system model of the classical system. Then, the whole system
can be considered as an aggregate of n subsystem in contact with an environment,
each subsystem consisting of Ni particles, each having energy Ei (i = 1,2, . . . ,n). A
subsystem is then characterized by the occupation numberNi, which is now a random
variable having probability distribution P(Ni). The entropy of the whole system is then
given by BG entropy,

S =−K
∑
An

P(An) ln
P(An)
W(An)

, (4.6)

where W(An) is the statistical weight of the macrostate An = (N1,N2, . . . ,Nn). For the
gaseous system, the subsystems can be considered independent. Hence, the entropy
of the whole system can be decomposed into the sum of the entropies of the different
constituent subsystems

S =
n∑
i=1
Si, (4.7)

where

Si =−
∑
Ni

P(Ni) ln
P(Ni)
W(Ni)

(4.8)

is the entropy of the ith subsystem. The statistical weightW(Ni) is different for differ-
ent systems. For a classical system, W(Ni)= 1/Ni! (i= 1,2, . . . ,n) as we have arrived
at earlier. The probability distribution P(Ni) can be estimated by the principle of max-
imum entropy [7], which consists of the maximization of the entropy (4.8) subject to
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the condition of fixed average number of particles

n∑
i=1
P(Ni)Ni = 〈Ni〉. (4.9)

The maximization of (4.8) subject to the constraint (4.9) and the normalization con-
dition:

∑
Ni

P(Ni)= 1 (4.10)

leads to the Poisson distribution

P(Ni)= e
−〈Ni〉〈Ni〉Ni

Ni!
. (4.11)

The entropy of the whole system then reduces to the form

S =−K
n∑
i=1
〈Ni〉 ln〈Ni〉+k

n∑
i=1
〈Ni〉, (4.12)

which is the open system analogue of the Boltzmann entropy (4.4) for closed system.
The choice of the statistical weight (4.5) needs a further explanation. Ingarden and
Kossakowski have considered this type of weight in the quantum statistics of photons
for the case when the photons are registered by a counter [6]. They, however, remarked
that the choice of the weight (4.5) did not imply that the statistics would be of quantum
character. In fact, the statistical weight (4.5), which we have justified from Boltzmann-
entropy, plays an important role in the analysis of classical system [3, 4, 5].

5. Conclusion. Boltzmann entropy plays a crucial role not only in the foundation
of statistical mechanics, but also in the other branches of science. In view of its great
importance, we have tried first to provide an axiomatic characterisation of Boltzmann
entropy consistent with the basic properties of thermodynamics. As a generalisation
of Boltzmann entropy, we have introduced generalised (BG) entropy and characterised
it on the basis of some axioms. The axiomatic approach to BG entropy is completely
different from the total entropy introduced by Jumarie [8], which is a generalisation
of Shannon entropy to take into account the uncertainty due to the spans of the
lattice where a random variable is defined. In the present paper, the statistical weight
appears through the boundary condition of the functional equation, the solution of
which leads to the form of BG entropy.
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