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Abstract. Let S∗G be a skew group ring of a finite group G over a ring S. It is shown that
if S∗G is an G′-Galois extension of (S∗G)G′ , where G′ is the inner automorphism group
of S∗G induced by the elements in G, then S is a G-Galois extension of SG . A necessary
and sufficient condition is also given for the commutator subring of (S ∗G)G′ in S ∗G
to be a Galois extension, where (S∗G)G′ is the subring of the elements fixed under each
element in G′.
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1. Introduction. Let S be a ring with 1, C the center of S, G a finite automorphism
group of S of order n invertible in S, SG the subring of the elements fixed under
each element in G, S ∗G a skew group ring of group G over S, and G′ the inner
automorphism group of S∗G induced by the elements in G, that is, g′(x) = gxg−1

for each g in G and x in S∗G, so the restriction of G′ to S is G. In [3, 2], a G-Galois
extension S of SG which is an Azumaya CG-algebra is characterized in terms of the
Azumaya CG-algebra S ∗G and the H-separable extension S ∗G of S, respectively,
and the properties of the commutator subring of S in S ∗G are given in [1]. It is
clear that S is a G-Galois extension of SG implies that S∗G is a G′-Galois extension of
(S∗G)G′ with the same Galois system as S. In the present paper, we prove the converse
theorem: if S∗G is a G′-Galois extension of (S∗G)G′ , then S is a G-Galois extension
of SG. Moreover, for a G′-Galois extension S ∗G of (S ∗G)G′ which is a projective
separable CG-algebra, S can be shown to be a G-Galois extension of SG which is also a
projective separable CG-algebra. Then a sufficient condition on (S∗G)G′ is given for S
to be a G-Galois extension of SG which is an Azumaya CG-algebra, and an equivalent
condition on SG is obtained for the commutator subring of (S∗G)G′ in S∗G to be a
G-Galois extension.

2. Preliminaries. Throughout, we keep the notation as given in the introduction.
Let B be a subring of a ringAwith 1. Following [3, 2],A is called a separable extension of
B if there exist {ai,bi in A, i = 1,2, . . . ,m for some integerm} such that ∑aibi = 1,
and

∑
sai ⊗bi =

∑
ai ⊗bis for all s in A, where ⊗ is over B. An Azumaya algebra

is a separable extension of its center. A ring A is called an H-separable extension
of B if A⊗B A is isomorphic to a direct summand of a finite direct sum of A as an
A-bimodule. It is known that an Azumaya algebra is an H-separable extension and
an H-separable extension is a separable extension. Let S be given as in Section 1.
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Then it is called a G-Galois extension of SG if there exist elements {ci,di in S, i =
1,2, . . . ,k for some integer k} such that ∑cigj(di) = δ1,j , where G = {g1,g2, . . . ,gn}
with identity g1, for each gj ∈G. Such a set {ci,di} is called a G-Galois system for S.

3. Galois skew group rings. In this section, we show that a G′-Galois extension
skew group ring S∗G implies a G-Galois extension S. More results are obtained for SG
when (S∗G)G′ is a projective separable CG-algebra, and anH-separable SG-extension,
respectively.

Theorem 3.1. If S ∗G is a G′-Galois extension of (S ∗G)G′ , then S is a G-Galois
extension of SG.

Proof. Let {ui,vi | i = 1,2, . . . ,m} be a G′-Galois system of S∗G over (S∗G)G′ ,
that is, ui and vi are elements of S∗G satisfying

∑m
i=1uig′(vi) =

∑m
i=1uigvig−1 =

δ1,g . Let wi =
∑

h∈Ghvi, i = 1,2, . . . ,m. Then gwi =
∑

h∈Gghvi = wi. Since {h | h ∈
G} is a basis of S ∗G over S, we have ui =

∑
h∈G s

(ui)
h h and wi =

∑
h∈G s

(wi)
h h, i =

1,2, . . . ,m, for some s(ui)h , s(wi)
h in S. Let xi =

∑
h∈G s

(ui)
h and yi = s(wi)

1 , i = 1,2, . . . ,m.
We prove that {xi,yi | i = 1,2, . . . ,m} is a G-Galois system for S over SG. First, we
prove that

(1) g
(
s(wi)
h

)= s(wi)
gh for all i= 1,2, . . . ,m and all g,h∈G,

(2)
∑m

i=1uiwi = 1.
For (1), since wi = gwi, we have

∑

k∈G
s(wi)
k k=

∑

h∈G
s(wi)
h h= g

∑

h∈G
s(wi)
h h=

∑

h∈G
gs(wi)

h h=
∑

h∈G
g
(
s(wi)
h

)
gh. (3.1)

Since {k | k∈G} is a basis of S∗G over S, g(s(wi)
h

)= s(wi)
gh .

For (2), since {ui,vi | i = 1,2, . . . ,m} is a G′-Galois system for S∗G over (S∗G)G′ ,∑m
i=1uih′(vi)

∑m
i=1uihvih−1 = δ1,h. Therefore,

1=
∑

h∈G
δ1,hh=

∑

h∈G




m∑

i=1
uihvih−1


h=

∑

h∈G

m∑

i=1
uihvi=

m∑

i=1
ui

∑

h∈G
hvi=

m∑

i=1
uiwi. (3.2)

Next, we prove that {xi,yi | i= 1,2, . . . ,m} is aG-Galois system for S over SG. By using
(1) and (2), we get

1=
m∑

i=1
uiwi =

m∑

i=1


∑

h∈G
s(ui)h h




∑

k∈G
s(wi)
k k




=
m∑

i=1

∑

h∈G

∑

k∈G
s(ui)h hs(wi)

k k=
m∑

i=1

∑

h∈G

∑

k∈G
s(ui)h h

(
s(wi)
k

)
hk

=
m∑

i=1

∑

g∈G

∑

hk=g
s(ui)h h

(
s(wi)
k

)
hk=

m∑

i=1

∑

g∈G

∑

hk=g
s(ui)h s(wi)

hk hk by (1)

=
m∑

i=1

∑

g∈G

∑

h∈G
s(ui)h s(wi)

hh−1ghh
−1g

(
since hk= g, k= h−1g

)

=
m∑

i=1

∑

g∈G

∑

h∈G
s(ui)h s(wi)

g g =
∑

g∈G




m∑

i=1

∑

h∈G
s(ui)h s(wi)

g


g.

(3.3)
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Hence,
∑m

i=1
∑

h∈G s
(ui)
h s(wi)

g = δ1,g . But xi =
∑

h∈G s
(ui)
h , yi = s(wi)

1 , and g
(
s(wi)
1

)= s(wi)
g

by (1). So,
m∑

i=1
xig

(
yi
)=

m∑

i=1

∑

h∈G
s(ui)h g

(
s(wi)
1

)
=

m∑

i=1

∑

h∈G
s(ui)h s(wi)

g = δ1,g. (3.4)

We showmore properties of theG-Galois extension S of SG when S∗G is aG′-Galois
extension of (S∗G)G′ which possesses a property.

Theorem 3.2. If S ∗G is a G′-Galois extension of (S ∗G)G′ which is a projective
separable CG-algebra, then S is a G-Galois extension of SG which is also a projective
separable CG-algebra.

Proof. Since S∗G is a G′-Galois extension of (S∗G)G′ , S is a G-Galois extension
of SG by Theorem 3.1. Again, since S∗G is a G′-Galois extension of (S∗G)G′ , it is a
separable extension [5]. Also, (S∗G)G′ is a separableCG-algebra, so S∗G is a separable
CG-algebra by the transitivity of separable extensions. Next, we claim that S is also
a separable CG-algebra. In fact, since n is a unit in S, the trace map: (1/n)(trG( )) :
S → SG → 0 is a splitting homomorphism of the imbedding homomorphism of SG into
S as a two sided SG-module. Hence, SG is a direct summand of S. Since S is a direct
summand of S∗G as an SG-bimodule, SG is so of S∗G as an SG-module. Moreover,
S is a finitely generated and projective SG-module (for S is a G-Galois extension of
SG), so S ∗G is a finitely generated and projective SG-module by the transitivity of
the finitely generated and projective modules. This implies that SG is a projective
separable CG-algebra by [5, proof of Lem. 2, p. 120].

Theorem 3.3. If
(i) S∗G is a G′-Galois extension of (S∗G)G′
(ii) (S ∗G)G′ is an H-separable extension of SG which is a separable CG-algebra,

then S is a G-Galois extension of SG which is an Azumaya CG-algebra.

Proof. Since S∗G is a G′-Galois extension of (S∗G)G′ with an inner Galois group
G′, S∗G is an H-separable extension of (S∗G)G′ [7, Prop. 4]. By hypothesis, (S∗G)G′
is an H-separable extension of SG, so S∗G is an H-separable extension of SG by the
transitivity of H-separable extensions. Noting that n is a unit of S, we have SG is an
SG-direct summand of S. But S is a direct summand of S ∗G as an SG-module, so
SG is a direct summand of S ∗G as an SG-module. Thus, VS∗G(VS∗G(SG)) = SG [6,
Prop. 1.2]. This implies that the center of S∗G is contained in SG, and so the center
of S∗G is CG. Therefore, S∗G is an Azumaya CG-algebra. Thus, SG is an Azumaya
CG-algebra. Consequently, S is a G-Galois extension of SG which is an Azumaya CG-
algebra [2, Thm. 3.1].

4. Galois commutator subrings. In [7], the class ofG-Galois andH-separable exten-
sion was studied. Let A be a G-Galois andH-separable extension of AG and let VA(AG)
be the commutator subring of AG in A. Then, VA(AG) is a central (G/I)-Galois algebra
if and only if AI = AG(VA(AG)), where I = {g ∈ G | g(d) = d for all d ∈ VA(AG)} [7,
Thm. 6.3]. Applying such an equivalence condition to a G′-Galois extension S∗G, we
characterize a Galois commutator subring VS∗G((S∗G)G′) in terms of elements in SG.
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In the following, we denote the center of G by P and the center S ∗G by Z . By a
direct computation, we have the following.

Lemma 4.1. (1) Let I = {gi ∈G | g′i(d)= d for each d∈ ZG}. Then I = P .
(2) Letx be an element in (S∗G)G′ . Thenx =∑n

i=1 sigi such that gj(si)= sk whenever
gjgig−1j = g′j(gi)= gk ∈G.

Lemma 4.2. Assume that S∗G is aG′-Galois extension of (S∗G)G′ and an Azumaya
Z-algebra. Then VS∗G((S∗G)G′) is a central (G′/P ′)-Galois algebra if and only if SPG =
(S∗G)G′G.

Proof. Since n is a unit in Z and S ∗ G is an Azumaya Z-algebra, VS∗G((S ∗
G)G′) = VS∗G(VS∗G(ZG)) = ZG by the commutator theorem for Azumaya algebras
[4, Thm. 4.3] (for ZG is a separable Z-subalgebra). Moreover, since S∗G is a G′-Galois
extension of (S∗G)G′ with an inner Galois group G′, it is an H-separable extension
of (S∗G)G′ [7, Prop. 4]. Hence, VS∗G((S∗G)G′)(= ZG) is a central (G′/P ′)-Galois al-
gebra if and only if (S∗G)P ′ = (S∗G)G′ZG by [7, Lem. 4.1(1) and Thm. 6.3]. Clearly,
Z ⊂ (S∗G)G′ , and so (S∗G)G′ZG = (S∗G)G′G. Noting that P is the center of G, we
have (S∗G)P ′ = SPG. Thus, the lemma holds.

Theorem 4.4. Assume that S∗G is a G′-Galois extension of (S∗G)G′ and an Azu-
maya Z-algebra. Then ZG is a central (G′/P ′)-Galois algebra if and only if, for every
s ∈ SP , there exists an n×n matrix [sk,h]k,h∈G for some sk,h in S such that
(1)

∑
h∈G sgh−1,h = δ1,gs (therefore, s =

∑
h∈G sh−1,h), and

(2) g(sk,h)= sgkg−1,h for every g ∈G.

Proof. ( �⇒) Assume that ZG is a central (G′/P ′)-Galois algebra. Then by Lemma
4.2, SPG = (S∗G)G′G. Therefore, for every s ∈ SP , s = s1∈ SPG = (S∗G)G′G. Hence,
there exists

∑
k∈G sk,hk∈ (S∗G)G′ for each h∈G such that

s = s1=
∑

h∈G


∑

k∈G
sk,hk


h=

∑

g∈G


 ∑

kh=g
sk,h


g =

∑

g∈G


∑

h∈G
sgh−1,h


g. (4.1)

Since {g | g ∈G} is a basis of S∗G over S, we have∑h∈G sgh−1,h = δ1,gs and, therefore,∑
h∈G sh−1,h = s. Furthermore, for each h∈G,

∑
k∈G sk,hk∈ (S∗G)G′ , i.e., ∑k∈G sk,hk=

g
∑

k∈G sk,hkg−1 =
∑

k∈Gg(sk,h)gkg−1 for every g ∈G. Therefore, g(sk,h)= sgkg−1,h for
every g ∈G since {k | k∈G} is a basis of S∗G over S.
(⇐� ) Assume that, for every s ∈ SP , there exists an n×nmatrix [sk,h]k,h∈G such that∑
h∈G sgh−1,h = δ1,gs and g(sk,h)= sgkg−1,h for every g ∈G. Then

g


∑

k∈G
sk,hk


g−1 =

∑

k∈G
g(sk,h)gkg−1 =

∑

k∈G
sgkg−1,hgkg−1 =

∑

k∈G
sk,hk, (4.2)

that is
∑

k∈G sk,hk∈ (S∗G)G′ for every h∈G. Therefore,

s =
∑

g∈G
δ1,gsg =

∑

g∈G


∑

h∈G
sgh−1,h


g =

∑

g∈G


 ∑

kh=g
sk,h


g

=
∑

h∈G


∑

k∈G
sk,hk


h∈ (S∗G)G′G.

(4.3)
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Hence, for every s ∈ SP and every g ∈ G, sg ∈ (S ∗G)G′GG = (S ∗G)G′G, that is
SPG ⊆ (S∗G)G′G.
On the other hand, for any

∑
k∈G skk∈ (S∗G)G′ , we have

∑

k∈G
skk=g

∑

k∈G
skkg−1=

∑

k∈G
g(sk)gkg−1 for every g ∈G. (4.4)

Therefore, g(sk) = sgkg−1 for every g ∈ G since {k | k ∈ G} is a basis of S∗G over S.
In particular, for every p ∈ P , p(sk) = spkp−1 = sk, i.e., sk ∈ SP for every k ∈ G and,
therefore,

∑
k∈G skk∈ SPG if

∑
k∈G skk∈ (S∗G)G′ . Hence, (S∗G)G′ ⊆ SPG. Therefore,

(S ∗G)G′G ⊆ SPGG = SPG. Hence, SPG = (S ∗G)G′G. So, (S ∗G)P ′ = SPG = (S ∗
G)G′G = (S ∗G)G′ZG. Consequently, by Lemma 4.2, ZG is a central (G′/P ′)-Galois
algebra.
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