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ON THE EXISTENCE OF SOLUTIONS OF STRONGLY
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Abstract. We investigate the existence and uniqueness of solutions of the following equa-
tion of hyperbolic type with a strong dissipation:

utt(t,x)−
(
α+β

(∫
Ω
|∇u(t,y)|2dy

)γ)
∆u(t,x)

−λ∆ut(t,x)+µ|u(t,x)|q−1u(t,x)= 0, x ∈Ω, t ≥ 0,

u(0,x)=u0(x), ut(0,x)=u1(x), x ∈Ω, u|∂Ω = 0,
where q > 1, λ > 0, µ ∈R, α, β≥ 0, α+β > 0, and ∆ is the Laplacian in RN .
Keywords and phrases. Quasilinear wave equation, nondegenerate equation, existence and
uniqueness, continuously differentiable solution, variation of parameters representation.
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1. Introduction. Let Ω be a bounded domain in RN with smooth boundary ∂Ω.
In this paper, we consider the initial boundary value problem for the second order
equations:

utt(t,x)−
(
α+β

(∫
Ω
|∇u(t,y)|2dy

)γ)
∆u(t,x)

−λ∆ut(t,x)+µ|u(t,x)|q−1u(t,x)= 0, x ∈Ω, t ≥ 0,
u(0,x)=u0(x), ut(0,x)=u1(x), x ∈Ω, u|∂Ω = 0,

(1.1)

where q > 1, λ > 0, µ ∈R, α, β≥ 0, α+β > 0, and ∆ is the Laplacian in RN .
Equation (1.1) has its origin in the nonlinear vibrations of an elastic string (cf.

Narasimha [6]). We call equation (1.1) a nondegenerate equation when α> 0 and β > 0
and a degenerate one when α = 0 and β > 0. In the case of α > 0 and β = 0, equa-
tion (1.1) is the usual semilinear wave equations.
Many authors have studied the existence and uniqueness of solutions of (1.1) by

using various methods. When λ > 0 and µ = 0, for the degenerate case (i.e., α = 0),
Nishihara and Yamada [7] have proved the global existence of a unique solution un-
der the assumptions that the initial data {u0,u1} are sufficiently small and uo 
= 0.
However, the method in [7] cannot be applied directly to the case that degenerate
equations have the blow-up term |u|q−1u. When α > 0 and µ > 0, for the degenerate
case (i.e., α = 0), Ono and Nishihara [9] have proved the global existence and decay
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structure of solutions of (1.1) without small condition of initial data using Galerkin
method. Ono [8] has obtained the global existence of solutions of problem (1.1) with
dissipative term u′ instead of ∆u′. In this paper, we prove the existence of solutions
of problem (1.1) using the method of Fitzgibbon and Parrot [3].
Our plan in this paper is as follows: in Section 2, we collect the results about abstract

semigroup theory and present some lemmas. In Section 3, we deal with a priori esti-
mates for solutions of (1.1) and in Section 4, we investigate convergence of solution.

2. Preliminaries. In this section, we formulate (1.1) as abstract Cauchy initial value
problems. We denote by H the Hilbert space L2(Ω) with norm ‖·‖2 and inner product
(·,·). We define A :D(A)⊂H →H by

Au=−∆u for u∈D(A), (2.1)

where

D(A)=H2(Ω)∩H1
0(Ω). (2.2)

Here,H1
0(Ω) andH2(Ω) are the usual Sobolev spaces. It is well known thatA so defined

is a strictly positive selfadjoint operator on H. Positive powers of A, Aγ for γ > 0,
may be computed via the elementary spectral calculus and are seen to be positive
selfadjoint operators themselves. We can make D(Aγ) into a Hilbert space HAγ by
imposing a graph norm

‖u‖Aγ = ‖Aγu‖2 for u∈D(Aγ). (2.3)

It should be evident that the damped beam equation (1.1) may be written abstractly as

u′′(t)+
(
α+β‖A1/2u(t)‖2γ2

)
Au(t)+λAu′(t)+µ|u(t)|q−1u(t)= 0, t ≥ 0,

u(0)=u0, u′(0)=u1, u|∂Ω = 0.
(2.4)

In order to prove the existence of solutions of (1.1), first we consider the following
initial value problem:

u′′(t)+
(
α+β‖A1/2u(t)‖2γ2

)
Au(t)+εA2u(t)+λAu′(t)+µ|u(t)|q−1u(t)= 0, t ≥ 0,

u(0)=u0, u′(0)=u1, u|∂Ω = 0.
(2.5)

Now, it is convenient to resort to the standard artifice of writing (2.5) as a first order
system. We let X =HA×H and define Āε; X →X by the operator matrix

Āε =
(
0 −I
εA2 λA

)
with D(Āε)=D(A2)×D(A)≡D1. (2.6)

Proposition 2.1 [3]. If Āε is defined by (2.6), then−Āε is the infinitesimal generator
of an analytic semigroup

{
T̄ε(t)

}∈X, {T̄ε(t)} is an analytic semigroup of contractions
in Xε =H√εA×H.
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We note that while {T̄ε(t) | t ≥ 0} is an analytic semigroup in X, we can no longer
claim that it is a contraction semigroup. In fact, due to the singularity imposed by
the factor ε, we expect the norm of T̄ε(t) in X to blow up as ε→ 0. Now we define a
nonlinear operator

F0(Uε)=
(

0
−(α+β‖A1/2u‖2γ)Au−µ|u|q−1u

)
for Uε =

(
u
v

)
∈X. (2.7)

Then solutions to (2.5) now assume the form

d
dt
Uε+ĀεUε = F0(Uε), t > 0,

Uε(0)=U0 = (u0,u1)T .
(2.8)

We point out that if π1 and π2 project X onto its first and second coordinates, respec-
tively, then π1Uε(t)=u(t) and π2Uε(t)=u′(t), where u(t) is the strong solution of
(2.5). We have the following results.

Proposition 2.2. If U0 = (u0,u1)T ∈ D1, then there exists a strong, continuously
differentiable solution to (2.8) on [0,∞) which has variation of parameters representa-
tion

Uε(t)= T̄ε(t)U0+
∫ t
0
T̄ε(t−s)F0

(
Uε(s)

)
ds. (2.9)

Proof. Since the mapping F0; X → X is C∞, mild solution u is Hölder continuous
and so it is continuously differentiable (cf. Pazy [10, Chapter 4]).

We have pointed out that one expects the norm of T̄ε(t) in X denoted by ‖T̄ε‖X to
blow up as ε→ 0 (although the norm in Xε, ‖T̄ε‖Xε remains bounded by one ). For this
reason, we want to prove an alternative representation to (2.9) for solutions to (2.8).
We define

Ā=
(
0 −I
αA λA

)
with D(Ā)=D(A)×D(A). (2.10)

It is well known that −Ā is the infinitesimal generator of an analytic semigroup on
X. (cf. Webb [12, Proposition 2.2]). We denote the semigroup generated by −Ā as{
T(t); t ≥ 0} and introduce a new nonlinearity Fε defined by

Fε(Uε)=
(

0
−β‖A1/2u‖2γ2 −εA2u−µ|u|q−1u

)
for Uε =

(
u
u′

)
∈X. (2.11)

By merely regrouping terms, we can rewrite (2.8) as

d
dt
Uε+ĀUε = Fε(Uε), t > 0,

Uε(0)=U0 = (u0,u1).
(2.12)

We have the following proposition.
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Proposition 2.3. If U0 = (u0,u1)T ∈D1, then the strong solution to (2.12) may be
represented as

Uε(t)= T(t)U0+
∫ t
0
T(t−s)Fε

(
Uε(s)

)
ds. (2.13)

Proof. We let fε(t) = Fε(Uε(t)) and refer to Pazy [10, page 106] for a discussion
of the representation theory for the inhomogeneous Cauchy initial value problems of
the form

d
dt
Uε+ĀεUε = fε(t), t > 0, Uε(0)=U0. (2.14)

Now we turn our attention to (1.1). We know that there exists a unique strong so-
lution u(t,x) to (1.1) if (u0,u1) ∈ D(A1/2)×H. Moreover, if T > 0 and (u(t))(x) =
u(t,x), then

u∈ L∞((0,T );HA1/2) and u′ ∈ L∞((0,T );H)∩L2((0,T );HA1/2). (2.15)

See Ono [8] and Matos and Pereira [4].
The abstract second order equation

u′′(t)+αAu(t)+β‖A1/2u(t)‖2γ2 Au(t)+λAu′(t)+µ|u(t)|q−1u(t)= 0, t ≥ 0,
u(0)=u0, u′(0)=u1

(2.16)

places (1.1) in a function space setting. We introduce a nonlinear operator F defined by

F(U)=
(

0
−β‖A1/2u‖2γ2 Au−µ|u|q−1u

)
for U =

(
u
u′

)
(2.17)

and observe that solutions to (1.1) satisfy

d
dt
U+ĀU(t)= F(U(t)), t > 0, U(0)=U0 = (u0,u1)T . (2.18)

We have the following proposition which we state without proof.

Proposition 2.4 [10]. If U0 = (u0,u1)T ∈D1, then there exists a strong solution to
(1.1) on [0,∞) which has abstract variation of parameters representation

U(t)= T(t)U0+
∫ t
0
T(t−s)F(U(s))ds. (2.19)

3. A priori estimates. We first prepare the following well-known lemmas which are
needed later.

Lemma 3.1 (Sobolev-Poincaré [5]). If either 1 ≤ q < +∞ where N = 1,2 or 1 ≤ q ≤
(N+2)/(N−2) where N ≥ 3, then there is a constant C(Ω,q+1) such that

‖u‖q+1 ≤ C(Ω,q+1)‖∇u‖2 for u∈H1
0(Ω). (3.1)
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In other words,

C(Ω,q+1)= sup
{‖u‖q+1
‖∇u‖2

∣∣∣∣u∈H1
0(Ω), u 
= 0

}
(3.2)

is positive and finite.

Lemma 3.2 (Gagliardo-Nirenberg [5]). Let 1 ≤ r < q ≤ +∞ and p ≤ q. Then the in-
equality

‖u‖Wk,q ≤ C‖u‖θWm,p‖u‖1−θr for u∈Wm,p(Ω)∩Lr (Ω) (3.3)

holds with some C > 0 and

θ =
(
k
N
+ 1
r
− 1
q

)(
m
N
+ 1
r
− 1
p

)−1
(3.4)

provided that 0< θ ≤ 1 (we assume that 0< θ < 1 if q =+∞).

Now, we develop a priori estimates for solutions to (1.1) by applying energymethods
to abstract second order equations. Throughout this section, let u be the solution to
(2.5).

Proposition 3.3. If (u0,u1)T ∈D1, then there exists a positive constant M0, which
does not depend on ε, so that

sup
t>0

{‖u′(t)‖22,‖A1/2u(t)‖22,ε‖Au(t)‖22}≤M0. (3.5)

Proof. If we multiply equation (2.5) by u′(t) and integrate in space, we obtain

1
2
d
dt

(
‖u′(t)‖22+α‖A1/2u(t)‖22+ε‖Au(t)‖22+

2µ
q+1‖u(t)‖

q+1
q+1

)

+ β
2(γ+1)

d
dt
‖A1/2u(t)‖2(γ+1)2 +λ‖A1/2u′(t)‖22 = 0.

(3.6)

We may integrate (3.6) with respect to t > 0 to obtain the desired result (3.5).

We obtain greater regularity of solutions by placing additional smoothness require-
ments on our initial data.

Proposition 3.4. If (u0,u1)T ∈D(A2)×D(A) and
N

N−2 ≤ q ≤min
{
N+2
N−2 ,

N−2
[N−4]+

}
(N ≥ 3), (3.7)

then there exists a positive constant M1, which does not depend on ε, so that

sup
t>0

{‖A1/2u′(t)‖22,‖Au(t)‖22,ε‖A3/2u(t)‖22}≤M1. (3.8)

Proof. Multiplying equation (2.5) by Au′(t),

1
2
d
dt

(∥∥A1/2u′(t)∥∥22+α∥∥Au(t)∥∥22+ε∥∥A3/2u(t)∥∥22
)
+λ∥∥Au′(t)∥∥22

+µ(A1/2[|u(t)|q−1u(t)],A1/2u′(t))+ β
2

∥∥A1/2u(t)∥∥2γ2 d
dt
∥∥Au(t)∥∥22 = 0.

(3.9)
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Integrating (3.9) from 0 to t, we get

1
2

∥∥A1/2u′(t)∥∥22+ α2
∥∥Au(t)∥∥22+ β2

∥∥A1/2u(t)∥∥2γ2 ∥∥Au(t)∥∥22+ ε2
∥∥A3/2u(t)∥∥22

+µ
∫ t
0

(
A1/2[|u′(s)|q−1u(s)],A1/2u′(s))ds+λ

∫ t
0

∥∥Au′(s)∥∥22ds
= 1
2

∥∥A1/2u1∥∥22+ α2
∥∥Au0∥∥22+ β2

∥∥A1/2u0∥∥2γ2 ∥∥Au0∥∥22+ ε2
∥∥A3/2u0∥∥22

+βγ
∫ t
0

∥∥Au(s)∥∥22∥∥A1/2u(s)∥∥2(γ−1)2

(
A1/2u′(s),A1/2u(s)

)
ds.

(3.10)

In the case N/(N−2) ≤ q ≤min{(N+2)/(N−2),(N−2)/[N−4]+} where N ≥ 3, we
have

∣∣∣∣µ
∫ t
0

(
A1/2

[|u(s)|q−1u(s)],A1/2u′(s))ds
∣∣∣∣

≤ qµ
∫ t
0

∥∥|u(s)|q−1A1/2u(s)∥∥2∥∥A1/2u′(s)∥∥2ds
≤ qµC

∫ t
0

∥∥u(s)∥∥q−1(q−1)N
∥∥A1/2u(s)∥∥2N/(N−2)∥∥A1/2u′(s)∥∥2ds

≤ qµC
∫ t
0

∥∥u(s)∥∥q−1(q−1)N
∥∥Au(s)∥∥2∥∥A1/2u′(s)∥∥2ds,

(3.11)

where we have used Hölder’s inequality and Sobolev-Poincaré’s inequality. We observe
from Gagliardo-Nirenberg inequality, Sobolev-Pointcaré’s inequality, and (3.5) that

∥∥u(s)∥∥q−1(q−1)N ≤ C
∥∥u(s)∥∥(q−1)(1−θ)2N/(N−2)

∥∥Au(s)∥∥(q−1)θ2

≤ C∥∥A1/2u(s)∥∥(q−1)(1−θ)2

∥∥Au(s)∥∥(q−1)θ2

≤ CM(q−1)(1−θ)/2
0

∥∥Au(s)∥∥(q−1)θ2 with θ = N−2
2

− 1
q−1 (< 1).

(3.12)

Thus, (3.11) and (3.12) imply that

∣∣∣∣µ
∫ t
0

(
A1/2

[|u(s)|q−1u(s)],A1/2u′(s))ds
∣∣∣∣

≤ qµCM(q−1)(1−θ)/2
0

∫ t
0

∥∥Au(s)∥∥1+(q−1)θ2

∥∥A1/2u′(s)∥∥2ds.
(3.13)

We also note that (3.5) implies

βγ
∫ t
0

∥∥Au(s)∥∥2∥∥A1/2u(s)∥∥2(γ−1)2

(
A1/2u′(s),A1/2u(s)

)
ds

≤ βγ
∫ t
0

∥∥Au(s)∥∥22∥∥A1/2u′(s)∥∥2∥∥A1/2u(s)∥∥2γ−12 ds

≤ βγM(2γ−1)/2
0

∫ t
0

∥∥Au(s)∥∥22∥∥A1/2u′(s)∥∥2ds.
(3.14)
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Consequently, (3.10), (3.13), and (3.14) give

1
2

∥∥A1/2u′(t)∥∥22+ α2
∥∥Au(t)∥∥22+ ε2

∥∥A3/2u(t)∥∥22
+ β
2

∥∥Au(t)∥∥22∥∥A1/2u(t)∥∥2γ2 +λ
∫ t
0

∥∥Au′(s)∥∥22ds
≤ 1
2

∥∥A1/2u1∥∥22+ α2
∥∥Au0∥∥22+ ε2

∥∥A3/2u0∥∥22
+ β
2

∥∥Au0∥∥22∥∥A1/2u0∥∥2γ2 +qµCM(q−1)(1−θ)/2
0

×
∫ t
0

∥∥Au(s)∥∥1+(q−1)θ2

∥∥A1/2u′(s)∥∥2ds+βγM(2γ−1)/2
0

×
∫ t
0

∥∥Au(s)∥∥22∥∥A1/2u′(s)∥∥2ds.

(3.15)

Set

E1(t)= 12
∥∥A1/2u′(t)∥∥22+ α2

∥∥Au(t)∥∥22+ ε2
∥∥A3/2u(t)∥∥22

+ β
2

∥∥Au(t)∥∥22∥∥A1/2u(t)∥∥2γ2 .
(3.16)

Then

E1(t)≤ E1(0)+C1
∫ t
0

(
E1(s)1+(q−1)θ+E1(s)+E1(s)2

)
ds. (3.17)

Here, we set g(s)= s+s1+(q−1)θ+s2 on s ≥ 0. Then we have

E1(t)≤ E1(0)+C1
∫ t
0
g
(
E1(s)

)
ds. (3.18)

Note that g(s) is continuous and nondecreasing on s ≥ 0. By applying Bihari-
Langenhop’s inequality (see [1]), we obtain

E1(t)≤M1 for some constant M1 > 0 (3.19)

and so the desired result (3.8).

Proposition 3.5. If (u0,u1)T ∈D(A4)×D(A2) and
N

N−2 ≤ q ≤min
{
N+2
N−2 ,

N−2
[N−4]+

}
(N ≥ 3), (3.20)

then there exists a positive constant M2, which does not depend on ε, so that

sup
t>0

{∥∥Au′(t)∥∥22,∥∥A3/2u(t)∥∥22,ε∥∥A2u(t)∥∥22
}
≤M2. (3.21)

Proof. Multiplying equation (2.5) by A2u′(t),

1
2
d
dt

(∥∥Au′(t)∥∥22+α∥∥A3/2u(t)∥∥22+ε∥∥A2u(t)∥∥22
)
+λ∥∥A3/2u′(t)∥∥22

+ β
2

∥∥A1/2u(t)∥∥2γ2 d
dt
∥∥A3/2u(t)∥∥22+µ(A1/2[|u(t)|q−1u(t)],A3/2u′(t))= 0.

(3.22)
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Integrating (3.22) from 0 to t, we get

1
2

(∥∥Au′(t)∥∥22+α∥∥A3/2u(t)∥∥22+ε∥∥A2u(t)∥∥22
)
+ β
2

∥∥A1/2u(t)∥∥2γ2
×∥∥A3/2u(t)∥∥22+λ

∫ t
0

∥∥A3/2u′(s)∥∥22ds
≤ 1
2

(∥∥Au1∥∥22+α∥∥A3/2u0∥∥22+ε∥∥A2u0∥∥22
)
+ β
2

∥∥A1/2u0∥∥2γ2 ∥∥A3/2u0∥∥22
+µ

∫ t
0

(
A1/2

[|u(s)|q−1u(s)],A3/2u′(s))ds
+βγ

∫ t
0

∥∥A1/2u(s)∥∥2(γ−1)2

(
A1/2u′(s),A1/2u(s)

)∥∥A3/2u(s)∥∥22ds.

(3.23)

In the case (N/(N−2)) ≤ q ≤min{(N+2)/(N−2),(N−2)/[N−4]+} where (N ≥ 3),
we have

µ
(
A1/2

[|u(s)|q−1u(s)],A3/2u′(s))
≤ qµ∥∥|u(s)|q−1A1/2u(s)∥∥2∥∥A3/2u′(s)∥∥2
≤ qµC∥∥u(s)∥∥q−1(q−1)N

∥∥A1/2u(s)∥∥2N/(N−2)∥∥A3/2u′(s)∥∥2
≤ qµC∥∥A1/2u(s)∥∥q−12

∥∥Au(s)∥∥2∥∥A3/2u′(s)∥∥2.
(3.24)

Thus (3.5), (3.8), and (3.24) imply that

µ
(
A1/2

[|u(s)|q−1u(s)],A3/2u′(s))≤ qµCM(q−1)/2
0 M1/2

1

∥∥A3/2u′(s)∥∥2
≤ 1
2λ
(qµC)2Mq−1

0 M1+ λ2
∥∥A3/2u′(s)∥∥22

(3.25)

and so

µ
∫ t
0

(
A1/2

[|u(s)|q−1u(s)],A3/2u′(s))ds
≤ 1
2λ
(qµC)2Mq−1

0 M1T + λ2
∫ t
0

∥∥A3/2u′(s)∥∥22ds.
(3.26)

On the other hand, (3.5) and (3.8) imply that

βγ
∫ t
0

∥∥A1/2u(s)∥∥2(γ−1)2

(
A1/2u′(s),A1/2u(s)

)∥∥A3/2u(s)∥∥22ds
≤ βγ

∫ t
0

∥∥A1/2u(s)∥∥2γ−12

∥∥A1/2u′(s)∥∥2∥∥A3/2u(s)∥∥22ds
≤ βγM(2γ−1)/2

0 M1/2
1

∫ t
0

∥∥A3/2u(s)∥∥22ds.
(3.27)

Thus, from (3.23), (3.26), and (3.27),

1
2

(∥∥Au′(t)∥∥22+α∥∥A3/2u(t)∥∥22+ε∥∥A2u(t)∥∥22+β∥∥A1/2u(t)∥∥2γ2 ∥∥A3/2u(t)∥∥22
)

+ λ
2

∫ t
0

∥∥A3/2u′(s)∥∥22ds
≤ 1
2

(∥∥Au1∥∥22+α∥∥A3/2u0∥∥22+ε∥∥A2u0∥∥22
)
+ β
2

∥∥A1/2u0∥∥2γ∥∥A3/2u0∥∥2
+ 1
2λ
(qµC)2Mq−1

0 M1T +βγM(2γ−1)/2
0 M1/2

1

∫ t
0

∥∥A3/2u(s)∥∥22ds.

(3.28)
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Thus,

E2(t)+ λ2
∫ t
0

∥∥A3/2u′(s)∥∥22ds ≤ E2(0)+C1+C2
∫ t
0
α
∥∥A3/2u(s)∥∥22ds

≤ E2(0)+C1+C2
∫ t
0
E2(s)ds,

(3.29)

where

E2(t)= 12
(∥∥Au′(t)∥∥22+α∥∥A3/2u(t)∥∥22+ε∥∥A2u(t)∥∥22+β∥∥A1/2u(t)∥∥2γ2 ∥∥A3/2u(t)∥∥22

)
,

C1 = 1
2λ
(qµC)2Mq−1

0 M1T , C2 = 1
α
βγM(2γ−1)/2

0 M1/2
1 .

(3.30)

Applying Gronwall’s inequality, we easily obtain the desired result.

Proposition 3.6. If T > 0 and (u0,u1)T ∈D(A2)×D(A) and
N

N−2 ≤ q ≤min
{
N+2
N−2 ,

N−2
[N−4]+

}
(N ≥ 3), (3.31)

then there exists a positive constant N , which does not depend on ε, so that

sup
t>0

{∥∥u′′(t)∥∥22
}
≤N. (3.32)

Proof. Multiplying the differentiated equation of (2.5) in t by u′′(t), we get

1
2
d
dt
∥∥u′′(t)∥∥22+ α2

d
dt
∥∥A1/2u′(t)∥∥22+ ε2

d
dt
∥∥Au′(t)∥∥22+λ∥∥A1/2u′′(t)∥∥22

+ β
2

∥∥A1/2u(t)∥∥2γ2 (Au′(t),u′′(t))+qµ
∫
Ω
|u(t)|q−1u′(t)u′′(t)dx

+2βγ∥∥A1/2u(t)∥∥2(γ−1)2

(
A1/2u(t),A1/2u′(t)

)(
Au(t),u′′(t)

)= 0.
(3.33)

Note that if (N/(N−2)) ≤ q ≤ min{(N+2)/(N−2),(N−2)/[N−4]+} where N ≥ 3,
then (3.5) and (3.8) imply that

qµ
∣∣∣∣
∫
Ω
|u(t)|q−1u′(t)u′′(t)dx

∣∣∣∣
≤ qµ∥∥u(t)∥∥q−1(q−1)N

∥∥u′(t)∥∥2N/(N−2)∥∥u′′(t)∥∥2
≤ qµC∥∥u(t)∥∥(q−1)(1−θ)2N/(N−2)

∥∥Au(t)∥∥(q−1)θ∥∥u′(t)∥∥2N/(N−2)∥∥u′′(t)∥∥2
≤ qµC∥∥A1/2u(t)∥∥(q−1)(1−θ)2

∥∥Au(t)∥∥(q−1)θ∥∥A1/2u′(t)∥∥2∥∥u′′(t)∥∥2
≤ qµCM((q−1)(1−θ))/2

0 M(1+(q−1)θ)/2
1

∥∥u′′(t)∥∥2.

(3.34)

Also, (3.5) and (3.8) give

2βγ
∥∥A1/2u(t)∥∥2(γ−1)2

∣∣(A1/2u(t),A1/2u′(t))(Au(t),u′′(t))∣∣
≤ 2βγ∥∥A1/2u(t)∥∥2γ−12

∥∥A1/2u′(t)∥∥2∥∥Au(t)∥∥2∥∥u′′(t)∥∥2
≤ 2βγM(2γ−1)/2

0 M1
∥∥u′′(t)∥∥2

(3.35)
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and

β
2

∥∥A1/2u(t)∥∥2γ2 (Au′(t),u′′(t))≤ β2
∥∥A1/2u(t)∥∥2γ2 ∥∥Au′(t)∥∥2∥∥u′′(t)∥∥2

≤ β
2
Mγ
0

∥∥Au′(t)∥∥2∥∥u′′(t)∥∥2.
(3.36)

Thus, from (3.33), (3.34), (3.35), and (3.36), we get

1
2
d
dt
∥∥u′′(t)∥∥22+ α2

d
dt
∥∥A1/2u′(t)∥∥22+ ε2

d
dt
∥∥Au′(t)∥∥22+λ∥∥A1/2u′′(t)∥∥22

≤
(
qµCM((q−1)(1−θ))/2

0 M(1+(q−1)θ)/2
1 +2βγM(2γ−1)/2

0 M1

)∥∥u′′(t)∥∥2
+ β
2
Mγ
0

∥∥Au′(t)∥∥2∥∥u′′(t)∥∥2.
(3.37)

Integrating (3.37) from 0 to t, we get

E3(t)+λ
∫ t
0

∥∥A1/2u′′(s)∥∥22ds ≤ E3(0)+C3
∫ t
0

(∥∥Au′(s)∥∥2∥∥u′′(s)∥∥2+∥∥u′′(s)∥∥2)ds
≤ E3(0)+C4

∫ t
0

(
E3(s)1/2+E3(s)

)
ds,

(3.38)

where

E3(t)= 12
∥∥u′′(t)∥∥22+ α2

∥∥A1/2u′(t)∥∥22+ ε2
∥∥Au′(t)∥∥22,

C3 =max
{
qµCM((q−1)(1−θ))/2

0 M(1+(q−1)θ)/2
1 ,2βγM(2γ−1)/2

0 M1,
β
2
Mγ
0

}
.

(3.39)

Here, we set g(s)= s1/2+s on s ≥ 0. Then we have

E3(t)≤ E3(0)+C4
∫ t
0
g
(
E3(s)

)
ds. (3.40)

Note that g(s) is continuous and nondecreasing on s ≥ 0. By applying Bihari-
Langenhop’s inequality (see [1]), we obtain

E3(t)≤M2 for some constant M2 > 0 (3.41)

and so we have the desired result (3.32).

4. Convergence results. In this section, we establish the uniform convergence of
strong solutions to (2.5) as ε→ 0. At this point, we find it advantageous to make the
dependence of solutions to (2.5) on ε explicit. To be more precise, we let Uε(t) =
(uε(t),u′ε(t)) be the solution to (2.12) and observe that Uε is the solution of (2.5).
Continuing in this manner, (uε(t))(x) = uε(x,t) satisfies (2.5). We are concerned
with the convergence of solutions to (1.1) on finite interval of arbitrary length. In
what follows, we let T > 0 and consider the convergence on [0,T ]. In particular, we
want to establish that

lim
ε→0+

(
sup
t∈[0,T ]

∥∥uε(·, t)−u(·, t)∥∥∞
)
= 0, (4.1)
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whereu is the strong solution to (1.1). Our proofs rely upon the classical Arzela-Ascoli
arguments and the uniqueness of solutions to (1.1).

Lemma 4.1. Let {εn} converge to zero and (u0,u1)T = U0 ∈ D(A2)×D(A2). If,
for each εn,uεn is a solution to (2.5), then there exists a subsequence εn′ → 0 and
u∗;[0,T ]→HA1/2 such that

lim
n→∞

∥∥uεn′ (t)−u∗(t)∥∥A1/2 = 0 uniformly for t ∈ [0,T ]. (4.2)

Moreover, if (uεn′ (t))(x)=uεn′ (x,t) and (u∗(t))(x)=u∗(x,t), then
lim
n→∞

∥∥uεn′ (·, t)−u∗(·, t)∥∥∞ = 0 uniformly for t ∈ [0,T ]. (4.3)

Proof. From Proposition 3.4, we observe that

∥∥A1/2uεn(t)−A1/2uεn(s)∥∥2 ≤
∫ t
s

∥∥A1/2u′εn(r)∥∥2dr
≤M1/2

1 |t−s| for t,s ∈ [0,T ].
(4.4)

Moreover, we also have from Proposition 3.3∥∥A1/2uεn(t)∥∥2 ≤M1/2
0 for t ∈ [0,T ]. (4.5)

Thus, the above results, together with the compactness of A−1/2, imply that the se-
quence

{
uεn(t)

}
is uniformly bounded and uniformly equicontinuous inHA1/2 . Hence,

we can apply Arzela-Ascoli theorem to the sequence
{
uεn(t)

}
in HA1/2 . Thus, we can

find a subsequence
{
uεn′

}
and the limit function u∗(t);[0,T ]→HA1/2 such that

uεn(t) �→u∗(t) in HA1/2 uniformly for t ∈ [0,T ]. (4.6)

The final assertion follows immediately from the Sobolev embedding theorem.

Now, subsequent results presuppose that the hypotheses of Lemma 4.1 remain in
effect.

Proposition 4.2. If we define fεn : [0,T ]→H by

fεn(t)=π2
(
Fεn

(
uεn(t)

))
=−β∥∥A1/2uεn(t)∥∥2γ2 Auεn(t)−εnA2uεn(t)−µ∣∣uεn(t)∣∣q−1uεn(t), (4.7)

then
{
fεn(t)

}
converges weakly to f∗(t) in H on [0,T ], where f∗(t) is defined by

f∗(t)=−β
∥∥A1/2u∗(t)∥∥2γ2 Au∗(t)−µ∣∣u∗(t)∣∣q−1u∗(t). (4.8)

Proof. Since limn→∞uεn(t)=u∗(t) in HA1/2 , we have
lim
n→∞

∥∥A1/2uεn(t)∥∥2γ2 = lim
n→∞

∥∥uεn(t)∥∥2γA1/2 = ∥∥u∗(t)∥∥2γA1/2 = ∥∥A1/2u∗(t)∥∥2γ2 . (4.9)

By virtue of Proposition 3.4, the sequence
{
Auεn(t)

}
is uniformly bounded in H for

t ∈ [0,T ]. Moreover, {uεn(t)} converges to u∗(t) in H. Since A is closed, we have
u∗(t) ∈ D(A) and Auεn(t) converges weakly to Au∗(t) in H. Note that

{
εnuεn(t)

}
converges to zero asn→∞ and {εnA2uεn(t)}= {A2(εnuεn(t))} is uniformly bounded
in H. Since A2 is closed,

{
εnA2uεn

}
converges weakly to zero. This completes the

proof.
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Proposition 4.3. The sequence
{
uεn(t)

}
converges weakly in X. Moreover, u′∗(t)

exists and u′εn(t) converges weakly to u′∗(t) for a.e. t ∈ [0,T ].
Proof. Since X is a product of Hilbert spaces, it is of course reflexive. Thus,

{Uεn(t)} = {(uεn(t),u′εn(t))T } is a bounded sequence in a reflexive Banach space
X and so it must have a subsequence {Uεn′ (t)} = {(uεn′ (t),u′εn′ (t))T } such that
{Uεn′ (t)} converges weakly to {U∗(t)}.
But Lemma 4.1 implies that {U∗(t)} = {(u∗(t),u′∗(t))T }.
Proposition 4.4. The function F∗(t), defined by

F∗(t)=
(
0,f∗(t)

)T = (0,−β∥∥A1/2u∗(t)∥∥2γ2 Au∗(t)−µ|u∗(t)|q−1u∗(t))T , (4.10)

is differentiable a.e. t ∈ [0,T ].
Proof. Note thatA1/2u∗(·) is the limit of a uniformly convergent sequence of uni-

formly Lipschitz continuous functions in reflexive Banach spaceH and so it is differen-
tiable almost everywhere. Thus, ‖A1/2u∗(·)‖2γ2 is differentiable for a.e. t ∈ [0,T ]. And
d/dt(Au∗(t)) exists since it is a weak limit of a bounded sequence d/dt(Auεn′ (t)).

Lemma 4.5. Let u(t) be the unique solution to (2.18) represented by (2.19) on [0,T ].
If u0 = (u0,u1)T ∈ D(A4)×D(A2) and εn → 0, then uεn(t) converges weakly to u(t)
in X on [0,T ].

Proof. Note that solutions to (2.5) have abstract variation of parameters repre-
sentation

Uεn(t)= T(t)U0+
∫ t
0
T(t−s)F(Uεn(s))ds = T(t)U0+

∫ t
0
T(t−s)f̄εn(s)ds, (4.11)

where

f̄εn(t)=
(
0,fεn(t)

)T
= (0,−β∥∥A1/2uεn(t)∥∥2γ2 −εnA2uεn(t)−µ|uεn(t)|q−1uεn(t))T . (4.12)

If W ∈X and 〈·,·〉X denotes the inner product of X, we apply W to each side of (4.11)
and take the inner product to obtain

〈Uεn(t),W〉X = 〈T(t)U0,W〉X+
∫ t
0
〈T(t−s)f̄εn(s),W〉X ds. (4.13)

We have shown that Uεn(t)= (uεn(t),u′εn(t))T has a weakly convergent subsequence
which we denote by Uεm(t)= (uεm(t),u′εm(t))T . The limit of this subsequence, for the
time being, is denoted by U∗(t) = (u∗(t),u′∗(t))T . Additionally, we have shown that
f̄εm(t)= (0,fεm(t))T converges weakly to f̄∗(t)=(0,f∗(t))T = (0,−β‖A1/2u∗(t)‖2γ2 −
µ|u∗(t)|q−1u∗(t))T . We may compute the limit as m → ∞ of each side of (4.13) to
produce

〈U∗(t),W〉X = 〈T(t)U0,W〉X+
∫ t
0
〈T(t−s)f̄∗(s),W〉X ds. (4.14)
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Standard techniques yield

U∗(t)= T(t)U0+
∫ t
0
T(t−s)f̄∗(s)ds. (4.15)

The differentiability of f∗(t), together with the regularity results for abstract Cauchy
initial value problem (cf. Pazy [10, Chapter 4]), allows us to differentiate (4.15) to pro-
duce a strong solution to (2.18). However, solutions of (2.18) are unique and, therefore,

U∗(t)=
(
u∗(t),u′∗(t)

)T =U(t)= (u(t),u′(t))T . (4.16)

Now, we are in a position to obtain our result.

Theorem 4.6. If (u0,u1)T =U0 ∈D(A4)×D(A2) and T > 0 and

N
N−2 ≤ q ≤min

{
N+2
N−2 ,

N−2
[N−4]+

}
(N ≥ 3), (4.17)

then

lim
ε→0+

sup
t∈[0,T ]

∥∥uε(t)−u(t)∥∥∞ = 0, (4.18)

where uε and u are strong solutions to (1.1).

Proof. We pick an arbitrary sequence {εn} such that εn → 0. Lemma 4.1 along
with Lemma 4.5 give our desired result.
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