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Abstract. We prove that a Finsler manifold Fm is of constant curvature K = 1 if and only
if the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle
IM of Fm.
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1. Introduction. The geometry of Finsler manifolds of constant curvature is one
of the fundamental subjects in Finsler geometry. Akbar-Zadeh [1] proved that, under
some conditions on the growth of the Cartan tensor, a Finsler manifold of constant
curvature K is locally Minkowskian if K = 0 and Riemannian if K = −1. Recently,
Bryant [5] has constructed interesting Finsler metrics of positive constant curvature
on the sphere S2. Shen [9] has also investigated the geometric structure of Finsler
manifolds of positive constant curvature via the Riemannian Y -metrics. Some special
Finsler metrics of constant curvature have been intensively studied by Matsumoto
[7, 8], Shibata-Kitayama [10], and Wei [11].
The purpose of the present paper is to obtain a geometric characterization of Finsler

manifolds of positive constant curvature. More precisely, we prove that Fm = (M,F)
is a Finsler manifold of constant curvature K = 1 if and only if the unit horizontal
Liouville vector field ξ = (yi/F)δ/δxi is a Killing vector field on the indicatrix bundle
IM of Fm. To achieve this result, we consider the Sasaki-Finsler metric G on TM and
prove that the linear connection of the Cartan connection on Fm is just the projection
of the Levi-Civita connection ∇ with respect to G on the vertical vector bundle (see
Theorem 2.1). This enables us to express the local coefficients of ∇ in terms of the
local coefficients of the Cartan connection of Fm (see Theorem 2.2). Finally, a necessary
and sufficient condition for ξ to be a Killing vector field on IM leads to the proof of
the main result stated in Theorem 3.3.

2. The Levi-Civita connection with respect to a Sasaki-Finsler metric. In the
present section, we show that the linear connection of the Cartan connection is the
projection of the Levi-Civita connection with respect to the Sasaki-Finsler metric on
the vertical vector bundle. Then we express the local coefficients of the Levi-Civita
connection in terms of the local coefficients of the Cartan connection.
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Throughout the paper we use the Einstein convention, that is, repeated indices with
one upper index and one lower index denotes summation over their range. Also, for
any smoothmanifoldN , we denote by�(N) the algebra of smooth functions onN and
by Γ(E) the �(N)-module of smooth sections of a vector bundle E over N . For some
Finsler tensor fields we put the index o to denote the contraction by the supporting
element yi, as for example, Tio = Tijyj .
Let Fm = (M,F) be a Finsler manifold, where M is a real m-dimensional smooth

manifold and F is the fundamental function of Fm (see Antonelli-Ingarden-Matsumoto
[2, page 36]). Consider TM◦ = TM\{0} and denote by VTM◦ the vertical vector bundle
over TM◦, that is, VTM◦ = kerπ∗, where π∗ is the tangent mapping of the canonical
projection π : TM◦ �→M . We may think of the Finsler metric g = (gij(x,y)), where
we set

gij(x,y)= 12
∂2F2

∂yi ∂yj
(2.1)

as a Riemannian metric on VTM◦. The canonical nonlinear connection HTM◦ =
(Nji (x,y)) of Fm is given by

Nji =
∂Gj

∂yi
, (2.2a)

Gj = 1
4
gjh

(
∂2F2

∂yh ∂xk
yk− ∂F

2

∂xh

)
. (2.2b)

Then on any coordinate neighborhood �⊂ TM◦ the vector fields

δ
δxi

= ∂
∂xi

−Nji
∂
∂yj

, i∈ {1, . . . ,m}, (2.3)

form a basis for Γ(HTM◦
|�). By straightforward calculations using (2.3) we obtain the

following Lie brackets:

[
δ
δxi

,
∂
∂yj

]
=G k

i j
∂
∂yk

(2.4)

[
δ
δxi

,
δ
δxj

]
= Rkij ∂∂yk , (2.5)

where we set

G k
i j =

∂Nki
∂yj

(2.6a)

Rkij = δN
k
i

δxj
− δN

k
j

δxi
. (2.6b)

On TM◦ we consider the almost product structure Q locally given by

Q
(
∂
∂yi

)
= δ
δxi

and Q
(
δ
δxi

)
= ∂
∂yi

. (2.7)
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Then by means of the pair (g,Q), we define a Riemannian metric G on TM◦ by (cf.
Bejancu [4, page 42])

G(X,Y)= g(vX,vY)+g(QhX,QhY) ∀X,Y ∈ Γ(TTM◦), (2.8)

where v and h denote the projection morphisms of TTM◦ on VTM◦ and HTM◦,
respectively. Clearly, we have

G
(
δ
δxi

,
δ
δxj

)
=G

(
∂
∂yi

,
∂
∂yj

)
= gij, G

(
δ
δxi

,
∂
∂yj

)
= 0, (2.9)

that is, HTM◦ and VTM◦ are complementary orthogonal vector subbundles of TTM◦

with respect to G. As the Riemannian metric G is of Sasaki type and was obtained
from a Finsler metric, we call it the Sasaki-Finsler metric on TM◦.
The Levi-Civita connection ∇ on TM◦ with respect to G is given by the well-known

formula

2G(∇XY ,Z)=X
(
G(Y ,Z)

)+Y (G(X,Z))−Z(G(X,Y))
+G([X,Y],Z)+G([Z,X],Y )−G([Y ,Z],X), (2.10)

for any X,Y ,Z ∈ Γ(TTM◦).
On the other hand, the Cartan connection of Fm is the pair FC = (HTM◦,∇◦), where

HTM◦ is the canonical nonlinear connection given by (2.2) and ∇◦ is a linear connec-
tion on VTM◦ whose local coefficients Cikj and Fikj are given by

∇◦∂/∂yj
∂
∂yi

= Cikj ∂∂yk , (2.11a)

Cikj = 12g
kh ∂ghi
∂yj

(2.11b)

and

∇◦δ/δxj
∂
∂yi

= Fikj ∂∂yk , (2.12a)

F ki j =
1
2
gkh

(
δghi
δxj

+ δghj
δxi

− δgij
δxh

)
, (2.12b)

respectively. The h- and v-covariant derivatives of a Finsler tensor field T = (T j···i··· )
are denoted by Tj···i···|k and T

j···
i···‖k, respectively.

In order to get an interrelation between the Levi-Civita connection ∇ and the linear
connection∇◦ of the Cartan connection we set Gj = gjhGh, and by direct calculations
using (2.1) and (2.2b), we deduce that

∂
∂yk

(
∂Gi
∂yj

− ∂Gj
∂yi

)
= ∂gik
∂xj

− ∂gjk
∂xi

. (2.13)

Now, we state the following result.
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Theorem 2.1. The linear connection ∇◦ of the Cartan connection FC is the projec-
tion of the Levi-Civita connection ∇ on VTM◦, i.e., we have

∇◦XY = v∇XY , (2.14)

for any X ∈ Γ(TTM◦) and Y ∈ Γ(VTM◦).

Proof. First, we put

v∇∂/∂yj
∂
∂yi

=Aikj ∂∂yk and v∇δ/δxj
∂
∂yi

= Bikj ∂∂yk . (2.15)

Then in (2.10) we replace (X,Y ,Z) in turn by (∂/∂yj,∂/∂yi,∂/∂yk) and (δ/δxj,∂/∂yi,
∂/∂yk) and by using (2.1), (2.4), (2.9), and (2.11b), we obtain

A k
i j = C k

i j (2.16)

and

B ki j =
1
2
gkh

(
δghi
δxj

+gthGjti−gtiGjth
)
. (2.17)

Furthermore, by using (2.2a), (2.3) and (2.13), we derive

gthGjti−gtiGjth = gth
∂2Gt

∂yi∂yj
−gti ∂2Gt

∂yh∂yj

= ∂
∂yj

(
∂Gh
∂yi

− ∂Gi
∂yh

)
−Nti

∂gth
∂yj

+Nth
∂gti
∂yj

=
(
∂ghj
∂xi

−Nti
∂ghj
∂yt

)
−
(
∂gij
∂xh

−Nth
∂gij
∂yt

)

= δghj
δxi

− δgij
δxh

.

(2.18)

Finally, by using (2.18) in (2.17) and taking into account (2.12b) we deduce that
Bikj = Fikj , which together with (2.16) proves the assertion of the theorem.
Next, in order to get the local coefficients of ∇, we consider the local frame field

{δ/δxi,∂/∂yi} on TM◦ and set

∇δ/δxj
δ
δxi

=X k
i j

∂
∂yk

+Y k
i j

δ
δxk

, (2.19)

∇∂/∂yj
∂
∂yi

= Z k
i j

∂
∂yk

+U k
i j

δ
δxk

, (2.20)

∇δ/δxj
∂
∂yi

= V k
i j

∂
∂yk

+W k
i j

δ
δxk

. (2.21)

Taking into account that ∇ is torsion free and using (2.4) and (2.21), we infer that

∇∂/∂yi
δ
δxj

= Vikj ∂∂yk +Wi
k
j
δ
δxk

−Gikj ∂∂yk . (2.22)
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Now, we replace (X,Y ,Z) from (2.10) in turn by (δ/δxj,δ/δxi,∂/∂yh) and (δ/δxj,
δ/δxi,δ/δxh) and using (2.4), (2.5), (2.9), and (2.19), we obtain

X k
i j =−C k

i j−
1
2
R k
i j Y k

i j = F ki j. (2.23)

Similarly, we replace (X,Y ,Z) from (2.10) in turn by (∂/∂yj,∂/∂yi,∂/∂yh) and
(∂/∂yj,∂/∂yi,δ/δxh) and deduce that

Z k
i j = C k

i j 2ghkU h
i j =−

δgij
δxk

+ghjG h
i k+gihG h

j k. (2.24)

As G k
i j given by (2.6a) are the local coefficients of the Berwald connection, we obtain

2ghkU h
i j =−gij;k, (2.25)

where gij;k is the h-covariant derivative of gij with respect to the Berwald connection.
Next, by equation (18.24) in Matsumoto [6], we have

gij;k =−2Cijk|o (2.26)

and hence

U k
i j = 2C k

i j|o. (2.27)

Finally, replace (X,Y ,Z) from (2.10) in turn by (δ/δxj,∂/∂yi,∂/∂yh) and (δ/δxj,
∂/∂yi,δ/δxh) and using (2.4), (2.5), (2.9), and Theorem 2.1, we derive that

V k
i j = F ki j, W k

i j = C k
i j+

1
2
Rihjghk, (2.28)

where we set Rihj = gitRthj . Thus (2.19), (2.20), (2.21), (2.22), and the above calcula-
tions enable us to state the following theorem.

Theorem 2.2. The Levi-Civita connection ∇ on TM◦ with respect to the Sasaki-
Finsler metric G is locally expressed in terms of the local coefficients of the Cartan
connection of Fm as follows:

∇δ/δxj
δ
δxi

=−
(
C k
i j+

1
2
Rkij

)
∂
∂yk

+F ki j
δ
δxk

, (2.29)

∇∂/∂yj
∂
∂yi

= C k
i j

∂
∂yk

+2C k
i j|o

δ
δxk

, (2.30)

∇δ/δxj
∂
∂yi

= F ki j
∂
∂yk

+
(
C k
i j+

1
2
Rihjghk

)
δ
δxk

=∇∂/∂yi
δ
δxj

+G k
i j

∂
∂yk

.
(2.31)
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3. The main result. It is well known that, on the tangent bundle TM , there exists a
globally defined vector field L = yi(∂/∂yi) called the Liouville vector field. By means
of the almost product structure Q, we obtain another vector field QL = yi(δ/δxi)
which we call the horizontal Liouville vector field of Fm. Clearly, ξ = -i(δ/δxi), where
-i =yi/F is a unit vector field with respect to G. To state the next theorem, we recall
that the angular metric of Fm has the local components

hij = gij−-i-j ; -i = gij-j = ∂F
∂yi

. (3.1)

Also, we recall that the Lie derivative of G with respect to ξ is given by (cf. Yano-
Kon [12, page 41])

(
LξG

)
(X,Y)=G(∇Xξ,Y)+G(∇Y ξ,X) ∀X,Y ∈ Γ(TTM◦). (3.2)

Now we prove the following theorem.

Theorem 3.1. The Lie derivative of G with respect to ξ satisfies the equations

(
LξG

)(
vX,vY

)= (LξG)(hX,hY)= 0, (3.3)

(
LξG

)(
hX,vY

)= 1
F
(hij−Rioj)XiY j (3.4)

for any X,Y ∈ Γ(TTM◦), where hX =Xi(δ/δxi) and vY = Y i(∂/∂yi).
Proof. First, by using (2.31), (2.9) and taking into account that Nki = yjFikj , we

obtain

G
(
∇∂/∂yj ξ,

∂
∂yi

)
= -k

(
F h
j k−G h

j k

)
ghi

= 1
F


Nhj −yk ∂N

h
j

∂yk


ghi

= 0,

(3.5)

since Nhj are positively homogeneous of degree 1 with respect to (yk). Next, by using
(2.29) and (2.9), we deduce that

G
(
∇δ/δxj ξ,

δ
δxi

)
= gki-k|j = 0, (3.6)

since -k|j = 0. Taking into account (3.2), we see that (3.5) and (3.6) yield (3.3). Finally,
substituting X and Y from (3.2) by δ/δxj and ∂/∂yi, respectively, and using (2.29),
(2.31), and (2.9), we infer that

(
LξG

)( δ
δxi

,
∂
∂yj

)
= -i‖j− 1F Rjoi =

1
F
(hij−Rioj), (3.7)

since by equations (17.30) and (17.21) in Matsumoto [6] we have -i‖j = (1/F)hij and
Rioj = Rjoi. As (3.7) implies (3.4), the proof is complete.
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Next, for a fixed point x ∈ M we consider the indicatrix Ix at x, which is a hyper-
surface of the fibre TM◦

x given by the equation F(x,y) = 1. Then denote by IM the
hypersurface of TM◦ consisting of indicatrices at all points ofM and call it the indica-
trix bundle over Fm. It is easy to show that Qξ = -i(∂/∂yi) is the unit normal vector
field with respect to the Sasaki-Finsler metric. Indeed, if the local equations of IM in
TM◦ are

xi = xi(uα), yi =yi(uα), α∈ {1, . . . ,2m−1}, (3.8)

then, we have

∂F
∂xi

∂xi

∂uα
+ ∂F
∂yi

∂yi

∂uα
= 0. (3.9)

As the h-covariant derivative of F vanishes, by using (2.3), we obtain(
Nki
∂xi

∂uα
+ ∂y

k

∂uα

)
-k = 0. (3.10)

The natural frame field on IM is represented by

∂
∂uα

= ∂x
i

∂uα
∂
∂xi

+ ∂y
i

∂uα
∂
∂yi

= ∂x
i

∂uα
δ
δxi

+
(
Nki
∂xi

∂uα
+ ∂y

k

∂uα

)
∂
∂yk

. (3.11)

Then by (3.10), we deduce

G
(
∂
∂uα

,Qξ
)
=
(
Nki
∂xi

∂uα
+ ∂y

k

∂uα

)
yhghk = 0. (3.12)

Thus Qξ is orthogonal to any vector tangent to IM . The horizontal Liouville vector
field is tangent to IM since G(ξ,Qξ)= 0.
To state the next corollary, we recall that ξ is a Killing vector field on IM with respect

to G if and only if LξG = 0 (cf. Yano-Kon [12, page 41]). Thus, by Theorem 3.1, we may
state the following corollary.

Corollary 3.2. The unit horizontal Liouville vector field ξ is a Killing vector field
on the indicatrix bundle IM if and only if

hij(x,y)= Rioj(x,y) ∀(x,y)∈ IM. (3.13)

Now, we consider a Finsler vector field X = Xi(∂/∂yi) which is noncolinear to the
Liouville vector field L. Then the curvature (flag curvature) of Fm for the flag spanned
by {L,X} is the function (see Equation (26.1) in Matsumoto [6] or Bao-Cheen-Shen [3])

K(x,y,X)= RiojXiXj

F2hijXiXj
. (3.14)

In case K is a constant we say that Fm is a Finsler manifold of constant curvature. The
above results enable us to state a geometric characterization of Finsler manifolds of
constant curvature by means of the horizontal Liouville vector field, which is the main
result of this paper.
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Theorem 3.3. The Finsler manifold Fm is of constant curvature K = 1 if and only if
the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle
IM .

Proof. Suppose K = 1 and from (3.14) we obtain (3.13), since F(x,y)= 1 on IM .
Conversely, suppose ξ is a Killing vector field on IM . Then by using (3.13) in (3.14),

we deduce thatK(x,y,X)= 1 for any Finsler vectorX(x,y) and any (x,y)∈ IM . Now,
take a point (x,y)∈ TM◦\IM . Then there exists a∈ (0,∞)\{1} such that F(x,y)= a.
As F is positive homogeneous of degree 1 with respect toy , we have F(x,(1/a)y)= 1.
Hence (x,(1/a)y)∈ IM and by (3.13), we have

hij
(
x,
1
a
y
)
= Rioj

(
x,
1
a
y
)
. (3.15)

Taking into account that hij and Rioj are positively homogeneous of degrees 0 and 2,
respectively, we infer that

Rioj(x,y)= F2(x,y)hij(x,y). (3.16)

Thus from (3.14), we deduce K(x,y,X)= 1. This completes the proof.
In the above discussions the constant curvature was taken to be K = 1 for “normali-

sation” purposes only. However the geometric characterization remains valid for any
positive constant curvature. To be more precise, we give the following. For any real
number λ > 0, we define the λ-indicatrix bundle IλM to be:

IλM =
{
(x,y)∈ TM◦ : F(x,y)=

√
1
λ

}
. (3.17)

Then simple modifications in the calculations given earlier will show that the unit hor-
izontal Liouville vector field ξ is a Killing vector field on IλM if and only if hij(x,y)=
Rioj(x,y), ∀(x,y)∈ IλM . So, as before, this can be used to prove the following the-
orem.

Theorem 3.4. The Finsler manifold Fm is of constant positive curvature λ if and
only if the unit horizontal Liouville vector field is a Killing vector field on IλM .
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