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Abstract. Let � be a Hilbert space of analytic functions on a planar domain G such that,
for each λ in G, the linear functional eλ of evaluation at λ is bounded on �. Furthermore,
assume that z�⊂� and σ(Mz)= Ḡ is an M-spectral set for Mz , the operator of multipli-
cation by z. This paper is devoted to the study of interpolation by multipliers of the space
� and, in particular, the Dirichlet space.
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1. Introduction. Let G be a finitely connected domain in the complex plane C. The
Bergman norm of a function f analytic on G is defined by

‖f‖22 =
∫
G
|f |2dA, (1.1)

where dA denotes the usual Lebesgue area measure. The Bergman space L2a(G) is the
set of all functions analytic on G such that ‖f‖2 <∞.
The Dirichlet space D(G) is the Hilbert space of analytic functions on G whose

derivative lies in L2a(G). The Dirichlet norm is defined by

‖f‖2D = |f(ω)|2+
∫
G
|f ′|2dA (1.2)

for f ∈D(G) and a fixed point ω in G. This ω is called the base point of D(G). It is
shown by Chan [5] that the norms obtained by fixing different points are equivalent. If
G =U is the open unit disc and f(z)=∑∞

n=0anzn, then ‖f‖2D = |a0|2+π
∑∞

n=1n|an|2.
If f ∈D(U), then

∑∞
n=1 |an|2 <∞, and so f ∈H2. Therefore, D(U)⊂H2.

An analytic function ϕ in G is said to be a multiplier for D(G) if ϕf ∈ D(G) for
all f ∈D(G). The set of all multipliers of the Dirichlet space is denoted by M(D(G)).
For each ϕ ∈ M(D(G)), define the multiplication operator Mϕ : D(G) → D(G) by
Mϕf =ϕf for all f ∈ D(G). Clearly, Mϕ is a bounded operator on D(G). The norm
of Mϕ is the usual norm. If we identify ϕ with Mϕ, then M(D(G)) can be thought of
as a subspace of the space of bounded linear operators on D(G).
A sequence (ωn) in G is said to be an interpolating sequence for M(D(G)) if, for

each bounded sequence (an)⊂ C, there exists ϕ ∈M(D(G)) such that ϕ(ωn)= an.
Let G1 and G2 be two conformally equivalent regions and let h :G1→G2 be a confor-

mal map which takes the base point that defines the norm of D(G1) to that of D(G2).
Now, since

∫
G2
|f ′|2dA = ∫G1

|(f ◦h)′|2dA, the composition operator Ch from D(G2)
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onto D(G1) is an isometry. Therefore, D(G1) is unitarily equivalent to D(G2). We also
observe that the map M(D(G2))→M(D(G1)) given by ϕ→ϕ◦h is an isomorphism.
A circular domain is a domain that is obtained by removing a finite number of dis-

joint closed subdisks from the open unit disk. We can assume that each removed
closed subdisk has a positive radius since otherwise that point is a removable singu-
larity of every function in D(G). We only prove this for the origin. If f ∈D(G), where
G contains B(0,R)\{0}, then f(z) = ∑∞

n=−∞anzn, r < |z| < R for some 0 < r < R.
We have π

∑
n≠0n|an|2(R2n−r 2n)= ∫r<|z|<R |f ′|2dA <

∫
G |f ′|2dA. Now, if r → 0, then

an = 0 for n < 0. Therefore, f is analytic at 0.
If G is a finitely connected domain in C, there exists a conformal map ψ of G onto

some circular domain Ω, and so D(G) is isometric to D(Ω). If G is a finitely connected
domain in C and K1, K2, . . . ,KN are the bounded components of C\G, then G0 = G∪
K1∪K2∪···∪KN and Gi = (C∪{∞})\Ki, 1 ≤ i ≤ N , are simply connected regions.
By Cauchy integral formula, every function f analytic on G can be written as a sum
f = f0+f1+···+fN , where each fi is analytic on Gi and fk(∞)= 0 if k≠ 0. Moreover,
this summation is unique up to the order.
We use the notation H(G) for the algebra of all analytic functions in G and H∞(G)

for the algebra of all bounded analytic functions in G. If G is unbounded, H0(G) is
the space of all analytic functions in G that vanish at infinity. We say that M(D(G)) is
rotation invariant if whenever h∈M(D(G)), hθ ∈M(D(G)), where hθ(z)= h(e−iθz).
Axler [1] considered the interpolation sequence for M(D(U)). In this paper, we

consider the interpolation sequence for M(D(G)). Which we treat in Section 2. In
Section 3, we consider the interpolation sequence for M(H), where H is a Hilbert
space of analytic functions on G and M(H) is the set of all multipliers of H.

2. Interpolation sequence for M(D(G)). We use Rosenthal-Dor theorem as proved
by Rosenthal [11] and Dor [9].

Theorem 2.1 (Rosenthal-Dor theorem). Suppose that E is a Banach space and (en)
is a bounded sequence in E. Then there exists a subsequence (enk) such that either

(i) the map (ak) �
∑∞

k=1akenk is an isomorphism of l1 into E; or
(ii) limk→∞ϕ(enk) exists for every ϕ ∈ E∗.

As we see in Rosenthal-Dor theorem, we must work with a Banach space. Therefore,
we need to make M(D(Ω)), where Ω is a circular domain into a Banach space. We
can prove that M(D(Ω)) can be identified with E∗, where E is a separable Banach
space and each point evaluation at ω∈Ω is a weak∗ continuous linear functional on
M(D(Ω)) with norm 1.

Lemma 2.2. If (ωn) is a sequence in Ωr = {z : |z| < r}, r < 1, such that |ωn| → r ,
then there existsϕ1 ∈M(D(Ωr )) such that limn→∞ϕ1(ωn) does not exist andϕ1(0)=0,
Furthermore, if (ωn) is a sequence in the annulus A= {z ∈ C : r < |z|< 1} and |ωn| →
r or |ωn| → 1, then there is a ϕ ∈M(D(A)) such that limn→∞ϕ(ωn) does not exist.

Proof. By [1, Proposition 4], there existsϕ ∈M(D(Ωr )) such thatϕ(ωn)= (−1)n.
If we consider ϕ1(z) = zϕ(z), then, by [5, Lemma 2.4], ϕ1 ∈ M(D(Ωr )), ϕ1(0) = 0
and limn→∞ϕ1(ωn) does not exist.
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To prove the second part, suppose that |ωn| → r . Considering ωn in A1 = (C∪
{∞})\Ωr , sinceA1 is the conformal image of {z : |z|< r1} for some r1 > 0, there exists
ϕ2 ∈M(D(A1)) such that limn→∞ϕ2(ωn) does not exist and vanish at infinity. Ifϕ3 ∈
M(D(U)), then ϕ3 is analytic in the unit disk U . Therefore, ϕ3(ωn) is convergent.
Now, we write ϕ = ϕ2+ϕ3. Then ϕ ∈ M(D(A)) because M(D(A)) = M(D(U))+

M0(D(A1)), where M0(D(A1)) = H0(A1)∩M(D(A1)), (see [5, Theorem 3.2]). Hence,
we find a function ϕ in M(D(A)) such that limn→∞ϕ(ωn) does not exist.
If |ωn| → 1, then there exists ψ1 ∈ M(D(U)) such that limn→∞ψ1(ωn) does not

exist. If ψ2 ∈ M0(D(A1)), then ψ2 is analytic on A1. Hence, ψ2(ωn) is convergent.
Therefore, if ψ = ψ1+ψ2, then ψ is in M(D(A)) and limn→∞ψ(ωn) does not exist.

Theorem 2.3. Let (ωn) be a sequence in the circular domain Ω = U\{K1 ∪K2 ∪
···∪KN}, where Ki = {z : |z−αi| ≤ ri}, αi ∈ U , i = 1,2, . . . ,N , such that |ωn| → 1 or
|ωn| → ri, i= 1,2, . . . ,N . Then there is a subsequence of (ωn) that is interpolating for
M(D(Ω)).

Proof. In either cases |ωn| → 1 or |ωn| → ri, i = 1,2, . . . ,N , we can prove, in the
same way as in [1, Theorem 1], that if case (i) of Rosenthal-Dor theorem is satisfied,
then there exists some subsequence of (ωn) that is interpolating for M(D(Ω)). So, it
is enough to prove that case (ii) of Theorem 2.1 does not hold.
Let |ωn| → rj for some j = 1,2, . . . ,N . As above, there is ϕj ∈M0(D(Ωj)) such that

limn→∞ϕj(ωn) does not exist. If ϕ0 ∈M(D(U)) and ϕi ∈M0(D(Ωi)), i = 1,2, . . . ,N ,
thenϕ0(ωn),ϕi(ωn), i= 1,2, . . . ,N , i≠ j are convergent. Therefore, ifϕ =ϕ0+ϕ1+
···+ϕN , then ϕ ∈M(D(Ω)) and limn→∞ϕ(ωn) does not exist because

M
(
D(Ω)

)=M
(
D(U)

)+M0
(
D(Ω1)

)+···+M0
(
D(ΩN)

)
. (2.1)

If |ωn| → 1, there is an ψ0 ∈M(D(U)) such that limn→∞ψ0(ωn) does not exist and
if ψi ∈M0(D(Ωi)), i = 1,2, . . . ,N , then ψi(ωn) are convergent. Hence, ψ =ψ0+ψ1+
ψ2+···+ψN is inM(D(Ω)) and limn→∞ψ(ωn) does not exist. The proof is complete.

3. Interpolation sequence for the space of multipliers. Let H be a Hilbert space
whose elements are analytic functions f :U → C. Assume that 1∈H and the operator
Mz of multiplication by z maps H into itself and point evaluations are bounded linear
functionals on H.
Consider Dα, −∞< α <∞, the space of all analytic functions in U with Taylor series

f(z)=∑∞
n=0anzn such that

‖f‖2α =
∞∑

n=0
(n+1)α|an|2 <∞. (3.1)

If α = −1, then we have the Bergman space L2a and if α = 0, we obtain the Hardy
space H2. But if α = 1, the space D1 is the Dirichlet space. In this space, Mz is not a
contraction because if ϕ is a nonconstant function on Ū , then ‖ϕ‖∞ < ‖Mϕ‖ (see [1]).
For a nice treatment of this space (see [2, 3, 4]).
A function ϕ analytic on U is called a multiplier of H if ϕH ⊂ H. The set of all
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multipliers of H is denoted by M(H). It is well known that M(H) ⊂ H∞(U). We also
assume that M(H) is rotation invariant. For an introduction to Hilbert spaces of an-
alytic functions, see Seddighi [12, 13]. Shields and Wallen [15] have proved that if
H is a Hilbert space of analytic functions on a set S and if point evaluations are
bounded linear functionals on H, also if Mz maps H into itself and is a contraction,
then ‖Mϕ‖ = ‖ϕ‖∞, ϕ ∈M(H). Also, see Shields [14].
In this section, we assume that Mz is polynomially bounded in the sense that there

is a constant C > 0 such that

‖Mp‖ ≤ C‖p‖∞ (3.2)

for every polynomial p. Now, let ϕ ∈M(H). Because ϕ ∈H∞(U), there is a sequence
{pn} of polynomials such that ‖pn‖∞ ≤ ‖ϕ‖∞ and pn(z) → ϕ(z) for every z ∈ U .
Now, it is easy to show that

〈Mpnf ,g〉 �→ 〈Mϕf ,g〉 (3.3)

for every f , g ∈ H. In other words, Mpn →Mϕ in the weak operator topology (WOT)
of B(H). In fact, if g = kλ for some λ ∈ U , then (3.3) is true. If g is a finite linear
combination of the reproducing kernels kλ, then (3.3) is again true. BecauseH =∨{kλ :
λ ∈ U}, we conclude that every g ∈ H can be approximated by a sequence of finite
linear combinations of the kλ, λ ∈ U . To prove that (3.3) holds for every g ∈ H, we
use an approximation process, inequality (3.2), and the fact that (3.3) is true for finite
linear combinations. We can also prove that

‖Mϕ‖ ≤ C‖ϕ‖∞. (3.4)

This follows from (3.3) and the fact that

∣∣〈Mpnf ,g〉∣∣≤ ‖Mpn‖‖f‖‖g‖ ≤ C‖pn‖∞‖f‖‖g‖ ≤ C‖ϕ‖∞‖f‖‖g‖. (3.5)

We recall that the space H(U) of holomorphic functions on U is equipped with the
topology of uniform convergence on compact sets and because the point evaluations
are continuous, the embedding H → H(U) is continuous. We also let H(U) denote
the space of functions holomorphic on neighbourhoods of Ū , with the inductive limit
topology. In fact, a sequence {fk} in H(Ū) converges to a function f if and only if
all the functions are analytic in some fixed open set G containing Ū , with fk → f
uniformly on compact subsets of G. We assume that H(Ū)⊂M(H).
Now, let (ωn) be a sequence in U such that |ωn| → 1. We show that there is a

subsequence of (ωn) which is interpolating for M(H). Therefore, we must show that
case (ii) of Rosenthal-Dor theorem does not hold. To prove this, we need the following
lemmas.

Lemma 3.1. Let ω ∈ U . Then there exists a function ψ analytic on Ū such that
ψ(ω) = 0; ψ(1) = 1; and ‖ψ‖∞ = 1. In general, let ω1,ω2, . . . ,ωn ∈ U . Then there
exists ψ analytic on Ū such that

ψ(ω1)=ψ(ω2)= ··· =ψ(ωn)= 0, ψ(1)= 1, ‖ψ‖∞ ≤ 1. (3.6)
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Proof. Let ϕω(z) = eiθ(ω− z)(1− ω̄z)−1 be an analytic automorphism of the
disc U . By a suitable choice of θ, we have ϕω(ω)= 0 and ϕω(1)= 1. For this choice
of θ, let ψ = ϕω. Then ψ(ω) = 0, ψ(1) = 1, ‖ψ‖∞ = 1 and because ψ ∈ H(Ū), we
conclude that ψ is a multiplier.
For the second part, note that, for each ωi, there exists ϕi satisfying ϕi(ωi) = 0,

ϕi(1) = 1, and ‖ϕi‖∞ = 1. Let ψ =ϕ1ϕ2 ···ϕn. Then ψ has the desired properties.

Proposition 3.2. Let (ωn) be a sequence in U such that |ωn| → 1. Then there
exists ϕ ∈M(H) such that limn→∞ϕ(ωn) does not exist.

Proof. First, we prove that if 0 < r < 1 and ω1,ω2, . . . ,ωn ∈ U , then there exists
a function ϕ analytic on Ū such that

ϕ(ω1)= ··· =ϕ(ωn)= 1, ϕ(1)=−1, ‖ϕ‖∞ ≤ 1
r
. (3.7)

Consider

d(ω,z)=
∣∣∣∣ ω−z
1−ω̄z

∣∣∣∣. (3.8)

Let s > 0 be chosen such that s = d(r ,−r)= 2r/(1+r 2). Then d(0,s)= d(r ,−r), and
so there exists an analytic automorphism h of U such that h(0)= r , h(s)=−r . Ifψ is
the function given by Lemma 3.1 and ϕ = 1

r h◦(sψ), we have ϕ(1) = 1
r h◦(sψ)(1) =

1
r h(s)=−1,

ϕ(ω1)=ϕ(ω2)= ··· =ϕ(ωn)= 1
r
h◦(sψ)(ω1)= 1

r
h◦(sψ)(ω2)

= ··· = 1
r
h◦(sψ)(ωn)= 1

r
h(0)= 1.

(3.9)

Because h is analytic on Ū and ‖h‖∞ = 1, we conclude that ϕ is analytic on Ū and
‖ϕ‖∞ ≤ 1/r . Now, we let (rk) be a sequence in (0,1) such that

∏∞
k=1 1/rk <∞ and we

find a sequence satisfying conditions (11), (12), and (13) on [1, page 416], however,
instead of condition (14), we assume that

‖ϕk‖∞ ≤ 1
rk

. (3.10)

Using (3.4), we get

∥∥Mϕ1ϕ2···ϕk

∥∥≤ C‖ϕ1ϕ2 ···ϕk‖∞ ≤ C
k∏

i=1

1
ri

. (3.11)

Hence, {Mϕ1ϕ2···ϕk}∞k=1 is norm bounded in M(H). Because M(H) = E∗, where E is a
separable Banach space, we conclude that there is ϕ ∈M(H) such that some subse-
quence of {Mϕ1ϕ2···ϕk} is weak ∗ convergent to Mϕ. Now, if (ωn) is a sequence in
U such that |ωn| → 1, then ϕ satisfies ϕ(ωnk)= (−1)k and limk→∞ϕ(ωnk) does not
exist.

Now, let H be a Hilbert space of analytic functions on a circular domain Ω such that
1 ∈ H, zH ⊂ H and point evaluations are bounded linear functionals on H. Clearly,
M(H)⊂H∞(Ω). We also assume thatH∞(Ω)⊂M(H) andMz is polynomially bounded
as in (3.2). Since
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H∞(Ω)=H∞(U)+H∞
0 (Ω1)+···+H∞

0 (ΩN), (3.12)

where H∞
0 (Ωi) = H∞(Ωi)∩H0(Ωi), i = 1,2, . . . ,N (see [7, Theorem 3.1]), by the same

technique as in Sections 2 and 3, we can prove that if (ωn) is a sequence in Ω such
that |ωn| → 1 or |ωn| → ri, i= 1,2, . . . ,N , then there is a subsequence of (ωn) that is
interpolating for M(H).

4. General domains and transformation to the unit disc. Let M > 0 be a constant.
We say that a compact set K in C is an M-spectral set for an operator T if σ(T)⊂ K
and ‖f(T)‖ ≤M‖f‖K for every rational function f with poles outside K. Here, ‖f‖K =
max{|f(z)| : z ∈ K}. Let G be an arbitrary bounded domain each point of which is a
bounded point evaluation for a Hilbert space � of functions analytic on G which
contains the constant functions and admitsmultiplication by the independent variable
z,Mz, as a bounded operator. We denote such a Hilbert space by (�,G). Also, we
assume that σ(Mz)= Ḡ is an M-spectral set for Mz and we may assume that �(�)=
H∞(G) (or we may assume that each bounded component Gα of G is conformally
equivalent to an open ball Bα such that ifAα = C∪{∞}\Gα, thenH(Āα) is contained in
the space ofmultipliers on�). However, wemake a simpler assumption than this later.
The idea is to transform the problem to the unit disc and to simplify the problem this
way. Now, we indicate how our problem that concerns the operator of multiplication
on (�,G) can be transformed into a problem concerning an operator acting on a
Hilbert space of functions analytic on a subset of U .
Suppose that H is a simply connected domain with G ⊂ H. Let h : U → H be the

Riemann mapping corresponding to H and set Ω = h−1(G). This map enables us to
perform the desired transformation. First, we need our Hilbert space to consist of
functions that are analytic on the corresponding subdomain of U. Therefore, we set

�h =�◦h= {f ◦h : f ∈�}, (4.1)

with the inner product defined by

〈f ◦h,g◦h〉 = 〈f ,g〉 (f ,g ∈�). (4.2)

It is easy to see that�h is a Hilbert space. Furthermore, the functions in�h are analytic
onΩ,Ω ⊂U . Also, note that point evaluations are bounded on �h and �h contains the
constants. The operator C : �→�h given by Cf = f ◦h is clearly an isomorphism and
satisfies LhC = CMz, where Lh : �h →�h defined by Lhg = hg, g ∈�h, is the operator
of multiplication by h on �h. We also observe that the map ϕ→ϕ◦h is an isometric
isomorphism of �(�)→�(�h) just as the map A→ CAC−1 of �(�)→�(�h) is.
To find a simply connected domain H containing G which has some nice properties,

we need the following lemma; whose proof is an application of transfinite induction
(see Conway [8, Lemma 4.8, page 400]).

Lemma 4.1. If K is a compact subset of the plane, then there is a countable ordinal
α0 such that, for every α < α0, there is a component Vα of C\K such that

(a) if 0 is the first ordinal, V0 is the unbounded component of C\K;
(b) for each ordinal α, V−α ∩[∪β<αVβ]− ≠∅;
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(c) if V ≠ Vα is a component of C\K and for any α, then V−∩[∪αVα]− =∅.

The enumeration of the components of C\K in Lemma 4.1 picks out those compo-
nents that can be chained to the unbounded component. So, if K is finitely connected,
the unbounded component is enumerated but there may be no others.
If K is a compact set and {Vα :α < α0} are those components of C\K that are picked

out by Lemma 4.1 and K̂ is the polynomially convex hull of K, then we set

L= Lα0 = K̂\∪α<α0 Vα∪W, (4.3)

where W = ∪βVβ is the union of all those Vβ ≠ Vα, α < α0, such that ∪Vβ meets the
outer boundary of K̂.
Now, let Mz act on (�,G) in such a way that σ(Mz) = Ḡ is an M-spectral set for

Mz. Set K = Ḡ in the preceding inductive process and find L. It turns out that L is the
smallest compact subset of C that contains K and has L0 simply connected.
Now, we set H = L0 in our preceding argument and let h : U → L0 be the Riemann

mapping corresponding to L0. Setting Ω = h−1(G), we transform our problem con-
cerning Mz on (�,G) to similar problems concerning Lh on (�,Ω), where �=�h. The
domain Ω has several nice properties such as Ω ⊂ U and ∂U ⊂ Ω̄. By Carathéodory
theorem, h extends to a homomorphism h : Ū → L under which the boundaries corre-
spond to each other.
By [12, Theorem 3.6], we see that σ(Lh) = Ḡ is a spectral set for Lh. Another inter-

esting property of Ω is that it contains a boundary annulus, i.e., there is 0 < r < 1
such that Ā ⊂ Ω, where A = {z : r < |z| < 1}. To see this, let {Vγ} be the bounded
components of C\Ω̄. Then ∪Vγ∩∂U =∅. Let r = dist(∪Vγ,∂U) and choose r < s < 1
such that B = {z : |z|< s} contains ∪Vγ . Clearly, A= {z : s < |z|< 1} satisfies Ā⊂Ω.

Lemma 4.2. Let Ω be an open connected subset of the open unit disc U with ∂U ⊂ Ω̄.
Suppose that {Vγ} are the bounded components of C\Ω̄ and assume that each Vγ is the
conformal image of some open disc with positive radius. Also we assumeH(Ω̄)⊂M(�).
Furthermore if {ωn} is a sequence in Ω such that |ωn| �→ 1 or |ωn| converges to a
point on ∂Vγ for some γ then there isϕ ∈�(�) such that limn→∞ϕ(ωn) does not exist.

Proof. Suppose |ωn| → 1. We must show that if 0< r < 1 and ω1,ω2, . . . ,ωn ∈U ,
then there exists a function ϕ in H(Ū) such that

ϕ(ω1)= ··· =ϕ(ωn)= 1, ϕ(1)=−1, ‖ϕ‖ ≤ 1
r
. (4.4)

Repeating the argument of Proposition 3.2, we conclude that if {rk} is a sequence in
(0,1) such that

∏∞
k=1 1/rk <∞, then all the conditions for finding a multiplier ϕ such

that limn→∞ϕ(ωn) does not exist hold provided a suitable form of (4) is in effect.
Now, let ϕ ∈H(Ū). Because Ω ⊂U and σ(Lh)= Ḡ is an M-spectral set, we have

∥∥ϕ◦h−1(Lh)
∥∥≤M‖ϕ◦h−1‖Ḡ =M‖ϕ‖Ω̄ =M‖ϕ‖∞. (4.5)

Since ϕ◦h−1(Lh)= Lϕ, we have ‖Lϕ‖ ≤M‖ϕ‖∞. Hence,

‖Lϕ1ϕ2···ϕk‖ ≤M‖ϕ1ϕ2 ···ϕk‖∞ ≤M


 k∏

i=1

1
ri


 . (4.6)
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Because �(�h) is the dual of a separable Banach space, we conclude that there isϕ ∈
�(�h) such that {ϕ1ϕ2 ···ϕk} has a subsequence that converges pointwise on Ω to
ϕ. Becauseϕp(ωnk)=1wheneverp≥k, we haveϕ(ωnk)= limp→∞(ϕ1 ···ϕp)(ωnk)=
(ϕ1 ···ϕk−1)(ωnk)� (−1)k−1. This shows that limk→∞ϕ(ωnk) does not exist.
Now suppose that {ωn} is a sequence such that |ωn| converges to a point on ∂Vγ for

some γ. Fix γ. Let ϕ0 : Vγ → B(α,r) be a conformal mapping, where α∈ C and r > 0.
Let ϕ1(z) = r/(z−α). Then ϕ2 =ϕ1 ◦ϕ0 maps Vγ onto U . Because |ωn| converges
to a point on ∂Vγ , we conclude that |ϕ2(ωn)| → 1 and we work with this sequence as
above.
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