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Abstract. We study superconvergence of a semi-discrete finite element scheme for para-
bolic problem. Our new scheme is based on introducing different approximation of initial
condition. First, we give a superconvergence of uh−Rhu, then use a postprocessing to
improve the accuracy to higher order.
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1. Introduction. We consider the following parabolic problem:

ut−∆u= f in Ω, for t > 0,

u= 0 on ∂Ω, for t ≥ 0,
u(·,0)= v in Ω,

(1.1)

where Ω ⊂ R2 is a domain with smooth boundary. Suppose we are given a family Th

of quasi-uniform triangulation of Ω, whose maximum diameter is denoted by h. Let
Sh ⊂ H10(Ω) be a standard finite element space consisting of continuous, piecewise
polynomial of degree k. Define an elliptic projection Rh :H10(Ω)→ Sh by

(∇(Rhw−w),∇χ)= 0 ∀χ ∈ Sh. (1.2)

We consider the following map uh(t) : [0,T ]→ Sh defined by
(
uh,t,χ

)+(∇uh,∇χ)= (f ,χ), uh(0)= vh, (1.3)

where vh is determined by
(∇vh,∇χ)= (f(0),χ)−(Rhut(0),χ) ∀χ ∈ Sh, (1.4)

and ut(0) is determined by (1.1). Superconvergence of finite element for parabolic
problem has been studied bymany authors. For example, Thomeé [8], Chen and Huang
[1] studied superconvergence of the gradient in L2 norm while Thomeé et al. [9] stud-
ied maximum norm superconvergence of gradient for linear finite element. Super-
convergence of the lumped finite element method for linear and nonlinear parabolic
problems were studied in [2] and [6], respectively. In this paper, we introduce a dif-
ferent way of approximating the initial condition, namely (1.4) and investigate the
superconvergence of finite element for parabolic problem using any order element.
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To do so, we decompose the error as uh−u = uh−Rhu+Rhu−u = θ+ρ and esti-
mate θ in a superconvergent order. Next, a postprocessing technique used in [4, 5]
is employed to obtain higher order convergence. The rest of the paper is organized
as follows. In Section 2, we show θ in L2 and H1 norm when k > 1. For θ, the super-
convergence in L∞ and W 1,∞ norm are also considered. In Section 3, the case k = 1
is considered. The superconvergence of θt in H1 and θ in W 1,∞ norm are shown. In
Section 4, Wl,p, l = 0,1, (2 < p <∞) norm estimates are shown. Finally, in Section 5,
we give some applications of the results obtained in Sections 2, 3 and 4. For example,
a postprocessing technique is employed to obtain second-order superconvergence for
gradient and first-order for the solution when k > 1. First-order superconvergence is
shown when k= 1.

2. Superconvergence in L2,H1,L∞, and W 1,∞ norm. We recall ρ = Rhu−u and
θ =uh−Rhu.

Lemma 2.1. Let 1<p <∞, (1/p)+(1/p′)= 1. Then for any g ∈W 1,p′(Ω), we have,
for k > 1,

∣∣(Ds
tρ,g

)∣∣≤ Chk+2∥∥Ds
tu
∥∥
k+1,p‖g‖1,p′ , (2.1)

where Ds
t = ∂s/∂ts .

Proof. It suffices to prove the case for s = 0. From standard finite element theory,

‖ρ‖1,p ≤ Chk‖u‖k+1,p. (2.2)

Consider the dual problem: given g ∈ Lp(Ω), find w ∈W 3,p′(Ω)∩W 1,p′
0 (Ω) satisfying

(∇v,∇w)= (g,v), ∀v ∈H10(Ω), (2.3)

‖w‖3,p′ ≤ C‖g‖1,p′ . (2.4)

Let
∏

h denote the Sh interpolation operator. Then by (2.3), (1.2), (2.2), (2.4), and the
property of interpolation, we have

(g,ρ)= (∇ρ,∇w)= ∣∣(∇ρ,∇(w−Πhw))∣∣
≤ ‖ρ‖1,p

∥∥w−Πhw∥∥1,p′ ≤ Chk‖u‖k+1,ph2‖w‖3,p′
≤ Chk+2‖u‖k+1,p‖g‖1,p′ .

(2.5)

Lemma 2.2. We have
(i) θt(0)= 0, i.e., uh,t(0)= Rhut(0).
(ii) ‖θ(0)‖1 ≤ Chk+2‖ut(0)‖k+1.

Proof. From (1.4) and (1.3),

(
Rhut(0),χ

)= (f(0),χ)−(∇vh,∇χ)= (uh,t(0),χ), χ ∈ Sh. (2.6)

Hence Rhut(0)=uh,t(0). For (ii), we see from (1.1),

(ut,v)+(∇u,∇v)= (f ,v). (2.7)
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Subtraction of (1.3) from (2.7), and noting (1.2), give

(θt,χ)+(∇θ,∇χ)=−(ρt,χ), χ ∈ Sh. (2.8)

Set t = 0 and noting that θt(0)= 0, we have
(∇θ(0),∇χ)=−(ρt(0),χ). (2.9)

Take χ = θ(0) in (2.9). Then we see from Lemma 2.1,

‖∇θ(0)‖2 = |(ρt(0),θ(0))| ≤ Chk+2∥∥ut(0)∥∥k+1∥∥θ(0)∥∥1. (2.10)

Since |·| and ‖·‖ are equivalent in H10(Ω),
∥∥θ(0)∥∥1 ≤ C‖∇θ(0)‖ ≤ Chk+2∥∥ut∥∥k+1. (2.11)

Theorem 2.3. We have first-order superconvergence for ‖θt‖ and second-order
superconvergence for ‖∇θt‖. In other words,

∥∥θt(t)∥∥+
(∫ t

0

∥∥∇θt∥∥2 dτ
)1/2

≤ Chk+2
(∫ t

0

∥∥utt∥∥2k+1 dτ
)1/2

(2.12)

holds.

Proof. Differentiating error equation (2.8),

(θtt,χ)+(∇θt,∇χ)=−(ρtt,χ), χ ∈ Sh. (2.13)

Take χ = θt . Then by Lemma 2.1, we have

1
2
d
dt
∥∥θt∥∥2+∥∥∇θt∥∥2 = |(ρtt,θt)| ≤ Chk+2∥∥utt∥∥k+1∥∥θt∥∥1

≤ Ch2(k+2)∥∥utt∥∥2k+1+ 12
∥∥∇θt∥∥2,

(2.14)

where arithmetic-geometric inequality was used in the last line. Elimination of
(1/2)‖∇θt‖2 and integration, give, by Lemma 2.2(i),

∥∥θt(t)∥∥2+
∫ t
0

∥∥∇θt(τ)∥∥2 dτ ≤ ∥∥θt(0)∥∥2+Ch2(k+2)
∫ t
0

∥∥utt(τ)∥∥2k+1 dτ
≤ Ch2(k+2)

∫ t
0

∥∥utt(τ)∥∥2k+1 dτ.
(2.15)

Theorem 2.4. We have second-order superconvergence for ‖θt‖1 and first-order
for ‖θtt‖,
(∫ t

0

∥∥θtt∥∥2dτ
)1/2

+∥∥θt(t)∥∥1 ≤ Chk+2

∥∥utt(t)∥∥k+1+

(∫ t
0

∥∥uttt∥∥2k+1dτ
)1/2 . (2.16)
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Proof. From (2.13) with χ = θtt ,
∥∥θtt∥∥2+ 12

d
dt
∥∥∇θt∥∥2 =−(ρtt,θtt). (2.17)

Integration, and noting that θt(0)= 0, gives
∫ t
0

∥∥θtt∥∥2 dτ+ 1
2

∥∥∇θt∥∥2 =−
∫ t
0

(
ρtt,θtt

)
dτ

=−(ρtt,θt)|t0+
∫ t
0

(
ρttt,θt

)
dτ

=−(ρtt,θt)+
∫ t
0

(
ρttt,θt

)
dτ

(2.18)

Using Lemma 2.1, left-hand side of (2.18) is

≤ Chk+2∥∥utt∥∥k+1∥∥θt∥∥1+Chk+2
∫ t
0

∥∥uttt∥∥k+1∥∥θt∥∥1 dτ
≤ Ch2(k+2)∥∥utt∥∥2k+1+ 14

∥∥θt∥∥21+Ch2(k+2)
∫ t
0

∥∥uttt∥∥2k+1 dτ+C
∫ t
0

∥∥θt∥∥21 dτ.
(2.19)

Elimination of (1/4)‖θt‖21 and usage of Gronwall inequality give (2.16).
Theorem 2.5. We have second-order superconvergence for ‖θ‖1.

∥∥θ(t)∥∥1 ≤ Chk+2

∥∥ut(0)∥∥k+1+

(∫ t
0

∥∥utt∥∥2k+1 dτ
)1/2 . (2.20)

Proof. By Lemma 2.2 and Theorem 2.3, we have

∥∥θ(t)∥∥1 ≤ ∥∥θ(0)∥∥1+
∫ t
0

∥∥θt∥∥1dτ
≤ ∥∥θ(0)∥∥1+C

(∫ t
0

∥∥θt∥∥21dτ
)1/2

≤ Chk+2∥∥ut(0)∥∥k+1+Chk+2
(∫ t

0

∥∥utt∥∥2k+1dτ
)1/2

.

(2.21)

Theorem 2.6. We have first-order superconvergence for ‖θ‖.

∥∥θ(t)∥∥≤ Chk+2

∥∥ut(0)∥∥k+1+

(∫ t
0

∥∥ut∥∥2k+1dτ
)1/2 . (2.22)

Proof. Recall that error equation (2.8)

(θt,χ)+(∇θ,∇χ)=−(ρt,χ). (2.23)

Take χ = θ in (2.8). Then we see from Lemma 2.1,
1
2
d
dt
∥∥θ(t)∥∥2+‖∇θ‖2 =−(ρt,θ)≤ Chk+2∥∥ut∥∥k+1‖θ‖1

≤ Ch2(k+2)∥∥ut∥∥2k+1+‖∇θ‖2.
(2.24)
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Elimination of ‖∇θ‖2 and integration, give, by Lemma 2.2,

∥∥θ(t)∥∥2 ≤ ∥∥θ(0)∥∥2+ch2(k+2)
∫ t
0

∥∥ut∥∥2k+1dτ
≤ Ch2(k+2)∥∥ut(0)∥∥2k+1+ch2(k+2)

∫ t
0

∥∥ut∥∥2k+1dτ.
(2.25)

Now we study L∞, W 1,∞ superconvergence. First we need Green’s functions. The dis-
crete Green’s function Gz

h ∈ Sh for z ∈Ω is defined by
(∇Gz

h,∇χ
)= χ(z), χ ∈ Sh. (2.26)

The derivative type Green’s function gzh,i ∈ Sh, (i= 1,2) is defined by

(∇gzh,i,∇χ)= ∂
∂xi

χ(z), χ ∈ Sh. (2.27)

Green’s functions posses the following properties (see [9, 10]).

Lemma 2.7. We have

∥∥Gz
h
∥∥+∥∥Gz

h
∥∥
1,p′ ≤ C, 1≤ p′ < 2, (2.28)

∥∥gzh,i∥∥2+∥∥gzh,i∥∥1,1 ≤ C log 1h. (2.29)

Theorem 2.8. We have the following estimate:

∥∥θ(t)∥∥0,∞ ≤ Chk+2

∥∥ut(t)∥∥k+1,p+

(∫ t
0

∥∥utt∥∥2k+1dτ
)1/2 , p > 2. (2.30)

Proof. By taking χ = θ in the definition (2.26), we have by (2.8), Lemmas 2.1, 2.7,
and Theorem 2.3,

|θ(z,t)| = ∣∣(∇Gz
h,∇θ

)∣∣= ∣∣(ρt,Gz
h
)+(θt,Gz

h
)∣∣

≤ Chk+2∥∥ut∥∥k+1,p∥∥Gz
h
∥∥
1,p′ +

∥∥θt∥∥∥∥∥Gz
h

∥∥∥
≤ Chk+2∥∥ut∥∥k+1,p+Chk+2

(∫ t
0

∥∥utt∥∥2k+1dτ
)1/2

.

(2.31)

Now take supremum over all z ∈Ω.
Theorem 2.9. We have the following estimate:

∥∥θ(t)∥∥1,∞ ≤ Chk+2−ε

∥∥ut∥∥k+1,p+

(∫ t
0

∥∥utt∥∥2k+1 dτ
)1/2 , (2.32)

for any ε > 2/p, p <∞ large enough.
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Proof. For z ∈Ω, we see from (2.27), (2.8), Lemma 2.7, and Theorem 2.3,∣∣∣∣ ∂
∂xi

θ(z)
∣∣∣∣= ∣∣(∇gzh,i,∇θ)∣∣= ∣∣(ρt,gzh,i)+(θt,gzh,i)∣∣
≤ Chk+2∥∥ut∥∥k+1,p∥∥gzh,i∥∥1,p′ +∥∥θt∥∥∥∥gzh,i∥∥
≤ Chk+2−2/p∥∥ut∥∥k+1,p∥∥gzh,i∥∥1,1+Chk+2

(∫ t
0

∥∥utt∥∥2k+1dτ
)1/2∥∥gzh,i∥∥

≤ Chk+2−ε
(∫ t

0

∥∥utt∥∥2k+1dτ
)1/2∥∥gzh,i∥∥,

(2.33)

where inverse estimate

∥∥gzh,i∥∥1,p′ ≤ Ch−2/p∥∥gzh,i∥∥1,1, 1≤ p′ < 2, 2<p ≤∞ (2.34)

was used in the second inequality.

3. The case k= 1. Here the corresponding finite element space Sh is a linear finite
element space. We make suitable modification of Lemma 2.2 to obtain the following
lemma.

Lemma 3.1.

∥∥θ(0)∥∥1 ≤ Ch2∥∥ut(0)∥∥2. (3.1)

Proof. We recall (2.9)

(∇θ(0),∇χ)=−(ρt(0),χ), χ ∈ Sh (3.2)

Take χ = θ(0). Then, we see that
∥∥∇θ(0)∥∥2 = |(ρt(0),χ(0))| ≤ ∥∥ρt(0)∥∥·∥∥θ(0)∥∥≤ Ch2∥∥ut(0)∥∥2 ·∥∥∇θ(0)∥∥. (3.3)

Theorem 3.2. We have

∥∥θt(t)∥∥+
(∫ t

0

∥∥∇θt∥∥2dτ
)1/2

≤ Ch2
(∫ t

0

∥∥utt∥∥22dτ
)1/2

. (3.4)

Proof. We recall (2.13)

(
θtt,χ

)+(∇θt,∇χ)=−(ρtt,χ), χ ∈ Sh. (3.5)

Taking χ = θt , we see that
1
2
d
dt
∥∥θt∥∥2+∥∥∇θt∥∥2 ≤ C∥∥ρtt∥∥·∥∥θt∥∥

≤ Ch2∥∥utt∥∥2∥∥∇θt∥∥
≤ Ch4∥∥utt∥∥22+ 12

∥∥∇θt∥∥2.
(3.6)

Elimination of (1/2)‖∇θt‖2 and integration, give the result.
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Corollary 3.3. We have

∥∥θ(t)∥∥1 ≤ Ch2
(∫ t

0

∥∥utt∥∥22 dτ
)1/2

. (3.7)

Theorem 3.4. We have

(∫ t
0

∥∥θtt∥∥2dτ
)1/2

+∥∥θt(t)∥∥1 ≤ Ch2

∥∥utt(t)∥∥2+

(∫ t
0

∥∥uttt∥∥22 dτ
)1/2 . (3.8)

Proof. Taking χ = θtt in (2.13), we see that
∥∥θtt∥∥2+ 12

d
dt
∥∥∇θt∥∥2 =−(ρtt,θtt). (3.9)

Integrating and noting θt(0)= 0, we have∫ t
0

∥∥θtt∥∥2dτ+ 12
∥∥∇θt∥∥2 =−

∫ t
0

(
ρtt,θtt

)
dt

=−(ρtt,θt)+
∫ t
0

(
ρttt,θt

)
dτ

≤ ∥∥ρtt∥∥·∥∥θt∥∥+
∫ t
0

∥∥ρttt∥∥·∥∥θt∥∥dτ
≤ Ch2∥∥utt∥∥2 ·∥∥θt∥∥+ch2

∫ t
0

∥∥uttt∥∥2 ·∥∥θt∥∥dτ
≤ Ch4∥∥utt∥∥22+ 14

∥∥∇θt∥∥2+ch4
∫ t
0

∥∥uttt∥∥22 dτ+
∫ t
0

∥∥∇θt∥∥2 dτ.
(3.10)

Now Gronwall inequality gives the result.

Lemma 3.5. For 1<p < 2, we have the following estimate:∥∥∇gzh,i∥∥0,p ≤ C for i= 1,2. (3.11)

Proof. Let (1/p)+(1/p′)= 1. For any φ∈ Lp′(Ω), let Ψ be the solution of
−∆Ψ =φ in Ω, Ψ = 0 on ∂Ω. (3.12)

Then we have

‖Ψ‖2,p′ ≤ C‖φ‖0,p′ . (3.13)

Setting gh = gzh,i, we have, by (3.12), (1.2), and (2.27),

(gh,φ)= (∇gh,∇Ψ)= (∇gh,∇RhΨ)= ∂
∂xi

RhΨ(z). (3.14)

Thus, we see from W 1,∞ stability of Rh, imbedding theorem and (3.13) that

(gh,φ)≤ ‖RhΨ‖1,∞ ≤ C‖Ψ‖1,∞ ≤ C‖Ψ‖2,p′ ≤ C‖φ‖0,p′ , (3.15)

we have

∥∥gh∥∥0,p = sup
φ∈Lp′(Ω)

(gh,φ)
‖φ‖0,p′ ≤ C. (3.16)
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Theorem 3.6. We have

∥∥θ(t)∥∥1,∞ ≤ Ch2

∥∥ut(t)∥∥2,p+∥∥utt(t)∥∥2+

(∫ t
0

∥∥uttt∥∥22 dτ
)1/2 , p > 2. (3.17)

Proof. Setting χ = gzh,i in (2.8), we obtain by (2.27), (3.11) and imbedding theorem,
we have

∂
∂xi

θ(z,t)≤ (ut−uh,t,gzh,i)
≤ (∥∥ρt∥∥0,p+∥∥θt∥∥0,p)∥∥gzh,i∥∥0,p′ , (1/p)+(1/p′)= 1
≤ C

(∥∥ρt∥∥0,p+∥∥θt∥∥1
)
.

(3.18)

By standard estimate, we have

∥∥ρt∥∥0,p ≤ Ch2∥∥ut∥∥2,p. (3.19)

Combining (3.8), (3.19) with (3.18), we obtain the desired result.

Corollary 3.7. We have

∥∥θ(t)∥∥0,∞ ≤ Ch2

∥∥ut(t)∥∥2,p+∥∥utt(t)∥∥2+

(∫ t
0

∥∥uttt∥∥22 dτ
)1/2 , p > 2. (3.20)

4. Superconvergence in Lp and W 1,p, (2<p <∞)
Theorem 4.1. We have

‖θ‖0,p ≤ Chk+2

∥∥ut(0)∥∥k+1+

(∫ t
0

∥∥utt∥∥2k+1dτ
)1/2 , k > 1. (4.1)

Proof. From Sobolev inequality, we have, for 2<p <∞,

‖χ‖0,p ≤ C‖χ‖1, χ ∈ Sh. (4.2)

The conclusion directly follows from Theorem 2.5.

Theorem 4.2. We have

∥∥θ(t)∥∥1,p ≤ Chk+2

∥∥ut(t)∥∥k+1,p+

(∫ t
0

∥∥utt∥∥2k+1 dτ
)1/2 , k > 1, (4.3)

∥∥θ(t)∥∥1,p ≤ Ch2

∥∥ut(t)∥∥2,p+∥∥utt(t)∥∥2+

(∫ t
0

∥∥uttt∥∥22 dτ
)1/2 , k= 1. (4.4)

Proof. Let p(2 < p < ∞) and p′ be conjugate indices, and let φ ∈ Lp′(Ω) with
‖φ‖0,p′ = 1 and φx be any component of ∇φ. If ψ is the solution of

(∇v,∇ψ)=−(φx,v), ∀v ∈H10(Ω) (4.5)
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with the regularity property [7]

‖ψ‖1,p′ ≤ Cp‖φ‖0,p′ = Cp. (4.6)

Then by Green’s formula, equations (4.5), (1.2), (2.8), Lemma 2.1, Theorem 2.3, Sobolev
lemma, and (4.6), we have

(θx,φ)=−(φx,θ)= (∇θ,∇ψ)= (∇θ,∇Rhψ)=−(ρt,Rhψ)−(θt,Rhψ)
≤ Chk+2∥∥ut(t)∥∥k+1,p∥∥Rhψ∥∥1,p′ +∥∥θt(t)∥∥∥∥Rhψ∥∥
≤ Chk+2


∥∥ut(t)∥∥k+1,p+

(∫ t
0

∥∥utt∥∥2k+1dτ
)1/2∥∥Rhψ∥∥1,p′

≤ Chk+2

∥∥ut(t)∥∥k+1,p+

(∫ t
0

∥∥utt∥∥2k+1dτ
)1/2 .

(4.7)

Now noting that

∥∥θx∥∥0,p = sup
ψ∈Lp′ (Ω)

(θx,φ), ‖φ‖0,p′ = 1, (4.8)

the conclusion (4.3) is obtained. To prove (4.4), we note that

‖θ‖1,p ≤ C‖θ‖1,∞. (4.9)

This, together with (3.17), proves the theorem.

5. Application. We now give an application of the results derived in Sections 2
and 3.
As an example, let Th be a quasi-uniform rectangular partition of Ω ⊂R2 and let Sh

be the space of continuous piecewise polynomials

Sh =
{
v ∈H10(Ω), v ∈Qk(τ), τ ∈ Th

}
, (5.1)

where

Qk = span{xi1xj2, 0≤ i, j ≤ k}. (5.2)

Introduce two kinds of operators (see [3, 4]), the vertices-edges-element interpola-
tion ikh and the high-interpolation operator I

k+l
2h (l = 1,2). They satisfy the following

properties:

∥∥u−Ik+l2h u
∥∥
m,p ≤ Chk+l+1−m‖u‖k+l+1,p, 1≤ k, m= 0,1, (2≤ p ≤∞), l= 1,2, (5.3)

Ik+l2h i
k
h = Ik+l2h , k≥ 1, l= 1,2, (5.4)

∥∥Ik+l2h χ
∥∥
m,p ≤ C‖χ‖m,p, ∀χ ∈ Sk, 1≤ k, m= 0,1, (2≤ p ≤∞), l= 1,2. (5.5)

Using these properties we can improve global convergence from k-to k+2-order for
gradient, and from k+1-to k+2-order for solution when k ≥ 2. When k = 1, we get
one order gain for the gradient.
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Theorem 5.1. For k≥ 2, we have the following results:

∥∥u−Ik+12h uh
∥∥≤ Chk+2

[∥∥ut(0)∥∥k+1+
(∫ t

0

∥∥ut∥∥2k+1 dτ
)1/2

+∥∥u(t)∥∥k+3
]
, (5.6)

∥∥u−Ik+12h uh
∥∥
0,p

≤ Chk+2
[∥∥ut(0)∥∥k+1+

(∫ t
0

∥∥utt∥∥2k+1 dτ
)1/2

+∥∥u(t)∥∥k+3,p
]
, p > 2,

(5.7)

∥∥ut−Ik+12h uh,t
∥∥≤ Chk+2

[(∫ t
0

∥∥utt∥∥2k+1 dτ
)1/2

+∥∥ut(t)∥∥k+3
]
, (5.8)

∥∥u−Ik+12h uh
∥∥
0,∞

≤ Chk+2
[∥∥ut(t)∥∥k+1,p+

(∫ t
0

∥∥utt∥∥2k+1 dτ
)1/2

+∥∥u(t)∥∥k+3,∞
]
, p > 2,

(5.9)

∥∥u−Ik+22h uh
∥∥
1 ≤ Chk+2

[∥∥ut(0)∥∥k+1+
(∫ t

0

∥∥utt∥∥2k+1 dτ
)1/2

+∥∥u(t)∥∥k+3
]
, (5.10)

∥∥u−Ik+22h uh
∥∥
1,p

≤ Chk+2
[∥∥ut(t)∥∥k+1,p+

(∫ t
0

∥∥utt∥∥2k+1 dτ
)1/2

+∥∥u(t)∥∥k+3,p
]
, p > 2,

(5.11)

∥∥u−Ik+22h uh
∥∥
1,∞

≤ Chk+2−ε
[∥∥ut(t)∥∥k+1,p+

(∫ t
0

∥∥utt∥∥2k+1dτ
)1/2

+∥∥u(t)∥∥k+3,∞
] (5.12)

for any ε > 2/p,p large enough,

∥∥ut−Ik+22h uh,t
∥∥
1 ≤ Chk+2

[∥∥utt(t)∥∥k+1+
(∫ t

0

∥∥uttt∥∥2k+1dτ
)1/2

+∥∥u(t)∥∥k+1
]
. (5.13)

Proof. Obviously, by (5.4) and (5.5), we have

u−Ik+l2h uh =u−Ik+l2h u+Ik+l2h
(
ikhu−Rhu

)+Ik+12h (Rhu−uh), (5.14)

∥∥u−Ik+l2h uh
∥∥
m,p ≤

∥∥u−Ik+l2h u
∥∥
m,p+C

∥∥ikhu−Rhu∥∥m,p+C
∥∥Rhu−uh∥∥m,p, (5.15)

for l= 1,2. The estimates of first and third terms are shown in (5.3) and Theorems 2.6,
4.1, 2.3, 2.8, 2.5, 4.2, 2.9 and 2.4 (in this order). It remains estimate the second term.
By [5, Corollary to Theorem 3.4.2],

∥∥ikhu−Rhu∥∥m,p ≤ Chk+2‖u‖k+3,p, 2≤ p ≤∞, m= 0,1, (5.16)

so that

∥∥ikhut−Rhut∥∥m,p ≤ Chk+2
∥∥ut∥∥k+3,p. (5.17)

Thus, the proof is complete.
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Theorem 5.2. For k= 1, we have
∥∥u−I22huh∥∥1 ≤ Ch2

[(∫ t
0

∥∥utt∥∥22 dτ
)1/2

+∥∥u(t)∥∥3
]
, (5.18)

∥∥u−I22huh∥∥1,p
≤ Ch2

[∥∥ut(t)∥∥2,p+∥∥utt∥∥2+
(∫ t

0

∥∥uttt∥∥22 dτ
)1/2

+∥∥u(t)∥∥3,p
]
, 2<p ≤∞,

(5.19)

∥∥ut−I22huh,t∥∥1 ≤ Ch2
[∥∥utt(t)∥∥2+

(∫ t
0

∥∥uttt∥∥22 dτ
)1/2

+∥∥ut(t)∥∥3
]
. (5.20)

Proof. When k= 1 andm= 1 in (5.15)
∥∥u−I22huh∥∥1,p ≤ ∥∥u−I22huh∥∥1,p+C∥∥i2hu−Rhu∥∥1,p+C∥∥Rhu−uh∥∥1,p. (5.21)

It suffices to estimate the second term. By [3], for any χ ∈ Sh
(∇(i2hu−Rhu),∇χ)= (∇(i2hu−u),∇χ) (5.22)

=O(h2)‖u‖3,p‖χ‖1,p′ , 1
p
+ 1
p′
= 1, p ≥ 2. (5.23)

Using the same method as in [4] we have
∥∥i2hu−Rhu∥∥1,p ≤ Ch2‖u‖3,p,∥∥i2hut−Rhut∥∥1,p ≤ Ch2∥∥ut∥∥3,p. (5.24)

These together with (3.7), (3.17), and (3.8) completes the proof.
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