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ABSTRACT. A new type of cluster sets, called S-cluster sets, of functions and multifunc-
tions between topological spaces is introduced, thereby providing a new technique for
studying S-closed spaces. The deliberation includes an explicit expression of S-cluster set
of a function. As an application, characterizations of Hausdorff and S-closed topological
spaces are achieved via such cluster sets.
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1. Introduction. The theory of cluster sets was developed long ago, and was ini-
tially aimed at the investigations of real and complex function theory (see [15]). A com-
prehensive collection of works in this direction can be found in the classical book of
Collingwood and Lohwater [1]. Weston [14] was the first to initiate the corresponding
theory for functions between topological spaces basically for studying compactness.
Many others (e.g., see [3, 4, 6]) followed suit with cluster sets, 8-cluster sets and &-
cluster sets of functions and multifunctions, ultimately implicating different covering
properties, among other things.

The present paper is intended for the introduction of a new type of cluster sets,
called S-cluster sets, which provides a new technique for the study of S-closedness of
topological spaces. It is shown that such cluster sets of suitable function can charac-
terize Hausdorffness. Finally, we achieve, as our prime motivation, certain character-
izations of an S-closed space.

In what follows, X and Y denote topological spaces, and f : X — Y is a function
from X into Y. By a multifunction F : X — Y we mean, as usual, a function mapping
points of X into the nonempty subsets of Y. The set of all open sets of (X, T), each
containing a given point x of X, is denoted by T(x). A set A (< X) is called semi-open
[5] if for some open set U, U < A < cl U, where cl U denotes the closure of U in X. The
set of all semi-open sets of X, each containing a given subset A of X, is denoted by
SO (A), in particular, if A = {x}, we write SO (x) instead of SO ({x}). The complements
of semi-open sets are called semi-closed. For any subset A of X, the 6-closure [13]
(0-semiclosure [8]) of A, denoted by 6-cl A (respectively, 6;-cl A), is the set of all points
x of X such that for every U € T(x) (respectively, U € SO (x)), clUNA = . The set
A is called 0-closed [13] (0-semiclosed [8]) if A = 0-cl A (respectively, A = 6;-cl A).
It is known [9] that 6-cl A need not be 6-closed, but it is so if A is open. A nonvoid
collection Q of nonempty subsets of a space X is called a grill [12] if
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(ii) AUBeQ=>AcQorBeq.
A filterbase ¥ on a space X is said to Os-adhere [11] at a point x of X, denoted as
x €0s-ad ¥, if x e Nn{O;-cl F: F € F}. A grill Q on X is said to 6s-converge to a point
x of X, if to each U € SO (x), there corresponds some G € Q with G € clU. A set Ain
a space X is said to be S-closed relative to X [7] if for every cover U of A by semi-open
sets of X, there exists a finite subfamily Ay of U such that Ac u{clU :U € WUp}. If, in
addition, A = X, then X is called an S-closed space [11].

2. Main theorem and associated results. We begin by introducing S-cluster set of
a function and of a multifunction between two topological spaces.

DEFINITION 2.1. Let F: X — Y be a multifunction and x € X. Then the S-cluster
set of F at x, denoted by S(F,x), is defined to be the set n{0-cl F(clU) : U € SO (x)}.
Similarly, for any function f : X — Y, the S-cluster set S(f,x) of f at x is given by
N{O-cl f(clU):U €SO (x)}.

In the next theorem, we characterize the S-cluster sets of functions between topo-
logical spaces.

THEOREM 2.2. For any function f : X — Y, the following statements are equivalent.
@y eS(f,x).

(b) The filterbase f~'(cl T(v))0s-adheres at x.

(c) Thereis a grill Q) on X such that Q0,-convergestox andy € n{0-cl f(G):G € Q}.

PROOF. (a)=(b). v € S(f,x) = for each W € SO(x) and each V € T(y), clV n
f(cddW) = @ = for each W € SO(x) and each V € T(y), f'(clV)ncd W # &. This
ensures that the collection {f~'(clV):V € T(y)} (which can easily be seen to be a
filterbase on X) Os-adheres at x.

(b)=(c). Let ¥ be the filter generated by the filterbase f~!(cl T(y)). Then Q = {G <
X:GnF = @, for each F € %} is a grill on X. By the hypothesis, for each U € SO (x)
and each V € T(y), ddUn f~1(clV) # @. Hence, FNcl U # @ for each F € ¥ and
each U € SO (x). Consequently, clU € Q for all U € SO (x), which proves that Q0;-
converges to x. Now, the definition of Q yields that f(G)nclW = @ forall W € T(y)
and all G € Q,i.e., y € 0-cl f(G) for all G € Q. Hence, y € n{0-cl f(G) : G € Q}.

(c)=(a). Let Q be a grill on X such that Q6-converges to x, and vy € n{0-cl f(G) :
G e Q}. Then {clU :U € SO(x)} =< Q and y € 0-cl f(G) for each G € Q. Hence, in
particular, y € 6-cl f(clU) for all U € SO (x). So, ¥y € n{0-cl f(clU):U € SO(x)} =
S(f,x). O

In what follows, we show that S-cluster sets of a function may be used to ascertain
the Hausdorffness of the codomain space.

THEOREM 2.3. Let f:X — Y be a function on a topological space X onto a topological
space Y. Then'Y is Hausdorffif S(f,x) is degenerate for each x € X.

PROOF. Let y1, > € Y such that y; # y». As f is a surjection, there are x1, x» € X
such that f(x;) = y; for i = 1,2. Now, since S(f,x) is degenerate for each x € X, y» =
f(x2) ¢ S(f,x1). Thus, thereare V € T(y7) and U € SO (x1) such thatclVn f(clU) =
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@, i.e., f(clU) €Y —clV. Then the open sets Y —cl V and V strongly separate y; and
o in Y, which proves that Y is Hausdorff. O

REMARK 2.4. We note that the converse of the above theorem is false. For example,
consider the identity map f: (R, T) — (R, 0), where T and o, respectively, denote the
cofinite topology and the usual topology on the set R of real numbers. Then S(f,x) =
R, for each x € R, though (R, o) is a Ts-space.

In order to obtain the converse, we introduce the following class of functions.

DEFINITION 2.5. A function f: X — Y is called 0;-irresolute on X if for each x € X
and each semi-open set V containing f(x), there is a semi-open set U containing x
such that f(clU) c V.

THEOREM 2.6. Let f: X — Y be a Os-irresolute function with Y a Hausdor(f space.
Then S(f,x) is degenerate for each x € X.

PROOF. Let x € X. As f is O,-irresolute on X, for any V € SO (f(x)), there is U €
SO (x) such that f(clU) =€ V. Then S(f,x) = n{0-cl f(clU):U €SO (x)} = n{O-clV:
VeSO(f(x))}. Let y € Y with v # f(x). As Y is Hausdorff, there are disjoint open
sets U, W with y € U, f(x) € W. Obviously, as UnclW =&, y ¢ cIlW = 0-cl W. As
WeTt(f(x))cSO(f(x)),y ¢ n{f-clV:VeSO(f(x))}andhencey ¢ S(f,x). Thus,
S(f,x)={f00)}. O

Combining the last two results, we get the following characterization for the
Hausdorffness of the codomain space of a kind of function in terms of the degen-
eracy of its S-cluster set.

COROLLARY 2.7. Let f: X — Y be a O;-irresolute function on X onto Y. Then the
space Y is Hausdorf{f if and only if S(f,x) is degenerate for each x of X.

We have just seen that degeneracy of the S-cluster set of an arbitrary function is a
sufficient condition for the Hausdorffness of the codomain space. We thus like to ex-
amine some other situations when the S-cluster sets are degenerate, thereby ensuring
the Hausdorffness of the codomain space of the function concerned. To this end, we
recall that a topological space (X, T) is almost regular [10] if for every regular closed
set A in X and for each x ¢ A, there exist disjoint open sets U and V such that x € U
and A < V. It is known that in an almost regular space X, 6-cl A is 0-closed for each
A c X. A function f : X — Y carrying 0-closed sets of X into 0-closed sets of Y is
called a 0-closed function [2].

THEOREM 2.8. Let f: X — Y be a 0-closed map from an almost regular space into
aspace Y. If f~Y(v) is O-closed in X for all y €Y, then S(f,x) is degenerate for each
xeX.

PROOF. We have S(f,x) = n{0-cl f(clU) : U € SO(x)} = n{0-cl f(O-clU) :U €
SO (x)}. As X is almost regular, 0-cl U is 0-closed for all U € SO (x). Now, since f
is a 0-closed map, 0-clf(0-clU) = f(0-clU) for each U € SO (x). Thus, S(f,x) <
N{f(0-clU) : U € SO(x)}. Now, let y € Y such that y = f(x). Then since f~1(y)
is 0-closed and x ¢ f~'(y), there is some P € T(x) such that clPn f~1(y) = @. So,
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v & f(clP) = f(6-clP) (as Pis an open set) and, hence,y ¢ n{f(6-clU):U € SO (x)}.
In view of what we have deduced above, we conclude that y ¢ S(f,x), which proves
that S(f,x) is degenerate. O

THEOREM 2.9. Let f: X — X be a O-closed injection on an almost regular Hausdor(ff
space X into Y. Then S(f,x) is degenerate for each x € X.

PROOF. As X is almost regular and f is a 0-closed map, we have 0-cl f(0-clU) =
f(0-clU) for any U € SO (x) and, hence,

S(f,x)=n{0-clf(clU):U eSO (x)} cn{O-cl f(O-clU):U €SO (x)}

2.1

=n{f(0-clU):U €SO (x)}. (2.1)

For x, x; € X with x = x1, f(x) # f(x1) as f is injective. By the Hausdorffness of X,
there are disjoint open sets U, V in X with x € U, x; € V. Obviously, UnclV = &.
SO, x1 ¢ 0-cl U and hence f(x1) ¢ f(0-clU). Since U € T(x) < SO (x), equation (2.1)
yields f(x1) ¢ S(f,x). Thus, S(f,x) is degenerate for each x € X. O

The above theorem is equivalent to the following apparently weaker result when X
is regular.

THEOREM 2.10. If f: X — Y is a 0-closed injection on a T3 space X into a space Y,
then S(f,x) is degenerate for each x € X.

PROOF. It is known that in a regular space X,0-clU = clU for any U < X. Since
X is T3 and f is a @-closed injection, {f(x)} = S(f,x) = n{f(clU) : U € SO(x)} <
NFEAU):UeTx)} = Lf(x)). =

Note that the above result is indeed equivalent to that of Theorem 2.9 follows from
the following considerations: for any subset A of a topological space (X, T), 0-closure
of Ain (X, 1) is the same as that in (X, T,), where (X, T;) denotes the semiregulariza-
tion space [9] of (X, T). Moreover, it is known [9] that (X, T) is Hausdorff (almost reg-
ular) if and only if (X, T,) is Hausdorff (respectively, regular). Now, since SO (X, T;) <
SO (X, T), it follows that S(f,x) = S(f : (X,T) - Y,x) < S(f : (X,7Ts) — Y,x). So,
S(f,x) is degenerate for each x € X if (X,T) is an almost regular Hausdorff space
and f: X — Y is a 0-closed injection.

A sort of degeneracy condition for the S-cluster set of a multifunction with 6-closed
graph is now obtained.

THEOREM 2.11. For a multifunction F : X — Y, if F has a 0-closed graph, then
S(F,x) =F(x).

PROOF. Forany y € S(F,x),clWnF(clU) + @ and hence F (clW)nclU + @ for
each U € SO(x) and each W € 1(y), where, as usual, F-(B) = {x € X: F(x)NB =
@} for any subset B of Y. Then for any basic open set M X N in X X Y containing
(x,¥), F(cIN)NnclM # @.So, (cIMXcIN)NG(F) # @ and hence cl (M XN)NG(F) =
@, where G(F) = {(x,y) € XxXY :y € F(x)} denotes the graph of F. So, (x,y) €
0-clG(F) = G(F) (as G(F) is O0-closed). Hence, (x,y) € [G(F) n ({x} xY)] so that
yepl({x} XY)nG(F)] = F(x), where p>: X XY — Y is the second projection map.



ON S-CLUSTER SETS AND S-CLOSED SPACES 601

It is obvious that F(x) < S(F,x) for each x € X. Hence, S(F,x) = F(x) holds for all
x € X. O

The next result serves as a partial converse of the above one.

THEOREM 2.12. For a multifunction F : X — Y, if S(F,x) = F(x) for each x € X,
then the graph G (F) of F is 0-semiclosed (and hence semi-closed).

PROOF. let (x,y) € X XY —G(F). Now, y ¢ F(x) = S(F,x) = there exist some
W eSO(x) and some V € T(y) such that clVnF(clW) =3 = (clWxcdV)nG(F) =
D =>cd(WxV)NnG(F) = 3. As W XV is a semi-open set in X XY containing (x,y),
(x,Vy) ¢ 0s-cl G(F). Hence, G(F) is 0-semi-closed. O

We now turn our attention to the characterizations of S-closedness via S-cluster
sets. We need the following lemmas for this purpose.

LEMMA 2.13. A set A in a topological space X is an S-closed set relative to X if and
only if for every filterbase F on X with FNC + @ for all F € & and for all C € SO (A),
ANOg-ad F + O.

PROOF. Let A be an S-closed set relative to X and let % be a filterbase on X with
the stated property. If possible, suppose that An 0s-ad & = &. Then for each x € A,
there is a semi-open set V(x) in X containing x such that cl(V(x)) nF(x) = @ for
some F(x) € ¥. Now, {V(x):x € A} is a cover of A by semi-open sets of X. By the S-
closedness of A relative to X, there is a finite subset A* of A such that A € u{clV(x):
x € A*}. Choose F* € & such that F* € n{F(x) : x € A*}. Then F* n (U{clV(x) :
x € A*}) = @, ie, F*ncl(U{V(x) : x € A*}) = &. Now, as U{V(x) : x € A*} is a
semi-open set in X,u{clV(x):x € A*} € SO(A), a contradiction.

Conversely, assume that A is not S-closed relative to X. Then for some cover {Uy :
o € A} of A by semi-open sets of X, A ¢ Uxea, ¢l Uy for each finite subset Ag of A.
So, F ={A- fong cl Uy : Ao is a finite subset of A} is filterbase on X, with FNC + &,
for each F € % and each C € SO(A). But An0s-ad ¥ = <. O

LEMMA 2.14 [8, 11]. (a) A topological space X is S-closed if and only if every filter-
base Og-adheres in X.
(b) Any 0-semiclosed subset of an S-closed space X is S-closed relative to X.

DEFINITION 2.15. For a function or a multifunction F : X — Y and a set A c X, the
notation S (F,A) stands for the set U{S(F,x):x € A}.

THEOREM 2.16. For any topological space X, the following statements are equiva-
lent.

(a) X is S-closed.

(b) S(F,A) 2n{0-clF(U):U €SO (A)} for each 0-semiclosed subset A of X, for each
topological space Y and each multifunction F : X — Y.

() S(F,A) 2n{0s-cl F(U): U € SO(A)} for each 0-semiclosed subset A of X, for each
topological space Y and each multifunction F: X — Y.

PROOF. (a)=(b). Let A be any 0-semiclosed subset of X, where X is S-closed. Then
by Lemma 2.14(b), A is S-closed relative to X. Now, let z € Nn{0-cl F(W) : W € SO (A)}.
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Then for all W € T(z) and for each U € SO(A),clWNF(U) # @,ie,F (cIW)nU + &.
Thus, & = {F~ (clW) : W € 1(2)} is clearly a filterbase on X, satisfying the condition
of Lemma 2.13. Hence, x € An6s-ad %. Then x € A, and for all U € SO (x) and each
WeTt(z),cddlUnF (W) =3, ie,F(cdlU)ncl W+ =>zeS(F,x) cS(F,A).

(b)=>(c). Obvious.

(c)=(a). In order to show that X is S-closed, it is enough to show, by virtue of
Lemma 2.14(a), that every filterbase ¥ on X Og-adheres at some x € X. Let ¥ be a
filterbase on X. Take yy ¢ X, and construct Y = XU {y}. Define, Ty ={U S Y :yo ¢
Ultu{UcY:yyoe UF cUforsomeF € %}. Then Ty is a topology on Y. Consider
the function & : X — Y by a(x) = x. In order to avoid possible confusion, let us
denote the closure and 9;-closure of a set A in X(Y), respectively, by clx A(cly A) and
Os-clx A (respectively, 6s-cly A). As X is 0-semiclosed in X, by the given condition,
S(et,X) 2 N{Os-clyx(U) : U € SO(X)} = n{0s-clyU : U € SO(X)} = Os-cly X. We
consider yy € Y and Py € SO (). There is some W € 1y such that W < Py = cly W.
If yo ¢ W, then W < X and hence cly Wn X = &. If on the other hand, yy € W,
then there is some F € % such that F ¢ W, i.e, clyF c clyW. So, XnclyW = &.
So, in any case, X Nncly W # @ and, consequently, as cly W = cly Py, XNcly Py = &.
Thus, yy € 0s-cly X. So, yo € S(x,x) for some x € X. Consider any V € SO (x) and
F e %. Then Fu{y} € Ty. Again, Y — (F U {yp}) is a subset of Y not containing yy.
Thus, Y — (F U {y0}) is open in Y, which proves that cly(F U {yo}) = FU {yo}. Now,
cxVnF=uwa(clxV)ncly(Fu{yo}) + @. Thus, x € Os-ad F. O
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