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Abstract. A new type of cluster sets, called S-cluster sets, of functions and multifunc-
tions between topological spaces is introduced, thereby providing a new technique for
studying S-closed spaces. The deliberation includes an explicit expression of S-cluster set
of a function. As an application, characterizations of Hausdorff and S-closed topological
spaces are achieved via such cluster sets.
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1. Introduction. The theory of cluster sets was developed long ago, and was ini-
tially aimed at the investigations of real and complex function theory (see [15]). A com-
prehensive collection of works in this direction can be found in the classical book of
Collingwood and Lohwater [1]. Weston [14] was the first to initiate the corresponding
theory for functions between topological spaces basically for studying compactness.
Many others (e.g., see [3, 4, 6]) followed suit with cluster sets, θ-cluster sets and δ-
cluster sets of functions and multifunctions, ultimately implicating different covering
properties, among other things.
The present paper is intended for the introduction of a new type of cluster sets,

called S-cluster sets, which provides a new technique for the study of S-closedness of
topological spaces. It is shown that such cluster sets of suitable function can charac-
terize Hausdorffness. Finally, we achieve, as our prime motivation, certain character-
izations of an S-closed space.
In what follows, X and Y denote topological spaces, and f : X → Y is a function

from X into Y . By a multifunction F : X → Y we mean, as usual, a function mapping
points of X into the nonempty subsets of Y . The set of all open sets of (X,τ), each
containing a given point x of X, is denoted by τ(x). A set A(⊆X) is called semi-open
[5] if for some open set U , U ⊆A⊆ cl U , where cl U denotes the closure of U in X. The
set of all semi-open sets of X, each containing a given subset A of X, is denoted by
SO(A), in particular, ifA= {x}, we write SO(x) instead of SO({x}). The complements
of semi-open sets are called semi-closed. For any subset A of X, the θ-closure [13]
(θ-semiclosure [8]) ofA, denoted by θ-clA (respectively, θs -clA), is the set of all points
x of X such that for every U ∈ τ(x) (respectively, U ∈ SO(x)), cl U∩A ≠∅. The set
A is called θ-closed [13] (θ-semiclosed [8]) if A = θ-clA (respectively, A = θs -clA).
It is known [9] that θ-clA need not be θ-closed, but it is so if A is open. A nonvoid
collection Ω of nonempty subsets of a space X is called a grill [12] if

(i) A∈Ω and B ⊇A⇒ B ∈Ω,
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(ii) A∪B ∈Ω⇒A∈Ω or B ∈Ω.
A filterbase � on a space X is said to θS -adhere [11] at a point x of X, denoted as
x ∈ θS -ad �, if x ∈∩{θs -cl F : F ∈�}. A grill Ω on X is said to θs -converge to a point
x of X, if to each U ∈ SO(x), there corresponds some G ∈Ω with G ⊆ cl U . A set A in
a space X is said to be S-closed relative to X [7] if for every cover� of A by semi-open
sets of X, there exists a finite subfamily �0 of � such that A⊆∪{cl U :U ∈�0}. If, in
addition, A=X, then X is called an S-closed space [11].

2. Main theorem and associated results. We begin by introducing S-cluster set of
a function and of a multifunction between two topological spaces.

Definition 2.1. Let F : X → Y be a multifunction and x ∈ X. Then the S-cluster
set of F at x, denoted by S(F,x), is defined to be the set ∩{θ-cl F(cl U) :U ∈ SO(x)}.
Similarly, for any function f : X → Y , the S-cluster set S(f ,x) of f at x is given by
∩{θ-cl f(cl U) :U ∈ SO(x)}.
In the next theorem, we characterize the S-cluster sets of functions between topo-

logical spaces.

Theorem 2.2. For any function f :X → Y , the following statements are equivalent.
(a) y ∈ S(f ,x).
(b) The filterbase f−1(cl τ(y))θS -adheres at x.
(c) There is a grillΩ onX such thatΩθs -converges to x andy ∈∩{θ-cl f(G) :G ∈Ω}.
Proof. (a) �⇒(b). y ∈ S(f ,x) ⇒ for each W ∈ SO(x) and each V ∈ τ(y), cl V ∩

f(clW) ≠ ∅ ⇒ for each W ∈ SO(x) and each V ∈ τ(y), f−1(cl V)∩ clW ≠ ∅. This
ensures that the collection {f−1(cl V) : V ∈ τ(y)} (which can easily be seen to be a
filterbase on X) θS -adheres at x.
(b) �⇒(c). Let � be the filter generated by the filterbase f−1(cl τ(y)). Then Ω = {G ⊆

X : G∩F ≠∅, for each F ∈ �} is a grill on X. By the hypothesis, for each U ∈ SO(x)
and each V ∈ τ(y), cl U ∩ f−1(cl V) ≠ ∅. Hence, F ∩ cl U ≠ ∅ for each F ∈ � and
each U ∈ SO(x). Consequently, cl U ∈ Ω for all U ∈ SO(x), which proves that Ωθs -
converges to x. Now, the definition of Ω yields that f(G)∩clW ≠∅ for all W ∈ τ(y)
and all G ∈Ω, i.e., y ∈ θ-cl f(G) for all G ∈Ω. Hence, y ∈∩{θ-cl f(G) :G ∈Ω}.
(c) �⇒(a). Let Ω be a grill on X such that Ωθs -converges to x, and y ∈ ∩{θ-cl f(G) :

G ∈ Ω}. Then {cl U : U ∈ SO(x)} ⊆ Ω and y ∈ θ-cl f(G) for each G ∈ Ω. Hence, in
particular, y ∈ θ-cl f(cl U) for all U ∈ SO(x). So, y ∈ ∩{θ-cl f(cl U) : U ∈ SO(x)} =
S(f ,x).

In what follows, we show that S-cluster sets of a function may be used to ascertain
the Hausdorffness of the codomain space.

Theorem 2.3. Let f :X → Y be a function on a topological spaceX onto a topological
space Y . Then Y is Hausdorff if S(f ,x) is degenerate for each x ∈X.

Proof. Let y1, y2 ∈ Y such that y1 ≠y2. As f is a surjection, there are x1, x2 ∈X
such that f(xi)=yi for i= 1,2. Now, since S(f ,x) is degenerate for each x ∈X, y2 =
f(x2) ∉ S(f ,x1). Thus, there are V ∈ τ(y2) and U ∈ SO(x1) such that cl V∩f(cl U)=
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∅, i.e., f(cl U)⊆ Y −cl V . Then the open sets Y −cl V and V strongly separate y1 and
y2 in Y , which proves that Y is Hausdorff.

Remark 2.4. We note that the converse of the above theorem is false. For example,
consider the identity map f : (R,τ)→ (R,σ), where τ and σ , respectively, denote the
cofinite topology and the usual topology on the set R of real numbers. Then S(f ,x)=
R, for each x ∈R, though (R,σ) is a T5-space.
In order to obtain the converse, we introduce the following class of functions.

Definition 2.5. A function f :X → Y is called θs -irresolute on X if for each x ∈X
and each semi-open set V containing f(x), there is a semi-open set U containing x
such that f(cl U)⊆ V .

Theorem 2.6. Let f : X → Y be a θs -irresolute function with Y a Hausdorff space.
Then S(f ,x) is degenerate for each x ∈X.

Proof. Let x ∈ X. As f is θs -irresolute on X, for any V ∈ SO(f (x)), there is U ∈
SO(x) such that f(cl U)⊆ V . Then S(f ,x)=∩{θ-cl f(cl U) :U ∈ SO(x)} ⊆ ∩{θ-cl V :
V ∈ SO(f (x))}. Let y ∈ Y with y ≠ f(x). As Y is Hausdorff, there are disjoint open
sets U , W with y ∈ U , f(x) ∈ W . Obviously, as U ∩clW = ∅, y ∉ clW = θ-clW . As
W ∈ τ(f(x))⊆ SO(f (x)),y ∉∩{θ-cl V : V ∈ SO(f (x))} and hencey ∉ S(f ,x). Thus,
S(f ,x)= {f(x)}.
Combining the last two results, we get the following characterization for the

Hausdorffness of the codomain space of a kind of function in terms of the degen-
eracy of its S-cluster set.

Corollary 2.7. Let f : X → Y be a θs -irresolute function on X onto Y . Then the
space Y is Hausdorff if and only if S(f ,x) is degenerate for each x of X.

We have just seen that degeneracy of the S-cluster set of an arbitrary function is a
sufficient condition for the Hausdorffness of the codomain space. We thus like to ex-
amine some other situations when the S-cluster sets are degenerate, thereby ensuring
the Hausdorffness of the codomain space of the function concerned. To this end, we
recall that a topological space (X,τ) is almost regular [10] if for every regular closed
set A in X and for each x ∉A, there exist disjoint open sets U and V such that x ∈U
and A ⊆ V . It is known that in an almost regular space X, θ-clA is θ-closed for each
A ⊆ X. A function f : X → Y carrying θ-closed sets of X into θ-closed sets of Y is
called a θ-closed function [2].

Theorem 2.8. Let f : X → Y be a θ-closed map from an almost regular space into
a space Y . If f−1(y) is θ-closed in X for all y ∈ Y , then S(f ,x) is degenerate for each
x ∈X.

Proof. We have S(f ,x) = ∩{θ-cl f(cl U) : U ∈ SO(x)} ⊆ ∩{θ-cl f(θ-cl U) : U ∈
SO(x)}. As X is almost regular, θ-cl U is θ-closed for all U ∈ SO(x). Now, since f
is a θ-closed map, θ-clf(θ-cl U) = f(θ-cl U) for each U ∈ SO(x). Thus, S(f ,x) ⊆
∩{f(θ-cl U) : U ∈ SO(x)}. Now, let y ∈ Y such that y ≠ f(x). Then since f−1(y)
is θ-closed and x ∉ f−1(y), there is some P ∈ τ(x) such that cl P ∩f−1(y) =∅. So,
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y ∉ f(cl P)= f(θ-cl P) (as P is an open set) and, hence,y ∉∩{f(θ-cl U) :U ∈ SO(x)}.
In view of what we have deduced above, we conclude that y ∉ S(f ,x), which proves
that S(f ,x) is degenerate.

Theorem 2.9. Let f :X →X be a θ-closed injection on an almost regular Hausdorff
space X into Y . Then S(f ,x) is degenerate for each x ∈X.

Proof. As X is almost regular and f is a θ-closed map, we have θ-clf(θ-cl U) =
f(θ-cl U) for any U ∈ SO(x) and, hence,

S(f ,x)=∩{θ-clf(cl U) :U ∈ SO(x)} ⊆ ∩{θ-clf(θ-cl U) :U ∈ SO(x)}
= ∩{f(θ-cl U) :U ∈ SO(x)}. (2.1)

For x, x1 ∈X with x ≠ x1, f(x)≠ f(x1) as f is injective. By the Hausdorffness of X,
there are disjoint open sets U , V in X with x ∈ U , x1 ∈ V . Obviously, U ∩ cl V = ∅.
SO, x1 ∉ θ-cl U and hence f(x1) ∉ f(θ-cl U). Since U ∈ τ(x)⊆ SO(x), equation (2.1)
yields f(x1) ∉ S(f ,x). Thus, S(f ,x) is degenerate for each x ∈X.
The above theorem is equivalent to the following apparently weaker result when X

is regular.

Theorem 2.10. If f : X → Y is a θ-closed injection on a T3 space X into a space Y ,
then S(f ,x) is degenerate for each x ∈X.

Proof. It is known that in a regular space X,θ-cl U = cl U for any U ⊆ X. Since
X is T3 and f is a θ-closed injection, {f(x)} ⊆ S(f ,x) = ∩{f(cl U) : U ∈ SO(x)} ⊆
∩{f(cl U) :U ∈ τ(x)} = {f(x)}.
Note that the above result is indeed equivalent to that of Theorem 2.9 follows from

the following considerations: for any subset A of a topological space (X,τ), θ-closure
of A in (X,τ) is the same as that in (X,τs), where (X,τs) denotes the semiregulariza-
tion space [9] of (X,τ). Moreover, it is known [9] that (X,τ) is Hausdorff (almost reg-
ular) if and only if (X,τs) is Hausdorff (respectively, regular). Now, since SO(X,τs)⊆
SO(X,τ), it follows that S(f ,x) = S(f : (X,τ) → Y ,x) ⊆ S(f : (X,τs) → Y ,x). So,
S(f ,x) is degenerate for each x ∈ X if (X,τ) is an almost regular Hausdorff space
and f :X → Y is a θ-closed injection.
A sort of degeneracy condition for the S-cluster set of a multifunction with θ-closed

graph is now obtained.

Theorem 2.11. For a multifunction F : X → Y , if F has a θ-closed graph, then
S(F,x)= F(x).

Proof. For any y ∈ S(F,x), clW ∩F(cl U)≠∅ and hence F−(clW)∩cl U ≠∅ for
each U ∈ SO(x) and each W ∈ τ(y), where, as usual, F−(B) = {x ∈ X : F(x)∩B ≠
∅} for any subset B of Y . Then for any basic open set M ×N in X ×Y containing
(x,y), F−(clN)∩clM ≠∅. So, (clM×clN)∩G(F)≠∅ and hence cl(M×N)∩G(F)≠
∅, where G(F) = {(x,y) ∈ X ×Y : y ∈ F(x)} denotes the graph of F . So, (x,y) ∈
θ-clG(F) = G(F) (as G(F) is θ-closed). Hence, (x,y) ∈ [G(F)∩ ({x} × Y)] so that
y ∈ p2[({x}×Y)∩G(F)]= F(x), where p2 : X×Y → Y is the second projection map.
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It is obvious that F(x) ⊆ S(F,x) for each x ∈ X. Hence, S(F,x) = F(x) holds for all
x ∈X.
The next result serves as a partial converse of the above one.

Theorem 2.12. For a multifunction F : X → Y , if S(F,x) = F(x) for each x ∈ X,
then the graph G(F) of F is θ-semiclosed (and hence semi-closed).

Proof. Let (x,y) ∈ X ×Y −G(F). Now, y ∉ F(x) = S(F,x) ⇒ there exist some
W ∈ SO(x) and some V ∈ τ(y) such that cl V ∩F(clW)=∅⇒ (clW ×cl V)∩G(F)=
∅ ⇒ cl(W ×V)∩G(F) = ∅. As W ×V is a semi-open set in X×Y containing (x,y),
(x,y) ∉ θs -clG(F). Hence, G(F) is θ-semi-closed.

We now turn our attention to the characterizations of S-closedness via S-cluster
sets. We need the following lemmas for this purpose.

Lemma 2.13. A set A in a topological space X is an S-closed set relative to X if and
only if for every filterbase � on X with F∩C ≠∅ for all F ∈� and for all C ∈ SO(A),
A∩θS -ad �≠∅.

Proof. Let A be an S-closed set relative to X and let � be a filterbase on X with
the stated property. If possible, suppose that A∩θS -ad � =∅. Then for each x ∈ A,
there is a semi-open set V(x) in X containing x such that cl(V(x))∩F(x) = ∅ for
some F(x)∈�. Now, {V(x) : x ∈A} is a cover of A by semi-open sets of X. By the S-
closedness of A relative to X, there is a finite subset A∗ of A such that A⊆∪{cl V(x) :
x ∈ A∗}. Choose F∗ ∈ � such that F∗ ⊆ ∩{F(x) : x ∈ A∗}. Then F∗ ∩ (∪{cl V(x) :
x ∈ A∗}) = ∅, i.e., F∗ ∩ cl(∪{V(x) : x ∈ A∗}) = ∅. Now, as ∪{V(x) : x ∈ A∗} is a
semi-open set in X,∪{cl V(x) : x ∈A∗} ∈ SO(A), a contradiction.
Conversely, assume that A is not S-closed relative to X. Then for some cover {Uα :

α ∈ Λ} of A by semi-open sets of X, A � ⋃α∈Λ0 cl Uα for each finite subset Λ0 of Λ.
So, �= {A−⋃α∈Λ0 cl Uα :Λ0 is a finite subset of Λ} is filterbase on X, with F∩C ≠∅,
for each F ∈� and each C ∈ SO(A). But A∩θS -ad �=∅.

Lemma 2.14 [8, 11]. (a) A topological space X is S-closed if and only if every filter-
base θS -adheres in X.
(b) Any θ-semiclosed subset of an S-closed space X is S-closed relative to X.

Definition 2.15. For a function or a multifunction F :X → Y and a set A⊆X, the
notation S(F,A) stands for the set ∪{S(F,x) : x ∈A}.

Theorem 2.16. For any topological space X, the following statements are equiva-
lent.
(a) X is S-closed.
(b) S(F,A)⊇∩{θ-clF(U) :U ∈ SO(A)} for each θ-semiclosed subset A of X, for each

topological space Y and each multifunction F :X → Y .
(c) S(F,A)⊇∩{θs -cl F(U) :U ∈ SO(A)} for each θ-semiclosed subset A of X, for each

topological space Y and each multifunction F :X → Y .

Proof. (a) �⇒(b). Let A be any θ-semiclosed subset of X, where X is S-closed. Then
by Lemma 2.14(b), A is S-closed relative to X. Now, let z ∈∩{θ-cl F(W) :W ∈ SO(A)}.
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Then for allW ∈ τ(z) and for each U ∈ SO(A), clW∩F(U)≠∅, i.e., F−(clW)∩U ≠∅.
Thus, � = {F−(clW) :W ∈ τ(z)} is clearly a filterbase on X, satisfying the condition
of Lemma 2.13. Hence, x ∈ A∩θS -ad �. Then x ∈ A, and for all U ∈ SO(x) and each
W ∈ τ(z), cl U∩F−(clW)≠∅, i.e., F(cl U)∩clW ≠∅⇒ z ∈ S(F,x)⊆ S(F,A).
(b) �⇒(c). Obvious.
(c) �⇒(a). In order to show that X is S-closed, it is enough to show, by virtue of

Lemma 2.14(a), that every filterbase � on X θS -adheres at some x ∈ X. Let � be a
filterbase on X. Take y0 ∉ X, and construct Y = X∪{y0}. Define, τY = {U ⊆ Y : y0 ∉
U}∪{U ⊆ Y : y0 ∈ U,F ⊆ U for some F ∈ �}. Then τY is a topology on Y . Consider
the function α : X → Y by α(x) = x. In order to avoid possible confusion, let us
denote the closure and θs -closure of a set A in X(Y), respectively, by clX A(clY A) and
θs -clX A (respectively, θs -clY A). As X is θ-semiclosed in X, by the given condition,
S(α,X) ⊇ ∩{θs -clY α(U) : U ∈ SO(X)} = ∩{θs -clY U : U ∈ SO(X)} = θs -clY X. We
consider y0 ∈ Y and P0 ∈ SO(y0). There is some W ∈ τY such that W ⊆ P0 ⊆ clY W .
If y0 ∉ W , then W ⊆ X and hence clY W ∩X ≠ ∅. If on the other hand, y0 ∈ W ,
then there is some F ∈ � such that F ⊆ W , i.e., clY F ⊆ clY W . So, X ∩ clY W ≠ ∅.
So, in any case, X∩ clY W ≠ ∅ and, consequently, as clY W = clY P0, X∩ clY P0 ≠ ∅.
Thus, y0 ∈ θs -clY X. So, y0 ∈ S(α,x) for some x ∈ X. Consider any V ∈ SO(x) and
F ∈ �. Then F ∪{y0} ∈ τY . Again, Y − (F ∪{y0}) is a subset of Y not containing y0.
Thus, Y − (F ∪{y0}) is open in Y , which proves that clY (F ∪{y0}) = F ∪{y0}. Now,
clX V ∩F =α(clX V)∩clY (F∪{y0})≠∅. Thus, x ∈ θS -ad �.
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