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Abstract. The problem of maximizing a nonsmooth convex function over an arbitrary
set is considered. Based on the optimality condition obtained by Strekalovsky in 1987 an
algorithm for solving the problem is proposed. We show that the algorithm can be applied
to the nonconvex optimal control problem as well. We illustrate the method by describing
some computational experiments performed on a few nonconvex optimal control prob-
lems.
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1. Introduction. In the paper [2], we developed an algorithm for maximizing a dif-
ferentiable convex function on a so-called simple set. Continuing this work, we give
such a method for maximizing a nondifferentiable convex function, and also for max-
imizing a nonconvex optimal control problem.
This paper is organized as follows. In Section 2, we consider the global optimality

condition [13] for the problem ofmaximizing a convex function. In Sections 3 and 4, we
construct a method based on the global optimality condition for solving the problem
and show convergence of the algorithm. In Section 6, we apply the proposed algorithm
to the nonconvex optimal control problem for a terminal functional. In Section 7, we
present some computational results obtained with our algorithm on a few optimal
control test problems.

2. Global optimality condition. We consider the problem

f(x) �→max, x ∈D ⊂Rn, (2.1)

where f : Rn → R is a convex function and D is an arbitrary subset of Rn. This
problem belongs to the class of global optimization problems. Any local maximizer
found by well-known local search methods might be differ from the global maximizer
(a solution) of the problem. There are many numerical methods [2, 4, 5, 6, 9, 10, 12]
devoted to the solution of problem (2.1). The global optimality conditions for problem
(2.1) were first given by Strekalovsky [13]. For future purposes, let us consider this
result applied to a finite dimensional space of Rn.

Theorem 2.1 [13]. If a point z ∈ D is a global solution of problem (2.1) then the
following condition holds:
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∀y : f(y)= f(z), ∀y∗ ∈ ∂f(y), 〈y∗,x−y〉 ≤ 0, ∀x ∈D. (2.2)

If, in addition to (2.2), the condition

∃v ∈Rn : f(v) < f(z) <∞ (2.3)

is satisfied, then condition (2.2) becomes sufficient. (Here and in the following 〈 , 〉 de-
notes the scalar product of two vectors.)

Proof. Necessity. Assume that z is a solution of problem (2.1). Let the pointsy,y∗

and x be such that

y ∈Rn : f(y)= f(z),
y∗ ∈ ∂f(y)= {c ∈Rn | f(x)−f(y)≥ 〈c,x−y〉,∀x ∈Rn}, x ∈D. (2.4)

Then, by the convexity of f , we have

0≥ f(x)−f(z)= f(x)−f(y)≥ 〈y∗,x−y〉. (2.5)

Sufficiency. In order to derive a contradiction, suppose that z is not a solution
of problem (2.1), i.e.,

∃u∈D : f(u) > f(z). (2.6)

Now we introduce the closed and convex set:

L(f ,z)= {x ∈Rn | f(x)≤ f(z)}. (2.7)

Note that intL(f ,z)≠∅ and u �∈ L(f ,z). Then there exists the projection of the point
u on L(f ,z), i.e.,

∃y ∈ L(f ,z) : ‖y−u‖ = inf
x∈L(f ,z)

‖x−u‖. (2.8)

It is obvious that

‖y−u‖> 0. (2.9)

Taking into account (2.8), we conclude that the pointy is characterized as a solution
of the following quadratic programming problem.

g(x)= 1
2
‖x−u‖2 �→min, x ∈ L(f ,z). (2.10)

Then the optimality condition for this problem at the point y is as follows:

∃λ0 ≥ 0, λ≥ 0, λ0+λ > 0,
∃y∗ ∈ ∂f(y), λ0g′(y)+λy∗ = 0, λ

(
f(y)−f(z))= 0. (2.11)

Now, we show that λ0 > 0 and λ > 0. If λ0 = 0, then (2.11) implies that f(y)= f(z)
and 0 ∈ ∂f(y). This contradicts (2.3). The case λ = 0 is also impossible because of
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g′(y) ∆=y−u= 0 which contradicts (2.9). Thus, we can put λ0 = 1 and write (2.11) as
follows:

y−u+λy∗ = 0, λ > 0, f (y)= f(z). (2.12)

Now, using this condition, we easily get

〈y∗,u−y〉 = 1
λ
‖u−y‖2 > 0 (2.13)

which contradicts (2.2). This contradiction implies that the assumption that z is not
a solution of problem (2.1) must be false. This completes the proof.

3. Construction of a method. In order to use the global optimality condition (2.2)
efficiently for solving problem (2.1) numerically, we need to make some further as-
sumptions about the problem. These assumptions in problem (2.1) are:
(a) The objective function f :Rn→R is a strongly convex.
(b) The feasible set D is a simple.
Now, let us recall the definition of a so-called simple set.

Definition 3.1 [2]. A set D is a simple set if it satisfies the following conditions:
(a) D is compact.
(b) The problem of maximizing a linear function on D is solvable with a “Simple

method”. We say that a method is simple if it involves the use of the simplex method
or the use of a method that gives an analytical solution to the problem of maximizing
a linear function.
Throughout the rest of this paper we consider problem (2.1) under assumptions (a)

and (b). Let f∗ denotes a global maximum of problem (2.1), i.e., f∗ =maxx∈D f(x).
We now define the auxiliary function π(y) by

π(y)= max
y∗∈∂f(y)

max
x∈D

〈y∗,x−y〉, ∀y ∈Rn. (3.1)

It is well known that ∂f(y) is convex and compact [16]. Let us introduce the function
defined by

Θ(x)= max
f(y)=f(x)

π(y). (3.2)

Using Θ(x), we can reformulate Theorem 2.1 in the following way.

Theorem 3.2. Let an arbitrary point x0 ∈D be such that x0 ≠ argminx∈Rnf (x). If
Θ(x0)≤ 0 then this point is a solution of problem (2.1).

Proof. The proof is an obvious consequence of the inequality:

〈y∗,x−y〉 =max
x∈D

〈y∗,x−y〉 ≤ max
y∗∈∂f(y)

max
x∈D

〈y∗,x−y〉 ≤Θ(x0)≤ 0 (3.3)

which holds for all x and y , y∗ such that

x ∈D, f(y)= f (x0), y∗ ∈ ∂f(y). (3.4)
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We also note that 0 �∈ ∂f(y), therefore by Theorem 2.1, we see that x0 is a solution of
problem (2.1) and the proof is complete. Theorem 3.2 is used to verify the optimality
condition (2.2).

Theorem 3.3. Let a sequence {xk} ⊂Rn be such that

f
(
xk
)
> f

(
xk−1

)
> ···> f (x0), x0 ≠ arg min

x∈Rn
f (x). (3.5)

Then ∃δ > 0 : ‖yk‖ ≥ δ for each yk ∈ ∂f(xk), k= 0,1,2, . . . .
Proof. Since f is strongly convex on Rn there exists a positive constant γ such

that the following inequality holds for all x,y ∈Rn and for all α∈ [0,1]:

f
(
αx+(1−α)y)≤αf(x)+(1−α)f(y)−α(1−α)γ‖x−y‖2. (3.6)

Now let x∗ be a global minimizer of f(x) on Rn, i.e., f(x∗) = minx∈Rnf (x). It is
well known that x∗ is unique. Then it is clear that xk ≠ x∗ for each k = 0,1,2, . . . .
From the convexity of f we have

f(x)−f(y)≤ 〈ỹ,x−y〉, ∀x,y ∈Rn, ỹ ∈ ∂f(x), (3.7)

if we substitute x = xk, y = x∗ and α= 1/2 into formulas (3.6) and (3.7), we obtain
1
4
γ
∥∥xk−x∗∥∥2 ≤ 12

(
f
(
xk
)−f

(
1
2
xk+ 1

2
x∗
))
+ 1
2

(
f
(
x∗
)−f

(
1
2
xk+ 1

2
x∗
))

≤ 1
4

〈
yk,xk−x∗

〉+ 1
4

〈
ỹ∗,x∗−xk

〉

= 1
4

〈
yk−ỹ∗,xk−x∗

〉
(3.8)

for all yk ∈ ∂f(xk) and ỹ∗ ∈ ∂f (x∗). On the other hand, since 0∈ ∂f(x∗), we have
γ
∥∥xk−x∗∥∥2 ≤ 〈yk,xk−x∗〉≤ ∥∥yk∥∥∥∥xk−x∗∥∥. (3.9)

Thus we get

γ
∥∥xk−x∗∥∥≤ ∥∥yk∥∥ (3.10)

for each k= 0,1,2, . . . . Moreover, by using formulas (3.7) and (3.10), we have

0< f
(
xk
)−f (x∗)≤ 〈yk,xk−x∗〉≤ ∥∥yk∥∥∥∥xk−x∗∥∥≤ 1γ

∥∥yk∥∥2 (3.11)

for each k= 0,1,2, . . . .
Since the sequence {f(xk)} is strictly monotonically increasing, we have

0< γ
(
f
(
x0
)−f (x∗))≤ ∥∥yk∥∥2 for each k= 0,1,2, . . . . (3.12)

Consequently, choosing δ= (γ(f(x0)−f(x∗)))1/2 the assertion is proven.
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4. Convergence of the algorithm

Algorithm 4.1
Step 1. Choose x0 ∈D such that x0 ≠ argminx∈Rnf (x).
Step 2. To determine the value ofΘ(xk) solve the constrained global maximization

problem

π(y) �→max, f (y)= f (xk). (4.1)

Let yk be a solution of this problem, i.e.,

Θ
(
xk
)=π(yk)= max

v∈∂f(yk)
max
x∈D

〈v,x−yk〉. (4.2)

Also suppose that vk is a solution of the following problem

ψ(v)=max
x∈D

〈v,x−yk〉 �→max, v ∈ ∂f(yk). (4.3)

Then we have π(yk)=ψ(vk)=maxx∈D〈vk,x−yk〉.
The point xk+1 can be considered as a solution of the problem:

〈vk,x〉 �→max, x ∈D. (4.4)

It is clear that Θ(xk)=π(yk)=ψ(vk)=αk, where αk = 〈vk,xk+1−yk〉.
Step 3. If Θ(xk)≤ 0 then set x∗ = xk and stop, x∗ is a solution.
Step 4. Otherwise, set k= k+1, and go to Step 2.
Now we show that this algorithm converges to a global maximum of problem (2.1).

Theorem 4.2. The sequence of points {xk} produced by the above algorithm is a
maximizing sequence of problem (2.1), i.e.,

lim
k→∞

f
(
xk
)= f∗ (4.5)

and all the limit points of the sequence {xk} are global maximizers of problem (2.1).

Proof. Note that from the construction of {xk} we have xk ∈ D and f(xk) ≤ f∗
for each k= 0,1,2, . . . . Without loss of generality, assume

Θ
(
xk
)
> 0 for all k= 0,1,2, . . . . (4.6)

In fact, otherwise, there exists k such that Θ(xk) ≤ 0. Then, by Theorem 3.2, we can
conclude that xk is a solution of problem (2.1) and the proof is complete.
Suppose, on the contrary, that {xk} is not a maximizing sequence of problem (2.1),

i.e.,

lim
k→∞

supf
(
xk
)
< f∗ = f (x∗), (4.7)

where x∗ is a global maximizer of problem (2.1).
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First, we show that the sequence {f(xk)} is strictly monotonically increasing. By the
definition of Θ(xk), we have

Θ
(
xk
)=π(yk)= 〈vk,xk+1−yk〉> 0, (4.8)

where vk ∈ ∂f(yk), f(yk)= f(xk), π(yk)=ψ(vk).
By the convexity of f , this implies that

f
(
xk+1

)−f (xk)= f (xk+1)−f(yk)≥ 〈vk,xk+1−yk〉> 0. (4.9)

Hence, we obtain f(xk+1) > f(xk), for all k= 0,1,2, . . . . Because the sequence {f(xk)}
is bounded by the value of f∗, there exists a limit A, i.e., limk→∞f(xk) = A. Then
recalling (4.8) and (4.9), we obtain limk→∞Θ(xk)= 0.
Now we introduce the closed and convex sets Lk(f ,xk) = {x ∈ Rn | f(x) ≤ f(xk)}

for all k= 0,1,2, . . . . It is clear that x∗ �∈ Lk(f ,xk). Then there exists the projection of
the point x∗ on Lk(f ,xk) such that

∃uk ∈ Lk
(
f ,xk

)
:
∥∥uk−x∗∥∥= inf

x∈Lk(f ,xk)

∥∥x−x∗∥∥, f
(
xk
)= f (uk),

∥∥uk−x∗∥∥> 0.
(4.10)

Moreover, uk can be considered as a solution of the convex programming problem

g(x)= 1
2

∥∥x−x∗∥∥2 �→min, x ∈ Lk
(
f ,xk

)
. (4.11)

Then the optimality condition for this problem at the point uk is

∃λ0 ≥ 0, λk ≥ 0, λ0+λk ≠ 0,
∃yk ∈ ∂f (uk), λ0g′

(
uk
)+λkyk = 0 (4.12)

for all k = 0,1,2, . . . . Now, we show that λ0 ≠ 0 and λk ≠ 0. In fact, if λ0 = 0, then by
(4.12), it follows that λk > 0 and yk = 0, f(uk)= f(xk). This contradicts the fact that
xk ≠ argminx∈Rnf (x) for each k= 0,1,2, . . . . Analogously, we show that λk > 0. Since
g′(uk) = uk−x∗ ≠ 0, the case λk = 0 is also impossible and we can put λ0 = 1 and
λk > 0. Then we can write (4.12) as follows:

uk−x∗+λkyk = 0. (4.13)

Thus, we have

λk =
∥∥uk−x∗∥∥∥∥yk∥∥ . (4.14)

On the other hand, from the definition of Θ(xk), it follows that
〈
yk,x∗−uk〉≤Θ(xk). (4.15)

Using (4.13), (4.14), and (4.15), we have

∥∥yk∥∥∥∥uk−x∗∥∥≤Θ(xk). (4.16)
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From the construction of {xk} the sequence uk is such that f(xk) = f(uk) and
f(uk) > f(uk−1) for all k= 0,1,2, . . . . Then, by Theorem 3.3, we obtain ∃δ > 0 : ‖yk‖ ≥
δ for all yk ∈ ∂f(uk), k = 0,1,2, . . . . From (4.16), it follows that 0 ≤ δ‖uk −x∗‖ ≤
Θ(xk). Taking into account that limk→∞Θ(xk) = 0, we have limk→∞uk = x∗. By the
continuity of f on Rn we conclude that

lim
k→∞
f
(
xk
)= lim

k→∞
f
(
uk
)= f (x∗). (4.17)

This contradicts (4.7). This contradiction implies that the assumption that {xk} is
not a maximizing sequence of problem (2.1) is false. Since D is a compact set, there
exists a convergent subsequence which we relabel {xk} such that limk→∞xk = x̃. By
(4.17), we obtain

lim
k→∞
f
(
xk
)= f(x̃)= f∗ (4.18)

which completes a proof of the theorem.

Note. If f : Rn → R is a differentiable convex function, then the function π(y) is
defined as follows:

π(y)=max
x∈D

〈
f ′(y),x−y〉, ∀y ∈Rn. (4.19)

In addition, if f is a twice differentiable, then there exists the directional derivative
of π(y) at y in the direction h∈Rn which is given by the following formula [2]:

∂π(y)
∂h

= 〈f ′′(y)h,z〉−〈f ′′(y)y+f ′(y),h〉, (4.20)

where z is such that

〈f ′(y),z〉 =max
x∈D

〈f ′(y),x〉. (4.21)

In this case, Algorithm 4.1 is transformed into Algorithm 4.3 (see [2]) which has been
implemented numerically.

Algorithm 4.3
Step 1. Choose x0 ∈D such that x0 ≠ argminx∈Rnf (x). Set k= 0.
Step 2. Solve the problem

π(y) �→max, f (y)= f (xk). (4.22)

Let yk be a solution of this problem, i.e.,

Θ
(
xk
)=π(yk)=max

x∈D
〈
f ′(yk),x−yk

〉
(4.23)

and xk+1 be a solution of the problem

〈f ′(yk),x〉 �→max, x ∈D. (4.24)

Step 3. If Θ(xk)≤ 0 then x∗ = xk and stop.
Step 4. Otherwise, set k := k+1, and go to Step 2.
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5. Nonconvex optimal control problem. Consider the following optimal control
problem:

J(u)=ϕ(x(t1)) �→max, (5.1)

ẋ(t)=A(t)x+B(t)u(t)+C(t), x(t0)= x0, (5.2)

u∈ V = {u∈ L(r)2 (T) |u(t)∈U, t ∈ T}, (5.3)

where t ∈ T = [t0, t1], −∞ < t0 < t1 < +∞, u(t) = (u1(t),u2(t), . . . ,ur (t))T , x(t) =
(x1(t),x2(t), . . . ,xn(t))T . Herex0 ∈Rn is an initial state, t0, t1, andx0 are given. Matrix
functions A(t), B(t), and C(t) are piecewise continuous on [t0, t1] with dimensions
(n×n), (n× r), and (n× 1), respectively. U ⊂ Rr is a simple set, ϕ : Rn → R is a
strongly convex and differentiable function.
The problem (5.1), (5.2), and (5.3) belongs to the class of nonconvex optimal con-

trol problem and application of Pontryagin’s maximum principle [7, 11] can give only
stationary processes (x(·),u(·)). There are a number of numerical methods based
on the sufficient optimality conditions of dynamic programming [1, 16] and Krotov’s
condition [8] devoted to nonconvex optimal control problems. Based on optimality
conditions (2.2) a global optimal control search “R”-algorithm using a so-called “re-
solving set” was proposed in [15].
We show how to apply Algorithm 4.1 or Algorithm 4.3 to the solution of problem

(5.1), (5.2), and (5.3). It is well known that every admissible control u∈ V corresponds
to a unique solution x(t)= x(t,u) of the Cauchy problem (5.2) by the formula [16, 17]:

x(t,u)= F(t)x0+
∫ t
t0
F(t)F−1

(
ξ
)(
B
(
ξ
)
u
(
ξ
)+C(ξ))dξ, (5.4)

where F(t) is a fundamental matrix with dimension (n×n) that satisfies the matrix
equation

Ḟ =A(t)F, F(t0)= E (5.5)

on T with the matrix E. Note that a state x(t,u) is an absolutely continuous vector-
function of time t, which satisfies the system (5.2) almost everywhere in T [16]. Let us
denote by

D̃ = D̃(t1)=
{
y ∈Rn |y = x(t1,u), u∈ V

}
(5.6)

the reachable set of the control system (5.2) and (5.3). Under the above assumptions
the set D̃ ⊂ Rn is convex and compact [11, 17]. Then we can present problem (5.1),
(5.2), and (5.3) in the following form:

ϕ(x) �→max, x ∈ D̃. (5.7)

Let a pointx∗ be a solution of problem (5.7), then the admissible controlu∗ =u∗(t),
t ∈ T corresponding to x∗ is the global optimal control solution to problem (5.1), (5.2),
and (5.3). Therefore, Algorithms 4.1 and 4.3 for solving problem (2.1) can also be used
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for solving the problem (5.1), (5.2), and (5.3). As we have done before, write down the
auxiliary function π(y) for problem (5.7) as follows:

π̃(y)=max
x∈D̃

〈ϕ′(y),x−y〉. (5.8)

We first consider the following linearized optimal control problem

〈ϕ′(y),x〉 �→max, x ∈ D̃. (5.9)

In order to solve problem (5.9), we introduce a conjugate state

ψ(t,y)= (ψ1(t), . . . ,ψn(t))T (5.10)

as a solution of the following differential system:

ψ̇=−ATψ, ψ(t1)=−ϕ′(y) for every y ∈Rn. (5.11)

This system has the unique piecewise differentiable solutionψ(t)=ψ(t,y) defined
on T . Then a solution of problem (5.9) can be given by the following.

Theorem 5.1 [17]. Let ψ(t) = ψ(t,y), t ∈ T be a solution of conjugate system
(5.11) for y ∈ Rn. Then for an admissible control z(t) = z(t,y) to be optimal in
problem (5.11) it is necessary and sufficient that the condition 〈ψ(t,y),B(t)z(t,y)〉 =
minu∈U〈ψ(t,y),B(t)u〉 be fulfilled for almost every t ∈ T .
Using Theorem 5.1, we can easily show that the reachable set D̃ = D̃(t1) is a simple

set. Therefore, the value π̃(ỹ) is calculated by the following scheme:
(1) Solve problem (5.11) for a given ỹ ∈Rn. Letψ(t)=ψ(t,ỹ) be a solution of (5.11).
(2) Find the optimal control z = z(t,ỹ) as a solution of the problem

〈
ψ(t),B(t)u

〉
�→min, u∈U (5.12)

at each moment of t ∈ T .
(3) Find a solution x̃ = x(t,z) of problem (5.2) for u= z(t,ỹ).
(4) Find x̃(t1)= x̃(t1,z) by the formula (5.4) for t = t1.
(5) Calculate π̃(ỹ) by the formula

π̃(ỹ)=max
x∈D̃

〈
ϕ′(ỹ),x−ỹ〉= 〈ϕ′(ỹ), x̃(t1)−ỹ

〉
. (5.13)

Now, based on Algorithm 4.3, we are ready to present an algorithm for solving prob-
lem (5.1), (5.2), and (5.3).

Algorithm 5.2
Step 1. Let k= 0 and an arbitrary control uk ∈ V be given.
Find xk = x(t1,uk) by solving the system (5.2) for u=uk.
Step 2. Solve the problem π̃(y)→max, ϕ(y) =ϕ(xk). Let yk be the solution of

this problem and zk = zk(t,yk) be the solution of the corresponding problem

〈ϕ′(yk),x〉 �→max, x ∈ D̃, (5.14)
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or

〈
ψk(t),B(t)zk

〉=min
u∈U

〈
ψk(t),B(t)u

〉
, t ∈ T , (5.15)

where

ψ̇k(t)=−AT(t)ψk(t), ψk(t1)=−ϕ′(yk). (5.16)

Step 3. If π(yk)≤ 0 then go to Step 5. Otherwise, go to Step 4.
Step 4. Set uk+1 = zk(t,yk) and k := k+1. Then go to Step 1.
Step 5. Iteration is terminated. u∗ = uk is a global optimal solution of problem

(5.1), (5.2), and (5.3).

Convergence of the algorithm is based on the following statement.

Theorem 5.3. The sequence {uk} ⊂ V constructed by the Algorithm 5.2 is a maxi-
mizing sequence for problem (5.1), (5.2), and (5.3), i.e.,

lim
k→∞

J
(
uk
)=max

u∈V
J(u). (5.17)

The proof is analogous to the method used in Theorem 4.2.

6. Numerical experiments. To check the efficiency of the algorithm proposed
above, a few optimal control test problems have been considered. The proposed al-
gorithm has been implemented on IBM PC/486 microcomputer in Pascal 7. The list of
the test problems considered is the following:

x21(1)+x22(1) �→max,
ẋ1 =u1, ẋ2 =u2,
x1(0)= x2(0)= 0, u(t)∈U, t ∈ [0,1],
U = {u∈R2 | −3≤u1 ≤ 4,−2≤u2 ≤ 5},

(6.1)

x21(1)+x22(1) �→max,
ẋ1 = x2+u1, ẋ2 = x1+u2,
x1(0)= x2(0)= 0, u(t)∈U, t ∈ [0,1],
U = {u∈R2 | −3≤ui ≤ 4, i= 1,2},

(6.2)

x21(t1)+x22(t1)+x23(t1) �→max,
x1 =−x1+x2,
ẋ2 =−x1−x2−10u, ẋ3 = x2,
x1(0)= x2(0)= 0, x3(0)=−30, T = [0,2.8],
u(t)∈U = {u∈R | −15≤u≤ 15}.

(6.3)

The results of the numerical experiments for these problems are shown in Table 6.1.
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Table 6.1.

Problems Local value of ϕ Global value of ϕ Computing time (min : sec)

6.1 13 41 0 : 51.00

6.2 53.1448 94.4798 0 : 56.00

6.3 149.055 263.519 0 : 06.78

7. Conclusions. In this paper, we considered some classes of global optimization
problems including optimal control problem.
(1) Based on global optimality condition an algorithm for the solution of the problem

of maximizing a convex function on a so-called “Simple” set has been proposed.
(2) The proposed algorithm was generalized to the nonconvex optimal control prob-

lem for a terminal functional.
(3) The proposed algorithm is shown to be convergent and was tested numerically

on a few nonconvex optimal control problems.
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