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Abstract. The paper presents a new explicit formula for the nth total derivative of a
composite function with a vector argument. The well-known formula of Faa di Bruno gives
an expression for the nth derivative of a composite function with a scalar argument. The
formula proposed represents a straightforward generalization of Faa di Bruno’s formula
and gives an explicit expression for the nth total derivative of a composite function when
the argument is a vector with an arbitrary number of components. In this sense, the for-
mula of Faa di Bruno is its special case. The mathematical tools used include differential
operators, polynomials, and Diophantine equations. An example is shown for illustration.
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1. Introduction. Sometimes, when analyzing nth order nonlinear systems or de-
veloping mathematical processes such as presenting the solution of a problem in the
general nth order case, it is necessary to have an explicit formula for the nth deriva-
tive of a composite function with a vector argument whose components are arbitrary
in number. A powerful tool for managing nth order tasks is the formula of Faa di
Bruno giving an explicit expression for the nth total derivative of the scalar compos-
ite function f(x(t))with a scalar argument x(t). If f , x, and t are scalars and f(x(t))
is a composite function for which all the necessary derivatives are defined, then the
nth derivative of the function f with respect to t, in accordance with the formula of
Faa di Bruno, is

f (n)t =
∑ n!f (k)x

(
x(1)

)k1(x(2))k2 ···(x(n))kn
k1!k2!···kn!(1!)k1(2!)k2 ···(n!)kn , (1.1)

where k = k1+k2+···+kn and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + ···+nkn = n. The following notation is used
in (1.1): f (n)t -nth derivative of the function f with respect to t, f (k)x -kth derivative of
the function f with respect to x, x(i)-ith derivative of the function x with respect to t.
The right-hand sides of (1.1) for n= 1,2,3, . . . are known as Bell polynomials (Bell [1]).
The formula (1.1) and the Bell polynomials show that any total derivative f (n)t is a
linear function of the partial derivatives

f (k)x , k= 1,2, . . . ,n, (1.2)
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which are multiplied by the structural coefficients

n!
k1!k2!···kn!(1!)k1(2!)k2 ···(n!)kn , (1.3)

and the nonlinear functions of the derivatives x(i), i= 1,2, . . . ,n,(
x(1)

)k1(x(2))k2 ···(x(n))kn . (1.4)

There are various proofs of formula (1.1) based on different approaches—Taylor series
representation (Jordan [4]), Bell polynomials (Comtet [3]), umbral calculus (Riordan [5]
and Roman [6]).
The application of formula (1.1) is in tasks where an explicit formula for the nth

derivative of the composite function with a scalar argument f(x(t)) has to be used,
so it is restricted to the cases when the argument x(t) is a scalar. The fact that the
formula of Faa di Bruno considers only one scalar argument x(t) in the expression
for the nth derivative of the composite function f(x(t)) provokes the necessity of a
new formula which considers the case when x(t) is a vector.
The objective of this paper is to derive, prove, and present such a new formula

for the nth total derivative of the composite function f(x(t)) when its argument
x(t)= [x1(t),x2(t), . . . ,xr (t)]T is a vector with an arbitrary number of components.

2. Generalized formula for the nth derivative of a composite function with a
vector argument. This section introduces the main result in the form of a theorem
and develops the generalized formula on the basis of Faa di Bruno’s formula with the
help of a specific approach.

Theorem 2.1. If f and t are scalars, x(t)= [x1(t),x2(t), . . . ,xr (t)]T is an r -vector
and f(x(t)) is a composite function, for which all the necessary derivatives are defined,
then

Dnf
(
x(t)

)=∑
0

∑
1

∑
2

···
∑
n

n!
n∏
i=1
(i!)ki

n∏
i=1

r∏
j=1
qij !

∂kf
∂xp11 ∂x

p2
2 ···∂xprr

×
n∏
i=1

(
x(i)1

)qi1(x(i)2 )qi2 ···(x(i)r )qir ,
(2.1)

where the respective sums are over all nonnegative integer solutions of the Diophantine
equations, as follows ∑

0

�→ k1+2k2+···+nkn =n,
∑
1

�→ q11+q12+···+q1r = k1,
∑
2

�→ q21+q22+···+q2r = k2,

...∑
n
�→ qn1+qn2+···+qnr = kn,

(2.2)
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and the differential operator D = d/dt, pj—the order of the partial derivative with
respect to xj , and k—the order of the partial derivative are

pj = q1j+q2j+···+qnj, j = 1,2, . . . ,r ,
k= p1+p2+···+pr = k1+k2+···+kn. (2.3)

Proof. If the notationDi = ∂xx(i) is introduced with ∂x = ∂/∂x and (∂x)i = ∂i/∂xi
then, since always k= k1+k2+···+kn the operator for partial differentiation can be
represented as ∂k/∂xk = ∂k/∂xk1+k2+···+kn and therefore it can be inserted in the
parentheses, so formula (1.1) can be written as follows:

f (n)t =
∑ n!

(
∂xx(1)

)k1(∂xx(2))k2 ···(∂xx(n))knf
k1!k2!···kn!(1!)k1(2!)k2 ···(n!)kn (2.4)

or

f (n)t =
∑ n!Dk11 D

k2
2 ···Dknn f

k1!k2!···kn!(1!)k1(2!)k2 ···(n!)kn . (2.5)

The difference between this record and (1.1) is that the partial derivatives (1.2) and the

nonlinear functions (1.4) remain hidden in the operators Dkii and are not shown ex-

plicitly. In accordance with formula (1.1), the sequential derivatives f (i)t , i= 1,2,3, . . .
are functions with an increasing number of arguments

f (1)t = f (1)t (x,ẋ),

f (2)t = f (2)t (x,ẋ, ẍ),

f (3)t = f (3)t (x,ẋ, ẍ,
...
x),

...

f (n)t = f (n)t
(
x,ẋ, ẍ, . . . ,x(n)

)
.

(2.6)

The sequential derivatives f (i)t , i= 1,2,3, . . . can be obtained by considering (2.6) and
applying the rule of the first total derivative of a composite function with an arbitrary
number of arguments:

f (1)t = (∂xẋ)f =D1f ,
f (2)t = (∂xẋ+∂ẋẍ)f (1)t = [(∂xẋ)2+∂xẍ]f = (D21+D2)f ,
f (3)t = (∂xẋ+∂ẋẍ+∂ẍ ...x)f (2)t = [(∂xẋ)3+3∂xẋ∂xẍ+∂x ...x]f

= (D31+3D1D2+D3)f ,
f (4)t = (∂xẋ+∂ẋẍ+∂ẍ ...x+∂...xx(4))f (3)t

= [(∂xẋ)4+6(∂xẋ)2∂xẍ+4∂xẋ∂x ...x+3(∂xẍ)2+∂xx(4)]f
= (D41+6D21D2+4D1D3+3D22+D4)f ,

...

(2.7)
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If the third derivative f (3)t is developed in detail, then the expressions
(
∂ẋẍ∂xẍ

)
f , (∂ẍ

...
x∂xẋ)f (2.8)

will be obtained. They give null results because the function f(x(t)) does not depend
on ẋ and ẍ respectively. Such cases of dropping out of some terms from the final
result are observed in the fourth and the next derivatives.
As mentioned in the introduction, it is proved in a number of ways, that the general

description of these derivatives is given by the formula of Faa di Bruno (1.1).
Now, let x be the r -vector

x(t)= [x1(t),x2(t), . . . ,xr (t)]T , (2.9)

respectively,

∂x = ∂
∂x
=
[
∂
∂x1

,
∂
∂x2

, . . . ,
∂
∂xr

]T
(2.10)

be a vector differential operator and f(x(t)) a composite function for which all the
necessary derivatives are defined. The derivatives f (i)t , i = 1,2,3, . . . can be obtained
via a sequential application of the rule of the first total derivative of a composite func-
tion with an arbitrary number of arguments, substitution of the previous derivative
and considering the number of its arguments:

f (1)t = (∂Tx ẋ)f =D1f ,

f (2)t = (∂Tx ẋ+∂Tẋ ẍ)f (1)t = [(∂Tx ẋ)2+∂Tx ẍ]f = (D21+D2)f ,
f (3)t = (∂Tx ẋ+∂Tẋ ẍ+∂Tẍ ...x)f (2)t = [(∂Tx ẋ)3+3∂Tx ẋ∂Tx ẍ+∂Tx ...x]f

= (D31+3D1D2+D3)f ,
f (4)t = (∂Tx ẋ+∂Tẋ ẍ+∂Tẍ ...x+∂T...xx(4))f (3)t

= [(∂Tx ẋ)4+6(∂Tx ẋ)2∂Tx ẍ+4∂Tx ẋ∂Tx ...x+3(∂Tx ẍ)2+∂Txx(4)]f
= (D41+6D21D2+4D1D3+3D22+D4)f ,

...

(2.11)

The process of deriving the derivatives (2.11) is consubstantial with that of the deriva-
tives (2.7), and they have the same operator form, nevertheless in one case the opera-
tors are scalar and in the other vector. That is why their general form can be written
out in accordance with the formula of Faa di Bruno as

f (n)t =
∑ n!

(
∂Txx(1)

)k1(∂Txx(2))k2 ···(∂Txx(n))knf
k1!k2!···kn!

(
1!
)k1(2!)k2 ···(n!)kn . (2.12)

This step is valid because
• The derivatives (2.11) are obtained via the sequential application of the rule of the

first total derivative of a composite function with an arbitrary number of arguments.
• The process of developing the derivatives (2.11) is consubstantial with the process

of developing the derivatives (2.7).
The formula (2.12) is a vector form of the nth derivative because the operators for
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partial differentiation are in a vector form. Hence, the partial derivatives and the non-
linear functions of the derivatives x(i), i= 1,2, . . . ,n are not shown explicitly. To obtain
the explicit component form of the formula for the nth derivative of f(x(t)) it is nec-
essary to raise the polynomials (∂Txx(i))ki , i= 1,2, . . . ,n to the corresponding powers
and then to multiply them. For this purpose, it is suitable to number the polynomials
in accordance with the derivative which they contain. The polynomial containing x(1)

is the first, the one including x(2) is the second and so on. Then for the ith polynomial
it can be written out

(
∂x1x

(i)
1 +∂x2x(i)2 +···+∂xr x(i)r

)ki
=
∑ ki!
qi1!qi2!···qir !

(
∂x1x

(i)
1

)qi1(∂x2x(i)2 )qi2 ···(∂xr x(i)r )qir . (2.13)

The sum is over all nonnegative integer solutions of the Diophantine equation qi1+
qi2+···+qir = ki. Here, the powers qij are numbered with index i-number of the
polynomial and j-number of the component from the x vector. If the n polynomials
in the form (2.13) are multiplied, then the result is

f (n)t =
∑
0

∑
1

∑
2

···
∑
n

∂kf
∂xp11 ∂x

p2
2 ···∂xprr

× n!k1!k2!···kn!
k1!k2!···kn!(1!)k1(2!)k2···(n!)knq11!q12!···q1r !q21!q22!···q2r !···qn1!qn2!···qnr !

×(x(1)1 )q11(x(2)1 )q21 ···(x(n)1

)qn1(x(1)2 )q12(x(2)2 )q22 ···(x(n)2

)qn2 ···(x(1)r )q1r
×(x(2)r )q2r ···(x(n)r

)qnr
(2.14)

or in concise record

f (n)t =
∑
0

∑
1

∑
2

···
∑
n

n!
n∏
i=1
(i!)ki

n∏
i=1

r∏
j=1
qij !

∂kf
∂xp11 ∂x

p2
2 ···∂xprr

×
n∏
i=1

(
x(i)1

)qi1(x(i)2 )qi2 ···(x(i)r )qir ,
(2.15)

whereas the sums are over all nonnegative integer solutions of the Diophantine equa-
tions ∑

0

�→ k1+2k2+···+nkn =n,
∑
1

�→ q11+q12+···+q1r = k1,
∑
2

�→ q21+q22+···+q2r = k2,

...∑
n
�→ qn1+qn2+···+qnr = kn,

(2.16)
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with pj being the order of the partial derivative with respect to xj and k—the order
of the partial derivative

pj = q1j+q2j+···+qnj, j = 1,2, . . . ,r ,
k= p1+p2+···+pr = k1+k2+···+kn. (2.17)

This result coincides with formula (2.1), which completes the proof.

Consistency. Formula (2.1) is an explicit component form of thenth derivative of
the composite function f(x(t)). It is a straightforward generalization of the formula of
Faa di Bruno when the argument x(t) is a vector. In this sense, Faa di Bruno’s formula
is a special case of formula (2.1) when r = 1, and therefore x(t) = x1(t). Then, the
Diophantine equations (2.2) and the variables (2.3) take the form

∑
0

�→ k1+2k2+···+nkn =n,
∑
1

�→ q11 = k1,
∑
2

�→ q21 = k2,

...∑
n
�→ qn1 = kn,

p1 = q11+q21+···+qn1,
k= p1 = k1+k2+···+kn.

(2.18)

In this case, the expression (2.1) reads

Dnf
(
x1(t)

)
=
∑
0

n!
k1!k2!···kn!(1!)k1(2!)k2 ···(n!)kn

∂kf
∂xk1

(
x(1)1

)k1(x(2)1 )k2 ···(x(n)1

)kn , (2.19)

which is actually the formula of Faa di Bruno when x = x1.
The use of formula (2.1) requires the solution of the system of linear Diophantine

equations (2.2). When the order of the derivative considered is low and the number
of arguments r is small, then these equations can be easily solved manually. It is well
known that they do not have general analytic solution. So, when we deal with higher
order derivatives and a bigger number of arguments, an efficient tool for solving such
equations is needed. Clausen and Fortenbacher [2] have proposed algorithms and an
efficient PASCAL program for solving a wide class of linear Diophantine equations,
including equations of the type (2.2). The solution of the system of linear Diophantine
equations can be obtained smoothly with the help of this program.

3. Example. The fourth derivative of the function

f
(
x1(t),x2(t)

)= ex1(t)x2(t) (3.1)
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will be considered as an illustration example for formula (2.1). First, the fourth deriv-
ative of f(x1(t),x2(t)) will be considered in order to show its general structure, and
then it will be applied over the function ex1(t)x2(t). In this case, formula (2.1) has the
form

f
(
x1(t),x2(t)

)(4)

=
∑
0

∑
1

∑
2

∑
3

∑
4

4!
4∏
i=1
(i!)ki

4∏
i=1

2∏
j=1
qij !

∂kf
∂xp11 ∂x

p2
2

4∏
i=1

(
x(i)1

)qi1(x(i)2 )qi2 (3.2)

and the equations (2.2),

∑
0

�→ k1+2k2+3k3+4k4 = 4, (3.3)

∑
1

�→ q11+q12 = k1,
∑
2

�→ q21+q22 = k2,
∑
3

�→ q31+q32 = k3,
∑
4

�→ q41+q42 = k4.

(3.4)

Table 3.1.

No. k1 k2 k3 k4
1 4 0 0 0

2 2 1 0 0

3 1 0 1 0

4 0 2 0 0

5 0 0 0 1

The solutions of equation (3.3) are shown in Table 3.1, and they form the most
external loop of the sums. These five solutions define the respective five sets of com-
binations of solutions of the equations (3.4) as shown in Table 3.2. The five solutions
of the main Diophantine equation (3.3), corresponding to

∑
0, are listed in the first

column of this table. Each of those solutions defines the Diophantine equations (3.4),
corresponding to

∑
i, i = 1,2,3,4, which are shown in the second column. All pos-

sible combinations of solutions of the latter equations are shown in the remaining
columns. The sums p1 = q11+q21+q31+q41 and p2 = q12+q22+q32+q42 determine
the order of the partial derivatives with respect to x1 and x2. So, the fourth total de-
rivative of the function f(x1(t),x2(t)) can be written out in general form on the basis
of formula (3.2) and Table 3.2,
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T
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b
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th
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io
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∑ 0
∑ i,

i=
1
,2
,3
,4

C
o
m
b
in
at
io
n
1

C
o
m
b
in
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n
2

C
o
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at
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n
3
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o
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b
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at
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at
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=
0
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f
(
x1(t),x2(t)

)(4) = 4!
(1!)4(2!)0(3!)0(4!)04!0!0!0!0!0!0!0!

∂4f
∂x41

ẋ41

+ 4!
(1!)4(2!)0(3!)0(4!)01!0!0!0!3!0!0!0!

∂4f
∂x1∂x32

ẋ1ẋ32

+ 4!
(1!)4(2!)0(3!)0(4!)02!0!0!0!2!0!0!0!

∂4f
∂x21∂x

2
2
ẋ21ẋ

2
2

+ 4!
(1!)4(2!)0(3!)0(4!)03!0!0!0!1!0!0!0!

∂4f
∂x31∂x2

ẋ31ẋ2

+ 4!
(1!)4(2!)0(3!)0(4!)00!0!0!0!4!0!0!0!

∂4f
∂x42

ẋ42

+ 4!
(1!)2(2!)1(3!)0(4!)02!1!0!0!0!0!0!0!

∂3f
∂x31

ẋ21ẍ1

+ 4!
(1!)2(2!)1(3!)0(4!)02!0!0!0!0!1!0!0!

∂3f
∂x21∂x2

ẋ21ẍ2

+ 4!
(1!)2(2!)1(3!)0(4!)00!1!0!0!2!0!0!0!

∂3f
∂x1∂x22

ẍ1ẋ22

+ 4!
(1!)2(2!)1(3!)0(4!)00!0!0!0!2!1!0!0!

∂3f
∂x32

ẋ22ẍ2

+ 4!
(1!)2(2!)1(3!)0(4!)01!1!0!0!1!0!0!0!

∂3f
∂x21∂x2

ẋ1ẍ1ẋ2 (3.5)

+ 4!
(1!)2(2!)1(3!)0(4!)01!0!0!0!1!1!0!0!

∂3f
∂x1∂x22

ẋ1ẋ2ẍ2

+ 4!
(1!)1(2!)0(3!)1(4!)01!0!1!0!0!0!0!0!

∂2f
∂x21

ẋ1
...
x1

+ 4!
(1!)1(2!)0(3!)1(4!)01!0!0!0!0!0!1!0!

∂2f
∂x1∂x2

ẋ1
...
x2

+ 4!
(1!)1(2!)0(3!)1(4!)00!0!1!0!1!0!0!0!

∂2f
∂x1∂x2

...
x1ẋ2

+ 4!
(1!)1(2!)0(3!)1(4!)00!0!0!0!1!0!1!0!

∂2f
∂x22

ẋ2
...
x2

+ 4!
(1!)0(2!)2(3!)0(4!)00!2!0!0!0!0!0!0!

∂2f
∂x21

ẍ21

+ 4!
(1!)0(2!)2(3!)0(4!)00!0!0!0!0!2!0!0!

∂2f
∂x22

ẍ22

+ 4!
(1!)0(2!)2(3!)0(4!)00!1!0!0!0!1!0!0!

∂2f
∂x1∂x2

ẍ1ẍ2

+ 4!
(1!)0(2!)0(3!)0(4!)10!0!0!1!0!0!0!0!

∂f
∂x1

x(4)1

+ 4!
(1!)0(2!)0(3!)0(4!)10!0!0!0!0!0!0!1!

∂f
∂x2

x(4)2
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or finally

f
(
x1(t),x2(t)

)(4) = ∂4f
∂x41

ẋ41+4
∂4f

∂x1∂x32
ẋ1ẋ32+6

∂4f
∂x21∂x

2
2
ẋ21ẋ

2
2+4

∂4f
∂x31∂x2

ẋ31ẋ2

+ ∂
4f
∂x42

ẋ42+6
∂3f
∂x31

ẋ21ẍ1+6
∂3f

∂x21∂x2
ẋ21ẍ2+6

∂3f
∂x1∂x22

ẍ1ẋ22

+6∂
3f
∂x32

ẋ22ẍ2+12
∂3f

∂x21∂x2
ẋ1ẍ1ẋ2+12 ∂3f

∂x1∂x22
ẋ1ẋ2ẍ2

+4∂
2f
∂x21

ẋ1
...
x1+4 ∂2f

∂x1∂x2
ẋ1

...
x2+4 ∂2f

∂x1∂x2
...
x1ẋ2+4∂

2f
∂x22

ẋ2
...
x2

+3∂
2f
∂x21

ẍ21+3
∂2f
∂x22

ẍ22+6
∂2f

∂x1∂x2
ẍ1ẍ2+ ∂f

∂x1
x(4)1 + ∂f

∂x2
x(4)2 .

(3.6)

Specifically, for the function ex1(t)x2(t) the result is
(
ex1x2

)(4) = ex1x2[x42ẋ41+4(x31x2+3x21)ẋ1ẋ32+6(x21x22+4x1x2+2)ẋ21ẋ22
+4(x1x32+3x22)ẋ31ẋ2+x41ẋ42+6x32ẋ21ẍ1+6(x1x22+2x2)ẋ21ẍ2
+6(x21x2+2x1)ẍ1ẋ22+6x31ẋ22ẍ2+12(x1x22+2x2)ẋ1ẍ1ẋ2
+12(x21x2+2x1)ẋ1ẋ2ẍ2+4x22ẋ1 ...x1+4(x1x2+1)ẋ1 ...x2
+4(x1x2+1) ...x1ẋ2+4x21ẋ2 ...x2+3x22ẍ21+3x21ẍ22
+6(x1x2+1)ẍ1ẍ2+x2x(4)1 +x1x(4)2

]
.

(3.7)

A comparison has been made with the result obtained from the REDUCE program
for symbolic computations with the purpose of checking it up. It has given the same
expression for the fourth total derivative of the function ex1(t)x2(t).

4. Conclusions. The formula proposed in this paper is an explicit component form
of the nth total derivative of a composite function of a vector argument with an arbi-
trary number of components. It is a straightforward generalization of the formula of
Faa di Bruno, and it is consistent with the latter, indeed. In this sense, the formula of
Faa di Bruno is a special case of formula (2.1) and can be obtained from it when r = 1
and therefore x(t) = x1(t). The number of nested sums in the new formula is n+1
against 1 in formula (1.1) which corresponds to the number of Diophantine equations.
The greater complexity is the cost of the ability to manage composite functions of a
multivariable argument.
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