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1. Introduction. Furiand Vignoli [4] established first the existence of fixed point for
densifying mappings. Afterwards Chatterjee [1], Diviccaro, Khan and Sessa [2], Fisher
and Khan [3], Iseki [6, 7], Jain and Jain [8], Janos, Ko, and Tan [9], Khan [10], Khan and
Fisher [11], Khan and Liu [12], Khan and Rao [13], Khan [14],Liu[17, 18, 19, 20, 21, 16],
Pande [24, 25], Rao [22], Ray and Fisher [26], Sastry and Naidu [27], Sharma [28],
Sharma and Srivastava [29] and others obtained fixed and coincidence point theo-
rems for densifying and nearly densifying mappings, respectively. Huang, Huang, and
Jeng [5] proved a common fixed point theorem for a left reversible semigroup, which
consists of a number of continuous self-mappings in compact metric spaces.

The purpose of this paper is to establish coincidence and common fixed point theo-
rems for certain new classes of nearly densifying mappings in complete metric spaces.
In Section 2, we introduce notation, terminology and prove a lemma, which plays an
important role in the paper. In Section 3, we obtain some common fixed point the-
orems for families of mappings. In Section 4, we give general coincidence point the-
orems for two pairs of mappings. Our results extend, improve, and unify the corre-
sponding results of Chatterjee [1], Diviccaro, Khan, and Sessa [2], Huang, Huang, and
Jeng [5], Janos, Ko, and Tan [9], Khan [10], Khan and Liu [12], Khan and Rao [13]. Liu
[17, 18, 19], Rao [22], Sharma and Srivastava [29] and others.

2. Preliminaries. Recall that a semigroup G is said to be left reversible if for any
s,t € G there exist u,v € G such that su = tv. It is easy to see that the notion of
left reversibility is equivalent to the statement that any two right ideals of G have
nonempty intersection. A semigroup G is called near-commutative if for any s,t €
G there exists u € G such that st = tu. Clearly, every commutative semigroup is
near-commutative, and every near-commutative semigroup is left reversible, but the
converses are not true.
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Throughout this paper, (X,d) denotes a metric space, N, R*, and R denote the sets
of positive integers, nonnegative real numbers, and real numbers, respectively, and
w = NJ{0}. Define

J={F|F:XxX — R" and F(x,vy) = 0 if and only if x = y},
31 ={F| F € 3 and F is upper semicontinuous in X x X}, 2.1)

3, ={F | F € 9 and F is lower semicontinuous in X x X}.

Let G be a family of self-mappings in X. A subset Y of X is called G-invariantif gY ¢ Y
for all g € G. Let

NCI; = {Y | Y is nonempty compact G-invariant subset of X},

2.2)
ClIS¢={glg:X— Xand gY <Y, VY € NClg },

and G* be the semigroup generated by G under composition. Clearly, CIS; =2 G* 2
{g":new} foranyge G.For A Bc X, x,y €X, f€G,and F € 3, define

S6r(A,B) =sup{F(a,b):a € A,b € B}, Sr(A) = 5r(A,A),

Or(x,A) = 0 ({x},A), Or(x,¥) = 6r({x}, {x}),

Of(x) ={f"x:n € w}, Of(x,) = 05(x) | JOr (), (2.3)
Cr={nlh:X —X,fh=hf}, G*x = {x3Ulgx:g€G*},

CISy = CIS sy, NCI ¢ = NCI 5.

A denotes the closure of A. f is said to have diminishing orbital diameter if
limy - 80a(0Of(f"x)) <64(0f(x)) for all x € X with §4(Of(x)) > 0. f is called con-
tractive with respect to d if d(fx, fy) < d(x,y) for all distinct x,y € X.

DEFINITION 2.1. Let G be a semigroup of self-mappings on a metric space (X,d)
and F € J. G is said to have F-diminishing orbital diameter, if for any x € X with
Or(Gx) > 0 there is s € G such that 6r(Gsx) < 6r(Gx).

DEFINITION 2.2 (see [15]). Let Abe abounded subset of ametric space (X,d). Then
«(A), the measure of noncompactness of A, is the infimum of all € > 0 such that A
admits a finite covering consisting of subsets with diameters less than &.

The following properties of « are well known.

LEMMA 2.3. Let (X,d) be a metric space and A,B be bounded subsets of X. Then

o(AlJB) =max {a(A),a(B)}; (2.4)
o (A) = 0 <= A is pre-compact, i.e., A is totally bounded; (2.5)
x(A) = x(A). (2.6)

DEFINITION 2.4 (see [4]). A continuous self-mapping f in a metric space (X,d)
is said to be densifying if x(f(A)) < x(A) for every bounded subset A of X with
x(A) > 0.
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DEFINITION 2.5 (see [27]). A self-mapping f in a metric space (X,d) is said to be
nearly densifying if o(f(A)) < «(A) for every bounded and f-invariant subset A of
X with &(A) > 0.

Obviously, each densifying mapping is nearly densifying, but the converse is false.

DEFINITION 2.6 (see [23]). Let X be a topological space, f a self-mapping in X, and
M a nonempty subset of X. M is an attractor for compact sets under f if
(i) M is compact and fM c M,
(ii) given any compact set C < X and any open neighborhood U of M, there exists
k € N such that f*C c U for all n > k.

Let G be a left reversible semigroup. We define a relation > on G by a > b if and
only if a € bGJ{b}. It is easy to check that (G,>) is a directed set.

LEMMA 2.7. Let G be a left reversible semigroup of continuous self-mappings in a
compact metric space (X,d), A=\fec fx, and F € 31. Then

HmSp(fx) = 6p(A);
fec

AENCI; and fA=A, VYfeG.

(2.7)

PROOF. Note that fX < gX for all f,g € G with f = g. Thus {0r(fX)}rec is a
bounded decreasing net in R. Obviously, limfeg 0 ¢ (fX) exists in R and

Or(A) <limdér(fx). (2.8)
fea

We now prove that fX is a compact subset of X for each f € G. Let x be in X and
{xn},en € X with limy, .« fx,, = x. The compactness of X ensures that there exists a
subsequence {xy, }, .y Of {Xn}nen such that it converges to some point t € X. Since
f is continuous, so x = ft € fX. Therefore fX is closed. Thatis, fX is compact. This
means that A is compact.

We next prove that

Sr(A) = im 67 (fX). (2.9)
fec

Let f € G. Since F is upper semicontinuous and fX X fX is compact, there exist
xf,¥f € fX with F(xf,¥f) = 0r(fX). From the compactness of X we can choose
two subnets {xy,} and {yy} of {xr} and {y}, respectively, such that x5 — x and
¥f —  for some x,y € X. For every g € G and fy = g, we get that x5, ¥y, € gX.
By virtue of closedness of gX, we infer that x,y € gX. This means that x,y € A.
Consequently,

}clércl(sF(fX) :}%’%F(xf,yf) = h{nF(xfk,yfk) =F(x,y) <6p(A). (2.10)

Thus (i) follows from (2.8) and (2.9).

Let n € N and f1, f2,...,fn € G. It follows from the left reversibility of G that there
exist g1,92,...,9n € G with fig1 = fogs = -+ = fugn = h for some h € G. Hence
N, fiX 2 hX = @. The compactness of X implies that A # .
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We finally prove that fA = A forall f € G.let fe Gand x € A.Forany g € G
there exist a,b € G with fa = gb. Note that x € A < aX. Thus there is y € X with
x = ay. It follows that fx = fay = gby € gX. This implies that fA < (\;ccgX = A
for f € G. For the reverse inclusion, let f,g € G and y € A. It follows from y € fgX
that there exists x, € gX with fx, = y. The compactness X ensures that there exists
a convergent subnet {xg4 } of {x,} such that x; — x for some x € X. Therefore
v = fx.For any h,g € G with g = h, we obtain that hX is closed and x4 belongs to
hX. Thus the limit point x of {x,} lies in hX. That is, x € A. Note that y = fx € fA.
Therefore, A c fA for f € G. This completes the proof. O

REMARK 2.8. Lemma 2.7 generalizes Lemma 2.3 of Huang, Huang, and Jeng [5].

3. Common fixed point theorems for nearly densifying mappings

THEOREM 3.1. Let G and H be finite families of continuous and nearly densifying
self-mappings in a complete metric space (X,d). If there exist g € G*, h € H*, F €
31, Xo0,Y0 € X such that

F(gx,hy) < 6F ( U sG*x, U tH*y) , Vx,yeX withgx + hy; (3.1)
seCISg teCISy

G*xo,H* vy are bounded and G*,H* are left reversible.Then the following statements
hold:
(i) G and H have a unique common fixed point w € X, and w is also the only fixed
point of G and H, respectively;
(i) limgegx F(sx0,w)=limep=F (t vy, w)=limscc*Sr (sG*x¢ ) =lim;cp+ S (tH* o)
= ();
(iii) for any C € NCIg+ and any D € NCIyx, (\sec* SC = \ten tD = {w}.

PROOF. Let A =(\;ccx SG*xpand B = e+ tH*y0. Since G*x¢ = {x0} Useq SG* x0
and G is finite, so

& (G*x0) =max {x(xg),x(sG*xp) : s € G} =max{x(sG*xo) : s € G}. (3.2)

Note that each s € G is nearly densifying. Thus, «(G*xo) = 0. It follows from
Lemma 2.3 that G*x, is pre-compact. Completeness of (X,d) ensures that G*x, is
compact. Since every s € G* is continuous, sG*xy S sG*x¢ S G*X(. By Lemma 2.7 we
immediately conclude that A € NCIg+ and fA = A for all f € G*. Similarly, B € NCI g+
and fB=Bforall f € H*.

We assert that 6 (A, B) = 0. Otherwise 6 (A, B) > 0. Since F is upper semicontinuous
and A X B is compact, we can easily choose a € A and b € B with F(a,b) = 6r(A,B).
Therefore, there exist x € A and y € B such that a = gx and b = hy. Using (3.1),
we have

F(a,b)=F(gx,hy)<6p< U s6*x, | tH*y)

seCISg teCISy
< 5F(A,B) = F(alb)l

(3.3)
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which is a contradiction. Consequently, A = B = a singleton, say, {w} for some w € X.
Thus w = fw for all f € GUH. That is, G and H have a common fixed point w € X.
If G has another fixed point v € X and v # w, by (3.1) we infer that

F(v,w)=F(gv,hw)<5p( U sG*v, | tH*w)=F(v,w), (3.4)
seCISe teCiSy

which is absurd. Hence G has a unique fixed point w. Similarly, we conclude that H
has also a unique fixed point w.
It follows from Lemma 2.7 that
lim 5F(SG*7X0) = (51:(14) = 51:({11)}) =0= 51:(3) = lim 51:(1'H*7_’)/0) (3.5)
seG* teH*
Note that sxg € sG*xo, tyy € tH*yg and w € sG*xo(\tH*y, for all s € G*, t € H*.
Thus Theorem 3.1(ii) follows immediately from (3.5).

Let C € NCIg+ and Y = (;eq+ SC. Lemma 2.7 ensures that Y € NCIg+ and fY =Y
for all f € G*. Suppose that 6¢(Y,w) > 0. Then there exists x € Y such that
F(gx,w) = 6(Y,w). In view of (3.1) and Theorem 3.1(i). We obtain that F(gx,w) <
5F(Usecsz sG*x,w) < 6p(Y,w), which is impossible. Hence 6¢(y,w) = 0. That is,
Y = Nseq+ SC = {w}. Similarly, we obtain that (;cy= tD = {w} if D € NCIy+. This
completes the proof. O

THEOREM 3.2. Let G and H be finite families of continuous and nearly densifying
self-mappings in a complete bounded metric space (X,d) satisfying (3.1). Assume that
G*, H* are near commutative. Then Theorem 3.1(i), (iii), and the following statements
hold:

()
lim F(sx,w) = lim F(ty,w) = lim 6r(sG*x)
seG* teH* SEG* (3.6)

= lim 6¢(tH*y) =0, VXx,y€X;
teH*

(ii) G* and H* have F-diminishing orbital diameter.

PROOF. Let x,y bein X.Put A =(\seq+ SG*x and B = (;ey+ tH*y. As in the proof
of Theorem 3.1, we conclude that A € NCIg+, fA = A for all f € G* and B € NClg+,
gB =B for all g € H*. It follows from Theorem 3.1(ii) that

A= () sA={w}=B= () tB. (3.7)

seG* teH*
Thus (3.6) follows from Lemma 2.7 and the definitions of G*x and H*y.
Given s,t € G*. Since G* is commutative, there is g € G* with ts = sg. This means that

Sr(G*sx) = 6p({sx}|J{tsx:t € G*}) < 5p(sG*x) < 5p(sG*x). (3.8)

Suppose that 6r(G*sx) > 0. In view of (3.6) and (3.8) there exists s € G* such that
0r(G*sx) < 8p(G*x). That is, G* has F-diminishing orbital diameter. Analogously,
H* has F-diminishing orbital diameter also. This completes the proof. O
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We now state without proof analogues of Theorems 3.1 and 3.2.

THEOREM 3.3. Let G be a finite family of continuous and nearly densifying self-
mappings in a complete metric space (X,d). If there exist g,h € G*, F € 31, xg € X
such that

F(gx,hy) < 6 ( U (SG*xUsG*y)) , Vx,ye€X withgx + hy; (3.9)

seCISg

G*xq is bounded and G* is left reversible.Then the following statements hold:
(i) G has a unique common fixed point w € X, and

lim F(sxg,w) = lim 6 (sG*xg) = 0; (3.10)
seEG* SEG*

(i) for any C € NClg*, Nseq* SC = {w}.

THEOREM 3.4. Let f and g be continuous self-mappings in a complete metric space
(X,d). Assume that there exist i,j,p,q €N, F € 31, x0,Y0 € X such that
) F(fPx,97y) <6r(Usecis; sOf(x),Utecis, t04(¥)), VX, ¥ €X with fPx # gy;
(i) fiand g’ are nearly densifying;
(iii) Of(xo) and O4(yo) are bounded.
Then the following statements hold:
(1) f and g have a unique common fixed point w € X, and w is also the only fixed
point of f and g, respectively;
(2) limy,—. F(f"x0,w) = limy—« F(g" Y0, w) = limy_« ¢ (f"Of(x0)) =
limy, .. 55 (9" 04 (M) = 0;
(3) for any C € NCIy and any D € NCl g,

() f"C=()g"D={w}. (3.11)

neN neN

PROOF. Set A=(nenf"Or(x0) and B =,,eng" Oy (o). In view of Theorem 3.4(ii),
(iii) and

a(Of(x0)) = max{of{fixp:0 <k <i-1},a(f0f(x0))}, (3.12)

we conclude easily that A € NCI and fA = A. Similarly, B € NCI,; and gB = B. The
rest of the proof is the same as that of Theorem 3.1. This completes the proof. O

REMARK 3.5. Theorem 3.4 extends Theorems 3 and 4 of Liu [19], the theorem of
Sharma and Srivastava [29]. Akin to Theorem 3.4, we have the following.

THEOREM 3.6. Let f be continuous self-mapping in a complete metric space (X, d).
Assume that there exist i,p,q € N, F € 31, xo € X such that
(i) F(fPx,f1) <6r(Usecis; sOf(x,¥)), VX, ¥ € X with fPx + fay;
(i) f!is nearly densifying;
(iii) Of(xo) is bounded.
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Then the following statements hold:
(1) f has a unique fixed pointw € X, andlimy_... F (f"x, w)=limy, . 0 (f"Of(x0))
= ();
(2) for any C € NCIy, Npen f"C = {w}.

REMARK 3.7. Theorem 4 of Khan [10] and Theorem 4 of Rao [22] are special cases
of Theorem 3.6.

THEOREM 3.8. Let f and g be continuous self-mappings in a complete bounded
metric space (X,d). Assume that there exist i, j,p,q € N satisfying Theorem 3.4(ii) and

d(fPx,g? S Or(x), o )
(fPx,9%y) < d( U sopea), U ¢ g(y)) (3.13)

SECISy teCISy

Vx,y € X with fPx + gly.

Then Theorem 3.4(1) and (3.11) and the following statements hold:
@) limy-e d(f"x,w) =limy- d(g"y,w) =liMy - 64 (f"Of(x)) =

limy,-«64(g"04(y)) =0, Vx,y € X;

(ii) there exist bounded complete metrics di,d» on X which are equivalent to d such
that f,g are contractive with respect to d, and d., respectively;

(iii) CISy and CIS4 have a unique common fixed point w € X, and w is also the only
fixed point of CISy and CIS 4, respectively;

(iv) f and g have diminishing orbital diameter.

PROOF. Itfollows from Theorem 3.4 that Theorem 3.4(1), (3.11), and Theorem 3.8(i)
hold. By the definitions of CISy and CIS,, we conclude easily that Theorem 3.8(iii)
holds. Since f"Oy(x) = Of(f"x) and g"O4(y) = O4(g"y), so Theorem 3.6(iv) is
satisfied. Now we prove that Theorem 3.8(ii) holds. Assume that B be any nonempty
compact subset of X. Using Lemma 2.3, we have

I (nLejw f"B) = max<|o< (;L_JL f"B) , X (91 f"B) }

= O‘(Gf"B) = a(fi U f"B).

n=i new

(3.14)

Thus U,,c, f"B is totally bounded because f is nearly densifying. Set C = U,,c., f"B.
Since f is continuous and X is complete, we infer that C is compact and fC <
fUnew f™B < C. Hence (3.11) ensures that (e, f"C = {w}. This means that
04(f"C) | 0 as n — . For each open neighborhood U of w, there exists an open ball
B(w,¢) = {x : x € X and d(x,w) < €} with B(w,&) < U. Note that 64(f"C) | 0
as n — oo. Thus there exists k € N such that 64(f"C) < ¢ for all n > k. Given x € f*C
and n > k, we obtain that d(x,w) < 64(f"C) < &. Consequently, f"B < f"C <
B(w,¢) < U for all n > k. This shows that {w} is an attractor for compact sets under f.
Thus Theorem 3.8(ii) follows from theorem of [9] and Remark 1 of [9]. This completes
the proof. O

Similarly, we have the following theorem.
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THEOREM 3.9. Let f be a continuous self-mapping in a complete bounded metric
space (X,d). Assume that there exist i,p,q € N satisfying Theorem 3.6(ii) and

A(frx, fly) <64 ( U sOf(x,y)), Vx,y e X with fPx + fiy. (3.15)
SGCISf

Then Theorem 3.6(2) and the following statements hold:
(i) f has a unique fixed point w € X, and has diminishing orbital diameter and
ylliglod(f"x,w) = 7llizroleéd(f”Of(x)) =0, Vx eX;
(ii) there exists a bounded complete metric d, on X which is equivalent to d such
that f is contractive with respect to d,;
(iii) CISy has a unique common fixed point w € X.

REMARK 3.10. Theorem 3.8 generalizes Theorem 4 of [2] and Theorem 4 of [22].
Theorem 3.9 extends and improves Theorem 3 of [1], Corollary 2 of [9], Theorem 3.1
of [17], and Theorems 1 and 2 of [18]

4. Coincidence point theorems for two pairs of nearly densifying mappings

THEOREM 4.1. Let f, g, s, and t be a continuous and nearly densifying mappings
from a complete metric space (X,d) into itself satisfying

fgt=ftg=tfg and  gst =sgt =stg. 4.1)
Let G ={f,g,s,t}. Assume that there exist F,,F, € 3 and xy € X such that
F, or F> € 3y; 4.2)

Fi(fx,9y) <max {Fz(sx,ty),Fz(sx,fX),Fl(ty,gy).

[Fa(sx, ty)]2

min {F (sx,95), Fy (f, 00}, o =2

[Fa(sx,f)]° [Fi(ty,gy)]’
Fi(fx,9y) = F(fx,9y)

Fo(sx,ty)Fi(fx,ty) Fa(sx,fx)Fi(fx,ty)

Fi(fx,9y) ’ Fi(fx,9y) '

Fi(ty,gy)Fi(fx,ty) Fa(sx,gy)Fi(fx,ty) (4.3)
Fi(fx,9y) ’ Fi(fx,9y) ’

[Fa(sx, fx)]° Fa(sx, fx)F(ty,g)

Fo(sx,ty) '’ Fo(sx,ty) ’

Fo(sx, fx)F1(fx,9y) Fa(sx,fx)F1(fx,ty)
Fo(sx,ty) ’ F(sx,ty) ’

Fi(ty,gy)Fi(fx,ty) F2(sx,gy)F1(sx,ty)
Fo(sx,ty) ’ Fo(sx,ty)
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forall x,y € X withsx +ty, fx +gy;

F2(gx,fy) < max {H(tx,sy),F1(tx,gx),Fz(sy,fy),
[Fl(tx,sy)]2
F(gx,fy)”’
[Fi(tx,gx)]° [F2lsy, /)]’ Fitx,sy)Fi(gx,sy)
F(gx,fy) ' F.(gx,fy) '’ Fa(gx,fy)
Fi(tx,gx)F,(gx,sy) F(sy,fy)Fi(gx,sy)
F2(gx,fy) ’ F(gx,fy)

min {F; (gx,sy),F2(tx, f)},

Fa(tx, fy)Fi(gx,sy) [Fi(tx,gx)]> Fi(tx,gx)F2(sy,fy)
F2(gx,fy) * Fi(tx,sy) F(tx,sy)

Fi(tx,gx)F2(gx, fy) Fi(tx,gx)Fi(gx,sy)
F(tx,sy) ’ Fo(tx,sy)

F(sy,fy)Fi(gx,sy) Fi(gx,sy)F.(tx, fy)
Fi(tx,sy) ’ Fi(tx,sy)

(4.4)
forallx,y € X withgx + fy, tx +sy;
G*xq is bounded and G* is left reversible. (4.5)
Then f and s or g and t have a coincidence point in X.

PROOF. Put A = G*xy. It follows that A = {xo} U fAUgAUsAtA. This yields
that

x(A) =max{x(fA),x(gA),x(sA),x(tA)}. (4.6)

It is evident to see that «(A) = 0. Thus A is compact by completeness of X. Set
Bnegx hA. Lemma 2.7 ensures that fB = gB = sB = tB = B + @ and B is compact.
Let F; be in J,. Define v : B — R* by putting v (x) = F;(tx,gx). Since v is a lower
semi-continuous function on the compact set B, so there exists b € B with

v(b) = F,(tb,gb) = )i(I;tI;Fl(tx,gx). 4.7)
Suppose that neither f and s nor g and t have a coincidence point. Then
tfgc+gfgc, tstc + gstc, stgc = ftgc, (4.8)
where b = stc € B. In view of (4.1), (4.3), (4.4), (4.7) and (4.8), we have
r(fgc) =Fi(tfgc,gfgc) = Fi(ftgc,gfgc)
< max {Fz(stgc,tfgC),Fz(Stgc,ftgr:),Fl(tfgc,gfgc),

[Fa(stge,tfge)l’
Fi(ftgc,gfgc)’

min {F> (stgc,gfgc),Fi(ftgc,tfgc)}

[Fx(stgc, ftge)l’ [Fi(tfgc,gfgc)l?
Fi(ftgc,gfgc) ° Fi(ftgc,gfgc) ’
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Fo(stgc,tfgc)F(ftgce,tfgc) Fa(stgc, ftgc)F(ftge,tfgc)

Fi(ftge,gfgc) ’ Fi(ftgc,gfgc)
Fi(tfgc,gfgc)Fi(ftgce,tfgce) Fa(stgc,gfgc)Fi(ftgc,tfgc)
Fi(ftgc,gfgc) ’ Fi(ftgc,gfgc) '
[Fz(stgc,ftgc)]2 F>(stgc, ftge)Fi(tfgc,gfgc)
F>(stgc,tfgc) ’ Fa(stgc,tfgc) ’
Fa(stgce, ftge)Fi(ftge,gfgc) Fa(stgc, ftgc)Fi(ftgc,tfgc)
F>(stgc,tfgc) ’ F>(stgc,tfgc) ’
Fi(tfgc,gfgc)Fi(ftgc,tfgc) Fa(stgc,gfgc)Fi(ftgc,tfgc)
F(stgc,tfgc) ’ Fa(stge,tfgc)

[F2(gste, fgte)]’
r(fgc) ’

,¥(fgc),0,0,0,0,F>(gstc, fgtc),

= max {Fz(gstc,fgtc),& (gstc, fgtc),r(fgc),0,

[F2(gstc, fgte)]?
r(fgc)

r(fg0),r(£gc),0,0,0}

[F» (gstc,fgtcnz}
r(fgc)

= max {Fz(gstc,fgtc),
= Fa(gstc, fgtc)

< max {Fl (tstc,sgtc),Fi(tstc,gstc),F.(sgtc, fgtc)

min {F (gstc,sgtc),Fa(tstc, fgtc)}, Fy(gstc, fgtc)
[Fi(tstc,gstc))? [Fa(sgtc, fgte)]?

F>(gstc,fgtc) * Fa(gste,fgtc) ’
Fy(tstc,sgtc)Fi(gstc,sgtc) Fi(tstc,gstc)Fi(gstc,sgtc)

Fx(gstc, fgtc) ’ Fa(gstc, fgtc) ’
Fx(sgtc, fgtc)F,(gstc,sgtc) F(tstc,fgtc)F,(gstc,sgtc)
Fx(gstc, fgtc) ’ Fx(gstc, fgtc) ’

[Fl(tstc,gstc)]2 Fy(tstc,gstc)Fa(sgtc, fgtc)
Fi(tstc,sgtc) ’ Fyi(tstc,sgtc)

Fi(tstc,gstc)Fx(gstc, fgtc) Fi(tstc,gstc)Fi(gstc,sgtc)
Fy(tstc,sgtc) ’ Fi(tstc,sgtc)

F(sgtc, fgtc)Fi(gstc,sgtc) Fi(gstc,sgtc)F»(tstc, fgtc)
Fy(tstc,sgtc) ’ Fi(tstc,sgtc)

[r(b)]? [r(0)]°
"Fa(gste, fgte)’ Fa(gstce, fgtc)’
F>(gstc, fgtc),0,0,0,0,7(b),

= max {r(b),r(b),Fg(gstc,fgtc),O

Fz(gstc,fgtc),Fz(gstc,fgtc),0,0,0}

:‘r(b), 4.9)
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which implies that
r(b) <7 (fgc) <r(b), (4.10)

which is a contradiction. Hence f and s or g and t must have a coincidence point. The
argument is similar for F, € J,. This completes the proof. O

THEOREM 4.2. Let f,g,s, andt be continuous and nearly densifying mappings from
a complete metric space (X,d) into itself satisfying f,g € Cs(\Ct. Let G =
{f,g,s,t} and H = {s,t}. Assume that there exist F1,F» € 3 and x, € X such that
(4.2), (4.3), (4.4), and the following statement hold:

G*xq is bounded and H* is left reversible. (4.11)

Then f and s or g and t have a coincidence point in X.

PROOF. Put A = G*x( and B = (),cy+ hA. As in the proof of Theorem 4.1, we infer
that B is nonempty compact subset of A and sB = tB = B 2 fB|JgB. The remaining
part of the proof is as in Theorem 4.1. This completes the proof. O

REMARK 4.3. Theorem 3.1 of [12] and Theorem 3.1 of [13] are special cases of
Theorem 4.2.

REMARK 4.4. The following example reveals that f,g,s, and t in Theorems 4.1
and 4.2 do not necessarily have a coincidence point and that if either f and s or g
and t have a coincidence point, then the coincidence point may not be unique.

EXAMPLE 4.5. Let X = {1,3,6} with the usual metric d and F, = F» = d. Define
f,g,5,t: X—-Xby fl=g3=g6=1, f3=f6=gl=3ands =t =iy—the identity
mapping on X. Take G = {f,g,s,t} and H = {s,t}. Clearly, g> = f = f2, g = fg =
gf =g° G=G* H=H* and G* and H* are left reversible. It is easy to verify that

a(fx,gy)=2<3=d(sx,ty) (4.12)
for all x,y € X with sx = ty, fx = gy, and
d(gx,fy)=2<3=d(tx,sy) (4.13)

for all x,y € X with tx # sy,gx + f. Thus the conditions of Theorems 4.1 and 4.2
are satisfied. However, f and s have two coincidence points 1 and 3, while f,g,s,and t
have none.

THEOREM 4.6. Let f,g,s, andt be continuous and nearly densifying mappings from
a complete metric space (X,d) into itself satisfying f,g,s € C; and g € C. Assume that
there exist F1,F> € 8 and x € X satisfying (4.2), (4.3), and (4.4). If b is a common coin-
cidence point of f,g,s, and t, then tb is a unique common fixed point of f,g,s, and t.
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PROOF. Since f,g,s € C;, g € Cs, and fb = gb = sb = tb, we have t’b = tfb =
ftb = tgbh = gtb = tsb = stb. Suppose that t2b =+ tb. From (4.3) and (4.4) we con-
clude that

F (tzl’], tb) =F (ftb,gb)

< max {Fg (stb,tb),F>(sth, ftb),F,(tb,gb),

2
min {F;(stb,gb),F1(ftb,tb)}, [F2(stb, th)]”

Fi(ftb,gb) ’
[F>(sth, ftb)1* [Fi(tb,gb)1* Fo(stb,tb)F,(ftb,tb)
Fi(ftb,gb) ’ F\(ftb,gb)’ Fi(ftb,gb) ’
Fo(stb, ftb)F,(fth,tb) F,(tb,gb)F,(ftb,tb)
Fi(ftb,gb) ’ Fi(ftb,gb) ’
F>(sth,gb)Fy (ftb,tb) [F»(stb, ftb)]*> F»(stb,ftb)F,(tb,gb)
Fi(ftb,gb) '’ Fy(stb,th) ’ F>(stb,th) ’
F>(stb, ftb)F, (ftb,gb) F.(stb,ftb)F.(ftb,gb)
F>(stb,th) ’ F>(stb,tb) ’
Fi(tb,gb)F, (ftb,tb) Fz(stb,glo)Fl(ftb,tb)}
F»(stb,th) ’ F>(stb,th)
2 2
=max{Fz(tzb,tb),%,Fl(tzb,tb)}

= F>(t*b,tb) = F2(gtb, fb)

< max {Fl(tzb,sb),Fl (t?b,gtb),F2(sb, fb),
[F, (t2b,sb)]*
F2(gtb, fb) ’
[Fi(t2b,gth)]* [F(sb,fb)]* F\(t2b,sb)F,(gtb,sb)
Fa(gtb,fb) ’ F(gtb,fb)’ F»(gtb, fb) ’
F1(t?b,gtb)Fi(gtb,sb) F.(sb,fb)F(gtb,sb)
F»(gtb, fb) ’ Fa2(gtb, fb) ’
F> (2D, fb)F, (gtb,sb) [Fi(t2b,gth)]’
F»(gth, fb) * Fi(t?b,sb) ~’
F1 (t2b,gtb)F>(sb, fb) Fi(t?b,gtb)F»(gtb, fb)
Fl(th,Sb) ’ Fl(tzb,Sh) ’
F1(t°b,gtb)F,(gtb,sb) F(sb,fb)F,(gtb,sb)
Fl(tzb,Sb) ’ Fl(th,Sb) ’
F1(gtb,sb)F.(t%b, fb) }
Fl(tzb,Sb)
[F\ (2, th)]*
F,(t2D,th)
=Fi(t?b,tb), (4.14)

min {F, (gtb,sb),F,(t*b, fb)},

= max {Fy (t°b,tb), (%D, tb)

which is a contradiction. Therefore th = t*b = ftb = gtb = stb. That is, tb is a
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common fixed point of f,g,s, and t. The uniqueness of a common fixed point fol-
lows from (4.3) and (4.4). This completes the proof. O

REMARK 4.7. Theorem 4.6 extends Theorem 3.2 of [12] and Theorem 3.2 of [13].

THEOREM 4.8. Let f,g,s, andt be continuous and nearly densifying mappings from
a complete metric space (X,d) into itself and G = {f,g,s,t}. Suppose that there exist
F € 3, and xy € X such that (4.5) and the following hold:

F(fx,gy) >inf{F(fz,sz),F(gz,tz):z € G*x| JG* ¥},

i (4.15)
Vx,y € X with fx + gy.
Then f and s or g and t have a coincidence point in X.

PROOF. Define A = G*xo and B = (\,e¢+ hA. As in the proof of Theorem 4.1, we
infer that B is compact, hB = B + @ for all h € G*, and there are a,b € B such that

F(fa,sa) =inf{F(fx,sx):x € B}, F(gb,tb) =inf {F(gx,tx):x € B}. (4.16)
Without loss of generality, we assume that
F(fa,sa) <F(gb,tb). 4.17)

Since f,g,s, and t € G*, it follows that fB = gB = sB = tB = B. Thus there exist
v,w € Bwith a = gv and sa = gw. We claim that fa = sa. If not, then fgv + gw. By
virtue of (4.15), (4.16), and (4.17), we have

F(fa,sa)=F(fgv,gw)
> inf {F(fz,sz),F(gz,tz) ize G*ngG*y}

(4.18)
>inf{F(fz,sz),F(gz,tz):z € B}
=F(fa,sa),
which is a contradiction. Hence fa = sa. This completes the proof. O

THEOREM 4.9. Let f and g be continuous and nearly densifying mappings from a
complete metric space (X,d) into itself and G = {f,g}. Suppose that there exist F € 3,
and x( € X satisfying (4.5) and
F(fx,gy) > inf{F(fz,z),F(gz,z),F(hx,hy) :zeG*x|JG*y, he CfﬂCgﬂG*},

Vx,y € X with fx +gy.
(4.19)

Then f or g has a fixed point in X.

PROOF. It may be completed following the proof of Theorem 4.8. O
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