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1. Introduction. Furi and Vignoli [4] established first the existence of fixed point for
densifying mappings. Afterwards Chatterjee [1], Diviccaro, Khan and Sessa [2], Fisher
and Khan [3], Iseki [6, 7], Jain and Jain [8], Janos, Ko, and Tan [9], Khan [10], Khan and
Fisher [11], Khan and Liu [12], Khan and Rao [13], Khan [14], Liu [17, 18, 19, 20, 21, 16],
Pande [24, 25], Rao [22], Ray and Fisher [26], Sastry and Naidu [27], Sharma [28],
Sharma and Srivastava [29] and others obtained fixed and coincidence point theo-
rems for densifying and nearly densifying mappings, respectively. Huang, Huang, and
Jeng [5] proved a common fixed point theorem for a left reversible semigroup, which
consists of a number of continuous self-mappings in compact metric spaces.
The purpose of this paper is to establish coincidence and common fixed point theo-

rems for certain new classes of nearly densifyingmappings in complete metric spaces.
In Section 2, we introduce notation, terminology and prove a lemma, which plays an
important role in the paper. In Section 3, we obtain some common fixed point the-
orems for families of mappings. In Section 4, we give general coincidence point the-
orems for two pairs of mappings. Our results extend, improve, and unify the corre-
sponding results of Chatterjee [1], Diviccaro, Khan, and Sessa [2], Huang, Huang, and
Jeng [5], Janos, Ko, and Tan [9], Khan [10], Khan and Liu [12], Khan and Rao [13]. Liu
[17, 18, 19], Rao [22], Sharma and Srivastava [29] and others.

2. Preliminaries. Recall that a semigroup G is said to be left reversible if for any
s,t ∈ G there exist u,v ∈ G such that su = tv . It is easy to see that the notion of
left reversibility is equivalent to the statement that any two right ideals of G have
nonempty intersection. A semigroup G is called near-commutative if for any s,t ∈
G there exists u ∈ G such that st = tu. Clearly, every commutative semigroup is
near-commutative, and every near-commutative semigroup is left reversible, but the
converses are not true.
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Throughout this paper, (X,d) denotes a metric space, N, R+, and R denote the sets
of positive integers, nonnegative real numbers, and real numbers, respectively, and
ω=N⋃{0}. Define

�= {F | F :X×X �→R+ and F(x,y)= 0 if and only if x =y},
�1 = {F | F ∈� and F is upper semicontinuous in X×X},
�2 = {F | F ∈� and F is lower semicontinuous in X×X}.

(2.1)

Let G be a family of self-mappings in X. A subset Y of X is called G-invariant if gY ⊆ Y
for all g ∈G. Let

NCIG = {Y | Y is nonempty compact G-invariant subset of X},
CISG =

{
g | g :X �→X and gY ⊆ Y , ∀Y ∈NCIG

}
,

(2.2)

and G∗ be the semigroup generated by G under composition. Clearly, CISG ⊇ G∗ ⊇
{gn :n∈ω} for any g ∈G. For A,B ⊆X, x,y ∈X, f ∈G, and F ∈�, define

δF(A,B)= sup
{
F(a,b) : a∈A,b ∈ B}, δF(A)= δF(A,A),

δF(x,A)= δF
({x},A), δF(x,y)= δF

({x},{y}),
Of (x)=

{
fnx :n∈ω}, Of (x,y)=Of (x)

⋃
Of (y), (2.3)

Cf =
{
h | h :X �→X,fh= hf}, G∗x = {x}

⋃{
gx : g ∈G∗},

CISf = CIS{f}, NCI f =NCI {f} .

Ā denotes the closure of A. f is said to have diminishing orbital diameter if
limn→∞δd(Of (fnx)) < δd(Of (x)) for all x ∈ X with δd(Of (x)) > 0. f is called con-
tractive with respect to d if d(fx,fy) < d(x,y) for all distinct x,y ∈X.

Definition 2.1. Let G be a semigroup of self-mappings on a metric space (X,d)
and F ∈ �. G is said to have F -diminishing orbital diameter, if for any x ∈ X with
δF(Gx) > 0 there is s ∈G such that δF(Gsx) < δF(Gx).

Definition 2.2 (see [15]). LetA be a bounded subset of ametric space (X,d). Then
α(A), the measure of noncompactness of A, is the infimum of all ε > 0 such that A
admits a finite covering consisting of subsets with diameters less than ε.

The following properties of α are well known.

Lemma 2.3. Let (X,d) be a metric space and A,B be bounded subsets of X. Then

α
(
A
⋃
B
)
=max{α(A),α(B)}; (2.4)

α(A)= 0⇐⇒A is pre-compact, i.e., A is totally bounded; (2.5)

α(A)=α(Ā). (2.6)

Definition 2.4 (see [4]). A continuous self-mapping f in a metric space (X,d)
is said to be densifying if α(f(A)) < α(A) for every bounded subset A of X with
α(A) > 0.
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Definition 2.5 (see [27]). A self-mapping f in a metric space (X,d) is said to be
nearly densifying if α(f(A)) < α(A) for every bounded and f -invariant subset A of
X with α(A) > 0.

Obviously, each densifying mapping is nearly densifying, but the converse is false.

Definition 2.6 (see [23]). Let X be a topological space, f a self-mapping in X, and
M a nonempty subset of X. M is an attractor for compact sets under f if

(i) M is compact and fM ⊆M ,
(ii) given any compact set C ⊆X and any open neighborhood U of M , there exists
k∈N such that fnC ⊆U for all n≥ k.

Let G be a left reversible semigroup. We define a relation ≥ on G by a ≥ b if and
only if a∈ bG⋃{b}. It is easy to check that (G,≥) is a directed set.

Lemma 2.7. Let G be a left reversible semigroup of continuous self-mappings in a
compact metric space (X,d), A=⋂f∈G fx, and F ∈�1. Then

lim
f∈G
δF(fx)= δF(A);

A∈NCIG and fA=A, ∀f ∈G.
(2.7)

Proof. Note that fX ⊆ gX for all f ,g ∈ G with f ≥ g. Thus {δF(fX)}f∈G is a
bounded decreasing net in R. Obviously, limf∈G δf (fX) exists in R and

δF(A)≤ lim
f∈G
δF(fx). (2.8)

We now prove that fX is a compact subset of X for each f ∈ G. Let x be in X and{
xn
}
n∈N ⊆X with limn→∞fxn = x. The compactness of X ensures that there exists a

subsequence {xnk}k∈N of {xn}n∈N such that it converges to some point t ∈ X. Since
f is continuous, so x = ft ∈ fX. Therefore fX is closed. That is, fX is compact. This
means that A is compact.
We next prove that

δF(A)≥ lim
f∈G
δF(fX). (2.9)

Let f ∈ G. Since F is upper semicontinuous and fX × fX is compact, there exist
xf ,yf ∈ fX with F(xf ,yf ) = δF(fX). From the compactness of X we can choose
two subnets {xfk} and {yfk} of {xf } and {yf }, respectively, such that xfk → x and
yfk → y for some x,y ∈ X. For every g ∈ G and fk ≥ g, we get that xfk , yfk ∈ gX.
By virtue of closedness of gX, we infer that x,y ∈ gX. This means that x,y ∈ A.
Consequently,

lim
f∈G
δF(fX)= lim

f∈G
F
(
xf ,yf

)= lim
k
F
(
xfk ,yfk

)= F(x,y)≤ δF(A). (2.10)

Thus (i) follows from (2.8) and (2.9).
Let n∈N and f1,f2, . . . ,fn ∈G. It follows from the left reversibility of G that there

exist g1,g2, . . . ,gn ∈ G with f1g1 = f2g2 = ··· = fngn = h for some h ∈ G. Hence⋂n
i=1fiX ⊇ hX ≠∅. The compactness of X implies that A≠∅.
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We finally prove that fA = A for all f ∈ G. Let f ∈ G and x ∈ A. For any g ∈ G
there exist a,b ∈ G with fa = gb. Note that x ∈ A ⊆ aX. Thus there is y ∈ X with
x = ay . It follows that fx = fay = gby ∈ gX. This implies that fA ⊆⋂g∈GgX = A
for f ∈G. For the reverse inclusion, let f ,g ∈G and y ∈A. It follows from y ∈ fgX
that there exists xg ∈ gX with fxg =y . The compactness X ensures that there exists
a convergent subnet

{
xgk

}
of
{
xg
}
such that xgk → x for some x ∈ X. Therefore

y = fx. For any h,g ∈ G with g ≥ h, we obtain that hX is closed and xg belongs to
hX. Thus the limit point x of

{
xg
}
lies in hX. That is, x ∈A. Note that y = fx ∈ fA.

Therefore, A⊆ fA for f ∈G. This completes the proof.
Remark 2.8. Lemma 2.7 generalizes Lemma 2.3 of Huang, Huang, and Jeng [5].

3. Common fixed point theorems for nearly densifying mappings

Theorem 3.1. Let G and H be finite families of continuous and nearly densifying
self-mappings in a complete metric space (X,d). If there exist g ∈ G∗, h ∈ H∗, F ∈
�1, x0,y0 ∈X such that

F(gx,hy) < δF


 ⋃
s∈CISG

sG∗x,
⋃

t∈CISH
tH∗y


 , ∀x,y ∈X with gx ≠ hy ; (3.1)

G∗x0,H∗y0 are bounded and G∗,H∗ are left reversible.Then the following statements
hold:

(i) G and H have a unique common fixed point w ∈X, and w is also the only fixed
point of G and H, respectively;

(ii) lims∈G∗ F
(
sx0,w

)=limt∈H∗F(ty0,w)=lims∈G∗δF(sG∗x0 )=limt∈H∗δF(tH∗y0 )
= 0;

(iii) for any C ∈NCIG∗ and any D ∈NCIH∗ ,
⋂
s∈G∗ sC =

⋂
t∈H∗ tD = {w}.

Proof. LetA=⋂s∈G∗ sG∗x0 and B =⋂t∈H∗ tH∗y0. SinceG∗x0 = {x0}⋃s∈G sG∗x0
and G is finite, so

α
(
G∗x0

)=max{α(x0),α(sG∗x0) : s ∈G}=max{α(sG∗x0) : s ∈G}. (3.2)

Note that each s ∈ G is nearly densifying. Thus, α
(
G∗x0

) = 0. It follows from
Lemma 2.3 that G∗x0 is pre-compact. Completeness of (X,d) ensures that G∗x0 is
compact. Since every s ∈G∗ is continuous, sG∗x0 ⊆ sG∗x0 ⊆G∗x0. By Lemma 2.7 we
immediately conclude thatA∈NCIG∗ and fA=A for all f ∈G∗. Similarly, B ∈NCIH∗

and fB = B for all f ∈H∗.
We assert that δF(A,B)= 0. Otherwise δF(A,B) > 0. Since F is upper semicontinuous

and A×B is compact, we can easily choose a ∈ A and b ∈ B with F(a,b) = δF(A,B).
Therefore, there exist x ∈ A and y ∈ B such that a = gx and b = hy . Using (3.1),
we have

F(a,b)= F(gx,hy) < δF

 ⋃
s∈CISG

sG∗x,
⋃

t∈CISH
tH∗y




≤ δF(A,B)= F(a,b),
(3.3)
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which is a contradiction. Consequently,A= B = a singleton, say, {w} for somew ∈X.
Thus w = fw for all f ∈ G⋃H. That is, G and H have a common fixed point w ∈ X.
If G has another fixed point v ∈X and v ≠w, by (3.1) we infer that

F(v,w)= F(gv,hw) < δF

 ⋃
s∈CISG

sG∗v,
⋃

t∈CISH
tH∗w


= F(v,w), (3.4)

which is absurd. Hence G has a unique fixed point w. Similarly, we conclude that H
has also a unique fixed point w.
It follows from Lemma 2.7 that

lim
s∈G∗

δF
(
sG∗x0

)= δF(A)= δF({w})= 0= δF(B)= lim
t∈H∗

δF
(
tH∗y0

)
. (3.5)

Note that sx0 ∈ sG∗x0, ty0 ∈ tH∗y0 and w ∈ sG∗x0
⋂
tH∗y0 for all s ∈G∗, t ∈H∗.

Thus Theorem 3.1(ii) follows immediately from (3.5).
Let C ∈ NCIG∗ and Y =

⋂
s∈G∗ sC . Lemma 2.7 ensures that Y ∈ NCIG∗ and fY = Y

for all f ∈ G∗. Suppose that δF(Y ,w) > 0. Then there exists x ∈ Y such that
F(gx,w) = δF(Y ,w). In view of (3.1) and Theorem 3.1(i). We obtain that F(gx,w) <
δF(

⋃
s∈CISG sG

∗x,w) ≤ δF(Y ,w), which is impossible. Hence δF(y,w) = 0. That is,
Y = ⋂

s∈G∗ sC = {w}. Similarly, we obtain that
⋂
t∈H∗ tD = {w} if D ∈ NCIH∗ . This

completes the proof.

Theorem 3.2. Let G and H be finite families of continuous and nearly densifying
self-mappings in a complete bounded metric space (X,d) satisfying (3.1). Assume that
G∗, H∗ are near commutative. Then Theorem 3.1(i), (iii), and the following statements
hold:

(i)

lim
s∈G∗

F(sx,w)= lim
t∈H∗

F(ty,w)= lim
s∈G∗

δF
(
sG∗x

)
= lim
t∈H∗

δF
(
tH∗y

)= 0, ∀x,y ∈X; (3.6)

(ii) G∗ and H∗ have F -diminishing orbital diameter.

Proof. Let x,y be in X. Put A=⋂s∈G∗ sG∗x and B =⋂t∈H∗ tH∗y . As in the proof
of Theorem 3.1, we conclude that A ∈ NCIG∗ , fA = A for all f ∈ G∗ and B ∈ NCIH∗ ,
gB = B for all g ∈H∗. It follows from Theorem 3.1(ii) that

A=
⋂
s∈G∗

sA= {w} = B =
⋂
t∈H∗

tB. (3.7)

Thus (3.6) follows from Lemma 2.7 and the definitions of G∗x and H∗y .
Given s,t∈G∗. SinceG∗ is commutative, there isg∈G∗ with ts=sg. Thismeans that

δF
(
G∗sx

)= δF({sx}⋃{
tsx : t ∈G∗})≤ δF(sG∗x)≤ δF(sG∗x). (3.8)

Suppose that δF
(
G∗sx

)
> 0. In view of (3.6) and (3.8) there exists s ∈ G∗ such that

δF
(
G∗sx

)
< δF

(
G∗x

)
. That is, G∗ has F -diminishing orbital diameter. Analogously,

H∗ has F -diminishing orbital diameter also. This completes the proof.
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We now state without proof analogues of Theorems 3.1 and 3.2.

Theorem 3.3. Let G be a finite family of continuous and nearly densifying self-
mappings in a complete metric space (X,d). If there exist g,h ∈ G∗, F ∈ �1, x0 ∈ X
such that

F(gx,hy) < δF


 ⋃
s∈CISG

(
sG∗x

⋃
sG∗y

) , ∀x,y ∈X with gx ≠ hy ; (3.9)

G∗x0 is bounded and G∗ is left reversible.Then the following statements hold:
(i) G has a unique common fixed point w ∈X, and

lim
s∈G∗

F
(
sx0,w

)= lim
s∈G∗

δF
(
sG∗x0

)= 0; (3.10)

(ii) for any C ∈NCIG∗ ,
⋂
s∈G∗ sC = {w}.

Theorem 3.4. Let f and g be continuous self-mappings in a complete metric space
(X,d). Assume that there exist i,j,p,q ∈N, F ∈�1, x0,y0 ∈X such that

(i) F(fpx,gqy)<δF
(⋃

s∈CISf sOf (x),
⋃
t∈CISg tOg(y)

)
, ∀x,y∈X with fpx≠gqy ;

(ii) f i and gj are nearly densifying;
(iii) Of (x0) and Og(y0) are bounded.

Then the following statements hold:
(1) f and g have a unique common fixed point w ∈ X, and w is also the only fixed

point of f and g, respectively;
(2) limn→∞F(fnx0,w)= limn→∞F(gny0,w)= limn→∞δF(fnOf (x0))=

limn→∞δF(gnOg(y0))= 0;
(3) for any C ∈NCI f and any D ∈NCI g ,

⋂
n∈N
fnC =

⋂
n∈N
gnD = {w}. (3.11)

Proof. SetA=⋂n∈NfnOf (x0) and B =⋂n∈NgnOg(y0). In view of Theorem 3.4(ii),
(iii) and

α
(
Of
(
x0
))=max{α{fkx0 : 0≤ k≤ i−1},α(f iOf (x0))}, (3.12)

we conclude easily that A ∈ NCI f and fA = A. Similarly, B ∈ NCI g and gB = B. The
rest of the proof is the same as that of Theorem 3.1. This completes the proof.

Remark 3.5. Theorem 3.4 extends Theorems 3 and 4 of Liu [19], the theorem of
Sharma and Srivastava [29]. Akin to Theorem 3.4, we have the following.

Theorem 3.6. Let f be continuous self-mapping in a complete metric space (X,d).
Assume that there exist i,p,q ∈N, F ∈�1, x0 ∈X such that

(i) F(fpx,f qy) < δF
(⋃

s∈CISf sOf (x,y)
)
, ∀x,y ∈X with fpx ≠ fqy ;

(ii) f i is nearly densifying;
(iii) Of (x0) is bounded.
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Then the following statements hold:
(1) f has a unique fixed pointw∈X, and limn→∞F(fnx0,w)=limn→∞δF

(
fnOf (x0)

)
= 0;

(2) for any C ∈NCI f ,
⋂
n∈NfnC = {w}.

Remark 3.7. Theorem 4 of Khan [10] and Theorem 4 of Rao [22] are special cases
of Theorem 3.6.

Theorem 3.8. Let f and g be continuous self-mappings in a complete bounded
metric space (X,d). Assume that there exist i,j,p,q ∈N satisfying Theorem 3.4(ii) and

d
(
fpx,gqy

)
< δd


 ⋃
s∈CISf

sOf (x),
⋃

t∈CISg
tOg(y)


 ,

∀x,y ∈X with fpx ≠ gqy.

(3.13)

Then Theorem 3.4(1) and (3.11) and the following statements hold:
(i) limn→∞d(fnx,w)= limn→∞d(gny,w)= limn→∞δd(fnOf (x))=
limn→∞δd(gnOg(y))= 0, ∀x,y ∈X;

(ii) there exist bounded complete metrics d1,d2 on X which are equivalent to d such
that f ,g are contractive with respect to d1 and d2, respectively;

(iii) CISf and CISg have a unique common fixed pointw ∈X, andw is also the only
fixed point of CISf and CISg , respectively;

(iv) f and g have diminishing orbital diameter.

Proof. It follows fromTheorem 3.4 that Theorem 3.4(1), (3.11), and Theorem 3.8(i)
hold. By the definitions of CISf and CISg , we conclude easily that Theorem 3.8(iii)
holds. Since fnOf (x) = Of (fnx) and gnOg(y) = Og(gny), so Theorem 3.6(iv) is
satisfied. Now we prove that Theorem 3.8(ii) holds. Assume that B be any nonempty
compact subset of X. Using Lemma 2.3, we have

α
( ⋃
n∈ω
fnB

)
=max


α


 i−1⋃
n=0
fnB


 ,α


 ∞⋃
n=i
f nB






=α

 ∞⋃
n=i
f nB


=α

(
f i
⋃
n∈ω
fnB

)
.

(3.14)

Thus
⋃
n∈ωfnB is totally bounded because f i is nearly densifying. Set C =

⋃
n∈ωfnB.

Since f is continuous and X is complete, we infer that C is compact and fC ⊆
f
⋃
n∈ωfnB ⊆ C . Hence (3.11) ensures that

⋂
n∈ωfnC = {w}. This means that

δd(fnC) ↓ 0 as n→∞. For each open neighborhood U of w, there exists an open ball
B(w,ε) = {x : x ∈ X and d(x,w) < ε} with B(w,ε) ⊆ U . Note that δd(fnC) ↓ 0
as n→∞. Thus there exists k∈N such that δd(fnC) < ε for all n≥ k. Given x ∈ fnC
and n ≥ k, we obtain that d(x,w) ≤ δd(fnC) < ε. Consequently, fnB ⊆ fnC ⊆
B(w,ε)⊆U for alln≥ k. This shows that {w} is an attractor for compact sets under f .
Thus Theorem 3.8(ii) follows from theorem of [9] and Remark 1 of [9]. This completes
the proof.

Similarly, we have the following theorem.
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Theorem 3.9. Let f be a continuous self-mapping in a complete bounded metric
space (X,d). Assume that there exist i,p,q ∈N satisfying Theorem 3.6(ii) and

d
(
fpx,f qy

)
< δd


 ⋃
s∈CISf

sOf (x,y)


 , ∀x,y ∈X with fpx ≠ fqy. (3.15)

Then Theorem 3.6(2) and the following statements hold:
(i) f has a unique fixed point w ∈ X, and has diminishing orbital diameter and

lim
n→∞d(f

nx,w)= lim
n→∞δd(f

nOf (x))= 0, ∀x ∈X;
(ii) there exists a bounded complete metric d1 on X which is equivalent to d such

that f is contractive with respect to d1;
(iii) CISf has a unique common fixed point w ∈X.

Remark 3.10. Theorem 3.8 generalizes Theorem 4 of [2] and Theorem 4 of [22].
Theorem 3.9 extends and improves Theorem 3 of [1], Corollary 2 of [9], Theorem 3.1
of [17], and Theorems 1 and 2 of [18]

4. Coincidence point theorems for two pairs of nearly densifying mappings

Theorem 4.1. Let f , g, s, and t be a continuous and nearly densifying mappings
from a complete metric space (X,d) into itself satisfying

fgt = ftg = tfg and gst = sgt = stg. (4.1)

Let G = {f ,g,s,t}. Assume that there exist F1,F2 ∈� and x0 ∈X such that

F1 or F2 ∈�2; (4.2)

F1(fx,gy) <max
{
F2(sx,ty),F2(sx,fx),F1(ty,gy),

min
{
F2(sx,gy),F1(fx,ty)

}
,
[
F2(sx,ty)

]2
F1(fx,gy)

,[
F2(sx,fx)

]2
F1(fx,gy)

,
[
F1(ty,gy)

]2
F1(fx,gy)

,

F2(sx,ty)F1(fx,ty)
F1(fx,gy)

,
F2(sx,fx)F1(fx,ty)

F1(fx,gy)
,

F1(ty,gy
)
F1(fx,ty)

F1(fx,gy)
,
F2(sx,gy)F1(fx,ty)

F1(fx,gy)
,

[
F2(sx,fx)

]2
F2(sx,ty)

,
F2(sx,fx)F1(ty,gy)

F2(sx,ty)
,

F2(sx,fx)F1(fx,gy)
F2(sx,ty)

,
F2(sx,fx)F1(fx,ty)

F2(sx,ty)
,

F1(ty,gy)F1(fx,ty)
F2(sx,ty)

,
F2(sx,gy)F1(sx,ty)

F2(sx,ty)

}

(4.3)
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for all x,y ∈X with sx ≠ ty, fx ≠ gy ;

F2(gx,fy) <max
{
F1(tx,sy),F1(tx,gx),F2(sy,fy),

min
{
F1(gx,sy),F2(tx,fy)

}
,
[
F1(tx,sy)

]2
F2(gx,fy)

,

[
F1(tx,gx)

]2
F2(gx,fy)

,
[
F2(sy,fy)

]2
F2(gx,fy)

,
F1(tx,sy)F1(gx,sy)

F2(gx,fy)
,

F1(tx,gx)F1(gx,sy)
F2(gx,fy)

,
F2(sy,fy)F1(gx,sy)

F2(gx,fy)
,

F2(tx,fy)F1(gx,sy)
F2(gx,fy)

,
[
F1(tx,gx)

]2
F1(tx,sy)

,
F1(tx,gx)F2(sy,fy)

F1(tx,sy)
,

F1(tx,gx)F2(gx,fy)
F1(tx,sy)

,
F1(tx,gx)F1(gx,sy)

F2(tx,sy)
,

F2(sy,fy)F1(gx,sy)
F1(tx,sy)

,
F1(gx,sy)F2(tx,fy)

F1(tx,sy)

}

(4.4)

for all x,y ∈X with gx ≠ fy, tx ≠ sy ;

G∗x0 is bounded and G∗ is left reversible. (4.5)

Then f and s or g and t have a coincidence point in X.

Proof. Put A = G∗x0. It follows that A = {x0}
⋃
fA

⋃
gA

⋃
sA
⋃
tA. This yields

that

α(A)=max{α(fA),α(gA),α(sA),α(tA)}. (4.6)

It is evident to see that α(A) = 0. Thus Ā is compact by completeness of X. Set
B
⋂
h∈G∗ hĀ. Lemma 2.7 ensures that fB = gB = sB = tB = B ≠∅ and B is compact.

Let F1 be in �2. Define r : B → R+ by putting r(x) = F1(tx,gx). Since r is a lower
semi-continuous function on the compact set B, so there exists b ∈ B with

r(b)= F1(tb,gb)= inf
x∈B
F1(tx,gx). (4.7)

Suppose that neither f and s nor g and t have a coincidence point. Then

tfgc ≠ gfgc, tstc ≠ gstc, stgc ≠ ftgc, (4.8)

where b = stc ∈ B. In view of (4.1), (4.3), (4.4), (4.7) and (4.8), we have
r(fgc)= F1(tfgc,gfgc)= F1(f tgc,gfgc)

<max
{
F2(stgc,tfgc),F2(stgc,f tgc),F1(tfgc,gfgc),

min
{
F2(stgc,gfgc),F1(f tgc,tfgc)

} [F2(stgc,tfgc)]2
F1(f tgc,gfgc)

,

[F2(stgc,f tgc)]
2

F1(f tgc,gfgc)
,
[F1(tfgc,gfgc)]

2

F1(f tgc,gfgc)
,
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F2(stgc,tfgc)F1(f tgc,tfgc)
F1(f tgc,gfgc)

,
F2(stgc,f tgc)F1(f tgc,tfgc)

F1(f tgc,gfgc)
,

F1(tfgc,gfgc)F1(f tgc,tfgc)
F1(f tgc,gfgc)

,
F2(stgc,gfgc)F1(f tgc,tfgc)

F1(f tgc,gfgc)
,

[F2(stgc,f tgc)]
2

F2(stgc,tfgc)
,
F2(stgc,f tgc)F1(tfgc,gfgc)

F2(stgc,tfgc)
,

F2(stgc,f tgc)F1(f tgc,gfgc)
F2(stgc,tfgc)

,
F2(stgc,f tgc)F1(f tgc,tfgc)

F2(stgc,tfgc)
,

F1(tfgc,gfgc)F1(f tgc,tfgc)
F2(stgc,tfgc)

,
F2(stgc,gfgc)F1(f tgc,tfgc)

F2(stgc,tfgc)

}

=max
{
F2(gstc,fgtc),F2(gstc,fgtc),r(fgc),0,

[F2(gstc,fgtc)]
2

r(fgc)
,

[F2(gstc,fgtc)]
2

r(fgc)
,r(fgc),0,0,0,0,F2(gstc,fgtc),

r(fgc),r(fgc),0,0,0
}

=max
{
F2(gstc,fgtc),

[F2(gstc,fgtc)]
2

r(fgc)

}

= F2(gstc,fgtc)

<max
{
F1(tstc,sgtc),F1(tstc,gstc),F2(sgtc,fgtc)

min
{
F1(gstc,sgtc),F2(tstc,fgtc)

}
,
[F1(tstc,sgtc)]2

F2(gstc,fgtc)
,

[F1(tstc,gstc)]2

F2(gstc,fgtc)
,
[F2(sgtc,fgtc)]

2

F2(gstc,fgtc)
,

F1(tstc,sgtc)F1(gstc,sgtc)
F2(gstc,fgtc)

,
F1(tstc,gstc)F1(gstc,sgtc)

F2(gstc,fgtc)
,

F2(sgtc,fgtc)F1(gstc,sgtc)
F2(gstc,fgtc)

,
F2(tstc,fgtc)F1(gstc,sgtc)

F2(gstc,fgtc)
,

[F1(tstc,gstc)]2

F1(tstc,sgtc)
,
F1(tstc,gstc)F2(sgtc,fgtc)

F1(tstc,sgtc)
,

F1(tstc,gstc)F2(gstc,fgtc)
F1(tstc,sgtc)

,
F1(tstc,gstc)F1(gstc,sgtc)

F1(tstc,sgtc)
,

F2(sgtc,fgtc)F1(gstc,sgtc)
F1(tstc,sgtc)

,
F1(gstc,sgtc)F2(tstc,fgtc)

F1(tstc,sgtc)

}

=max
{
r(b),r(b),F2(gstc,fgtc),0,

[r(b)]2

F2(gstc,fgtc)
,

[r(b)]2

F2(gstc,fgtc)
,

F2(gstc,fgtc),0,0,0,0,r (b),

F2(gstc,fgtc),F2(gstc,fgtc),0,0,0
}

= r(b), (4.9)
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which implies that

r(b)≤ r(fgc) < r(b), (4.10)

which is a contradiction. Hence f and s or g and t must have a coincidence point. The
argument is similar for F2 ∈�2. This completes the proof.

Theorem 4.2. Let f ,g,s, and t be continuous and nearly densifyingmappings from
a complete metric space (X,d) into itself satisfying f ,g ∈ Cs

⋂
Ct . Let G =

{f ,g,s,t} and H = {s,t}. Assume that there exist F1,F2 ∈ � and x0 ∈ X such that
(4.2), (4.3), (4.4), and the following statement hold:

G∗x0 is bounded and H∗ is left reversible. (4.11)

Then f and s or g and t have a coincidence point in X.

Proof. Put A=G∗x0 and B =
⋂
h∈H∗ hĀ. As in the proof of Theorem 4.1, we infer

that B is nonempty compact subset of Ā and sB = tB = B ⊇ fB⋃gB. The remaining
part of the proof is as in Theorem 4.1. This completes the proof.

Remark 4.3. Theorem 3.1 of [12] and Theorem 3.1 of [13] are special cases of
Theorem 4.2.

Remark 4.4. The following example reveals that f ,g,s, and t in Theorems 4.1
and 4.2 do not necessarily have a coincidence point and that if either f and s or g
and t have a coincidence point, then the coincidence point may not be unique.

Example 4.5. Let X = {1,3,6} with the usual metric d and F1 = F2 = d. Define
f ,g,s,t : X → X by f1 = g3 = g6 = 1, f3 = f6 = g1 = 3 and s = t = iX—the identity
mapping on X. Take G = {f ,g,s,t} and H = {s,t}. Clearly, g2 = f = f 2, g = fg =
gf = g3, G =G∗, H =H∗, and G∗ and H∗ are left reversible. It is easy to verify that

d(fx,gy)= 2< 3= d(sx,ty) (4.12)

for all x,y ∈X with sx ≠ ty,fx ≠ gy, and

d(gx,fy)= 2< 3= d(tx,sy) (4.13)

for all x,y ∈ X with tx ≠ sy,gx ≠ fy . Thus the conditions of Theorems 4.1 and 4.2
are satisfied. However, f and s have two coincidence points 1 and 3, while f ,g,s, and t
have none.

Theorem 4.6. Let f ,g,s, and t be continuous and nearly densifyingmappings from
a complete metric space (X,d) into itself satisfying f ,g,s ∈ Ct and g ∈ Cs . Assume that
there exist F1,F2 ∈� and x0 ∈X satisfying (4.2), (4.3), and (4.4). If b is a common coin-
cidence point of f ,g,s, and t, then tb is a unique common fixed point of f ,g,s, and t.
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Proof. Since f ,g,s ∈ Ct, g ∈ Cs , and fb = gb = sb = tb, we have t2b = tfb =
ftb = tgb = gtb = tsb = stb. Suppose that t2b ≠ tb. From (4.3) and (4.4) we con-
clude that

F1
(
t2b,tb

)= F1(f tb,gb)
<max

{
F2(stb,tb),F2(stb,f tb),F1(tb,gb),

min
{
F2(stb,gb),F1(f tb,tb)

}
,
[F2(stb,tb)]2

F1(f tb,gb)
,

[F2(stb,f tb)]
2

F1(f tb,gb)
,
[F1(tb,gb)]2

F1(f tb,gb)
,
F2(stb,tb)F1(f tb,tb)

F1(f tb,gb)
,

F2(stb,f tb)F1(f tb,tb)
F1(f tb,gb)

,
F1(tb,gb)F1(f tb,tb)

F1(f tb,gb)
,

F2(stb,gb)F1(f tb,tb)
F1(f tb,gb)

,
[F2(stb,f tb)]

2

F2(stb,tb)
,
F2(stb,f tb)F1(tb,gb)

F2(stb,tb)
,

F2(stb,f tb)F1(f tb,gb)
F2(stb,tb)

,
F2(stb,f tb)F1(f tb,gb)

F2(stb,tb)
,

F1(tb,gb)F1(f tb,tb)
F2(stb,tb)

,
F2(stb,gb)F1(f tb,tb)

F2(stb,tb)

}

=max
{
F2
(
t2b,tb

)
,
[
F2
(
t2b,tb

)]2
F1
(
t2b,tb

) ,F1(t2b,tb)}

= F2
(
t2b,tb

)= F2(gtb,fb)
<max

{
F1
(
t2b,sb

)
,F1

(
t2b,gtb

)
,F2(sb,fb),

min
{
F1
(
gtb,sb

)
,F2

(
t2b,fb

)}
,
[
F1
(
t2b,sb

)]2
F2(gtb,fb)

,

[
F1
(
t2b,gtb

)]2
F2(gtb,fb)

,
[
F2(sb,fb)

]2
F2(gtb,fb)

,
F1
(
t2b,sb

)
F1(gtb,sb)

F2(gtb,fb)
,

F1
(
t2b,gtb

)
F1(gtb,sb)

F2(gtb,fb)
,
F2(sb,fb)F1(gtb,sb)

F2(gtb,fb)
,

F2
(
t2b,fb

)
F1(gtb,sb)

F2(gtb,fb)
,
[
F1
(
t2b,gtb

)]2
F1
(
t2b,sb

) ,

F1
(
t2b,gtb

)
F2(sb,fb)

F1
(
t2b,sb

) ,
F1
(
t2b,gtb

)
F2(gtb,fb)

F1
(
t2b,sb

) ,

F1
(
t2b,gtb

)
F1(gtb,sb)

F1
(
t2b,sb

) ,
F2(sb,fb)F1(gtb,sb)

F1
(
t2b,sb

) ,

F1(gtb,sb)F2
(
t2b,fb

)
F1
(
t2b,sb

)
}

=max
{
F1
(
t2b,tb

)
,
[
F1
(
t2b,tb

)]2
F2
(
t2b,tb

) ,F2(t2b,tb)}

= F1
(
t2b,tb

)
, (4.14)

which is a contradiction. Therefore tb = t2b = ftb = gtb = stb. That is, tb is a
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common fixed point of f ,g,s, and t. The uniqueness of a common fixed point fol-
lows from (4.3) and (4.4). This completes the proof.

Remark 4.7. Theorem 4.6 extends Theorem 3.2 of [12] and Theorem 3.2 of [13].

Theorem 4.8. Let f ,g,s, and t be continuous and nearly densifyingmappings from
a complete metric space (X,d) into itself and G = {f ,g,s,t}. Suppose that there exist
F ∈�2 and x0 ∈X such that (4.5) and the following hold:

F(fx,gy) > inf
{
F(fz,sz),F(gz,tz) : z ∈G∗x

⋃
G∗y

}
,

∀x,y ∈X with fx ≠ gy.
(4.15)

Then f and s or g and t have a coincidence point in X.

Proof. Define A = G∗x0 and B =
⋂
h∈G∗ hĀ. As in the proof of Theorem 4.1, we

infer that B is compact, hB = B ≠∅ for all h∈G∗, and there are a,b ∈ B such that

F(fa,sa)= inf{F(fx,sx) : x ∈ B}, F(gb,tb)= inf{F(gx,tx) : x ∈ B}. (4.16)

Without loss of generality, we assume that

F(fa,sa)≤ F(gb,tb). (4.17)

Since f ,g,s, and t ∈ G∗, it follows that fB = gB = sB = tB = B. Thus there exist
v,w ∈ B with a= gv and sa= gw. We claim that fa= sa. If not, then fgv ≠ gw. By
virtue of (4.15), (4.16), and (4.17), we have

F(fa,sa)= F(fgv,gw)
> inf

{
F(fz,sz),F(gz,tz) : z ∈G∗gv

⋃
G∗y

}
≥ inf{F(fz,sz),F(gz,tz) : z ∈ B}
= F(fa,sa),

(4.18)

which is a contradiction. Hence fa= sa. This completes the proof.
Theorem 4.9. Let f and g be continuous and nearly densifying mappings from a

complete metric space (X,d) into itself and G = {f ,g}. Suppose that there exist F ∈�2
and x0 ∈X satisfying (4.5) and

F(fx,gy) > inf
{
F(fz,z),F(gz,z),F(hx,hy) : z ∈G∗x

⋃
G∗y, h∈ Cf

⋂
Cg
⋂
G∗
}
,

∀x,y ∈X with fx ≠ gy.
(4.19)

Then f or g has a fixed point in X.

Proof. It may be completed following the proof of Theorem 4.8.
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