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ABSTRACT. Let L2 = L2(D,rdr d0/m) be the Lebesgue space on the open unit disc and
let L2 = L2 n%ol(D) be the Bergman space. Let P be the orthogonal projection of L% onto
L2 and let Q be the orthogonal projection onto i(zz,o ={gel? gel2, g(0) =0}. Then
I—P > Q. The big Hankel operator and the small Hankel operator on L,Zl are defined as:
for ¢ in L*, Hz,lg(f) =({I-P)(¢f) and szmau(f) = Q(¢f)(f € L2). In this paper, the
finite-rank intermediate Hankel operators between HY8 and HS™ are studied. We are
working on the more general space, that is, the weighted Bergman space.

2000 Mathematics Subject Classification. Primary 47B35.

1. Introduction. Let D be the open unit disc in C and let du be the finite positive
Borel measure on D. Let L? = L?(u) = L*(D,du) and %ol(D) be the set of all holo-
morphic functions on D. The weighted Bergman space L2 = L2 (u) is the intersection
of L2 and %ol(D). In general, L‘Zl is not closed. In [6, Theorem 8], when (suppu) nD
is a uniqueness set for #ol(D), the first author and M. Yamada gave a necessary and
sufficient condition for that L2 is closed. Throughout this paper, we assume that L2
is closed. When du = v dr d0/, L2 is the usual Bergman space.

For u such that L2 (u) is closed, when it is the closed subspace of L2 (u) and z.it < M,
M is called an invariant subspace. Suppose that J 2 zL2. P denotes the orthogonal
projection from L2 onto Jt. For ¢ in L® = L®(u) = L* (D, dpu), the intermediate Hankel
operator Hy is defined by

HYf=([I-PY)($pf) (feld). (1.1)

When M = L, Hy is called a big Hankel operator Hz)ig and when At = (2L2)", H} is
called a small Hankel operator H fpma“. Note that H;% is called a little Hankel operator
when M = (L2)*.

For arbitrary symbol ¢ in L*®, in the case of dy = »dr d0/m, both Hg,ig and HE™!
were studied when they are compact operators or Schatten class operators (see [12]).
However it seems to have not been studied when they are finite-rank operators. When
¢ is in Lﬁ, it is known (see [12, page 155]) that if Hl;";g is a finite-rank operator, then
Hz)ig = 0 and if ¢ is a polynomial, then H fbma“ is a finite-rank operator. In this paper, for
arbitrary symbol ¢ in L* we show that if Hgg is a finite-rank operator, then Hl;;g =0,
and we study when H ;quau is a finite-rank operator. In fact, we study such problems

for the intermediate Hankel operators Hg on the weighted Bergman space L2 (u).
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In [2, 7, 9, 10], intermediate Hankel operators were studied in special weights, du =
(x+1)(1-72)*rdrd0/m for —1 < & < oo. In particular, Strouse [9] studied finite-rank
intermediate Hankel operators.

Let du = do(r)dO be a Borel measure on D, where do (v) is a positive measure
on [0,1) with do([0,1)) = 1/27 and d0 is the Lebesgue measure on 0D. L2 (u) is
closed if do ([t,1)) > O for any t > O (see [6]). For this type measures, it is possible to
study more precisely the intermediate Hankel operators. In fact, L2 has the following
orthogonal decomposition:

2= S e%2elit, (1.2)

j=—o

where $2 = 12(do) = L%([0,1),d0). Set

H> = > o%2eif, (1.3)
j=0
then L2 Cc H? C (zL2)* and L? = H? @ ¢ "H?. If Al = H?, it is easy comparatively to
determine finite-rank Hankel operators Hjﬁ,‘ and we can do it completely in Section 5.
We can expect that Hg,‘ is close to H'f;g in case Jl < H? (see Section 5) and Hg is close
to H§™ in case .l 2 H? (see Section 6).

In Section 2, we describe an invariant subspace in L2 whose codimension is of fi-
nite. Moreover we show that there does not exist an invariant subspace which contains
L2 properly and in which L2 is of finite codimension. We also give a lot of examples
of invariant subspaces which contain L2 and in which Hankel operators are studied
in this paper. In Section 3, we describe finite-rank intermediate Hankel operators for
arbitrary measure u such that L2 (u) is closed. Moreover, we show that there does
not exist any nonzero finite-rank Hankel operators Hsjg and there exists a nonzero
finite-rank Hankel operator H fﬁma“. In fact, we give two necessary and sufficient con-
ditions for that if Hﬁﬁ is of finite rank < ¢, then H"(% = 0. In Sections 3, 4, and 5, we
use the Fourier coefficients {M‘i}j":_m of M and so we assume du = do (r) d6O. Using
the Fourier coefficients of ¢ and ., we give a necessary and sufficient condition for
that H"éf is of finite rank < £. Assuming that ¢ is a harmonic function, we can get a
better necessary and sufficient condition. When ./t € H2, using the Fourier coefficients
e j}f:,w, we give a necessary condition and a sufficient condition for that if Hg)L is of
finite rank < ¥, then H g = 0. Two conditions are very similar but are a little different.
Applications are given to examples in Section 2.

2. Invariant subspaces. In this section, we assume that du = do(r)dO and
do([t,1)) > 0 for any t > 0, except Propositions 2.1 and 2.2. For our purpose, the
invariant subspace .t must contain zL2 but kerHﬁ is an invariant subspace in L2. If
H"éf is of finite rank, then the codimension of kerH@% in L2 is finite. In order to study
finite-rank intermediate Hankel operators, we need the generalization of a result of
Axler and Bourdon [1] which determines finite codimensional invariant subspaces in
L2 when dy = v dr d0 /. In Propositions 2.1 and 2.2, the measure y is an arbitrary
finite positive Borel measure such that L2 is closed and (suppu) N D is a unique-
ness set for ¥ol(D). Since H? N L* is an extended weak-* Dirichlet algebra in L*®,
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Proposition 2.3 is a corollary of [4, Theorem 1]. We will give several examples of in-
variant subspaces which contain zL?2.

PROPOSITION 2.1. Suppose . is an invariant subspace in L2 and € is a positive
integer. The codimension of M in L2 is ¥, if and only if M = qL2, where q = ]_[f:1 (z—aj)
andajeD (1 <j=<{).

PROOF. The proof is almost parallel to that in [1, Theorem 1]. We will give a sketch
of it. Suppose M+ = L2 o.M and dimJ/*+ = £. Put

S:f=Pzf) (fe), (2.1)

where P is an orthogonal projection. Since £ < oo, there exists an analytic polynomial
b such that b(S.) = Sp(z) = 0 and the degree of b is less than or equal to £. Hence
b+ < M and so bLZ c . We show that the zeros of b are only in D and the degree
of b = £. Then Al = bL2. It is clear that the degree of b = £. In this direction, we did
not need the condition such that (supp u) N D is a uniqueness set.

Ifa¢ D, (z—a)L2 is dense in L2. Assuming a > 1 and so a = 1 without a loss of
generality, if € > 0, then (z—1)L2 = (z—1){z— (1 +¢&)}~'L2. For any f € L2, it is easy
to see that

Jo

This implies that (z—1)L2 is dense in L2. Thus all zeros of b must be in D. The “if”
part is clear because any point a € D gives a bounded evaluation functional. Here we
used the condition such that (supp ) NnD is auniqueness set (see [6, (1) of Theorem 8]).

O

s S (2.2)
Z—(1+e) H ¢ ' :

PROPOSITION 2.2. Suppose that (z—a)~' does not belong to L? for each a € D. If M
is an invariant subspace which contains L2 properly, then the codimension of L2 in .
is infinite.

PROOE. If dim.leL2 =¥ < o, by the proof of Proposition 2.1, there exists a poly-
nomial b = Hf-:l(z —aj) such that bt < L2 and a; € D (1 < j < ¥). Hence there
exists a function ¢ in .t such that ¢ ¢ L2 and g = b¢p € L2. If g(ay) # 0 for some k,
then g/(z—ay) = qb]_[#k(z —aj) cannot belong to L? because (z—ay) ! ¢ L2. Hence
g(aj) = 0 for any j. By [6, the proof in (1) of Theorem 8], g € bL?l and so ¢ = g/b
belongs to L2. This contradiction implies that dim./ e L2 = co.

For an invariant subspace ., set

My = {fj €L fel, f(z)= fj(r)e”"}- (2.3)

Jj=—0

Then J; is a subspace in $2, rilj < Mjq and hence dimJl;,1 = dim.tj. We call
{M;}%_, the Fourier coefficients of J. .t ;e*/ may not belong to . If /t;e¢ belongs

j=—o

to Jt for any j, then Jl has the following decomposition:

M= > odje?. (2.4)

Jj=—o
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This decomposition is called the Fourier decomposition of .it. In general, .l does
not have the Fourier decomposition but we can get an extension .l of .t which has
the following Fourier decomposition:

M= > o(closure of M;)e'". (2.5)
j:—oo D

PROPOSITION 2.3. If [l is an invariant subspace which contains L2 and e* il < M,

then M = xgGH? ® xpc L?, where xg is a characteristic function in $? and q is a unimod-
ular function in H2. Hence M 2 H2. If N} e%.M = {0}, then M = gH.

PROOF. Suppose Sy = Al e e, then M = (X7, ®Soe”?) @ M_«, Where M_o, =
Nizo e9 M, and Sy C So because 7.l < ;41 It is well known that M—. = xcL? for
a characteristic function xr of some measurable subset in D. Put E = G°¢ then there
exists a function f in Sy such that

[fl>0 onE and f=0 ontF. (2.6)

Since fis orthogonal to fe'/? forall j > 0. | f|2 belongs to ! = L1 (do) = L}([0,1),do)
and so | f| belongs to $2. Hence xx belongs to ¥2. Set

i0
) Le.e) if f=0,

F(rei®) =1 [f(rei®)] 2.7)
1 if f=0,

then F is a unimodular function in L2. Since ¥Sy < So, we can show that xgF be-

longs to Sy and so So = xeF¥2. Hence .M © Mo, = xgFH?. Since 1 € M, xgF € H? and
q=F cH?, O

EXAMPLE 2.4. (i) For 0 < B < 1, put
Tp =Span {z"z™; Bn = m = 0}. (2.8)

Then T} is an invariant subspace and Tg 2 L3. Put T = L3 for B = 0 and T3 = H?
for B = 1. In general, L2 < Tg < H®> and T (0 < B < 1) has the following Fourier
decomposition:

Tp = > &(Tp) e, (2.9)
j=0

where (Tg); = span{r/p;(r?); p;is a polynomial of degree at most Bj/(1 — B)}.
Janson and Rochberg [2] studied Hg,t when L = (T)*. Then (Tp)* = e?H* 0 37y o
[$2 0 (Tg)j}e 0.

(ii) For k = 0, put EX = span{z™z"; m = 0,1,...,k; n = m,m+1,...}. E¥ is an invari-
ant subspace and L2 ¢ E¥ < H2. EX has the following Fourier decomposition:

EX =3 o(EX)e'", (2.10)
j=0

where (EX); = span{r/,...,r/*%k}, Strouse [9] studied Hff,’ when M = (E¥)L. Then
(EX)* = e?H2 @ 37 (@ {F? e (EX) e 0.
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(iii) Fix a polynomial p of degree k, that is, p = Z’J‘-:O a;zs. Put

Y(p) =span{z", z"p; n >0, m = 0},
) (2.11)
Yk =span{z/z/; £>0, 0<j <k}

Both Y(p) and Y* are invariant subspaces and L2 < Y(p) < Y, and Y* has the fol-
lowing Fourier decomposition:
k _ Ky ,ijo
Y -—'Z:k®(}’)je” , (2.12)
j=

where YX = span{1,72,...,7%} and (Y%); = »/(Y}) for j = 0, and (Y¥)_; =
span{r2{-J;j < £ <k} for 1 < j < k. (Y(p)); < (Y¥); for any j but Y(p) does not
have a Fourier decomposition. If a; # 0 for 1 < j <k, (Y(p)); = (YX); for any j and
so Y(p) = Y*. Peng, Rochberg, and Wu [7] and Wang and Wu [10] studied H when
M = (Y*)L.In general, we can define Y (g) for any function g in L2. Usually, Y (g) does
not have the Fourier decomposition.

(iv) For aunimodular function g in H?, put Jt = gH2. Then J( is an invariant subspace
which contains H?. In general, gH? may not have the Fourier decomposition but for
q = e for some £ > 0,

M= > oFell (2.13)
j—e
There are a lot of invariant subspaces between H2 and e~#*°H? even if £ = 1.

(v) For arbitrary closed subspaces S in $2, put M = H2 @ Se~'?. Then .l is an invariant

subspace between H? and e "H2.

3. Kronecker’s theorem. In this section, the measure u is an arbitrary finite posi-
tive Borel measure such that L2 is closed. We will write

M® = MNL® (3.1)
and, for each positive integer £,
¢
Mt = {d) eL”; p(z)=g(2) H(z—aj)’l ae.pyonD,geM” and ay,...,ap € D}.
- (3.2)

Then M*® € M € M®2 < - - -,

Kronecker (cf. [11, page 210]) described finite-rank Hankel operators on the Hardy
space. Theorem 3.1 describes finite-rank intermediate Hankel operators on the
(weighted) Bergman space. However the situation is very different from that of
Kronecker because M* = M>¢ may happen for some £ > 0. See Corollaries 3.3 and 3.4.

THEOREM 3.1. Suppose . is an invariant subspace which contains zL2, and ¢ is a
function in L. H‘% is of finite rank < £ if and only if ¢ belongs to M.

PROOF. Note that kerH*gf ={f € L%; ¢f € M}. Since M is an invariant subspace,
kerH (}ﬁ is also an invariant subspace. Proposition 2.1 implies the theorem. O
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THEOREM 3.2. Suppose Jl is an invariant subspace which contains L2, and ¢ is a
function in L*. Then the following are equivalent:

(1) If Hy is of finite rank, then Hy = 0.

(2) M® = M= for any £ > 0.

B)IfgemM®, aeDand (g(z)—g(a))/(z—a) € L™, then (g(z) —g(a))/(z—a)
belongs to M.

(4) If " is an invariant subspace and (M’ )* 2 >, then there does not exist a nonzero
polynomial b such that b(M')® < M*.

PROOF. By Theorem 3.1, (1)<(2) is clear.

(1)=(3). If there exists g € M> such that (g—g(a))/(z—a) € L™ does not belong to
M=, put ¢ = (g-g(a))/(z—a), then Hy is of rank 1 and H # 0.

(3)=(4). If (4) is not true, there exists ¢ such that ¢ ¢ M*, ¢ € (M')® and by € M*
for some polynomial: b = Hle(z —aj)andajeD(l<j=< £ < ). We may assume
that ¢ = w]_[f;i(z—aj) g M® and g = (z—ayg)¢ € M™. Then

g-g(ay) w o
== =¢pecl”, M. 3.3

Z—dy ¢ b ¢ (3.3)

(4)=(1). By Theorem 3.1, if H“(% is of finite rank < ¥, then ¢ € Mt If b ¢ M,
suppose ' is an invariant subspace generated by ¢ and ., then (M')®2./M%° but
there does not exist a nonzero polynomial b such that b(Al')® < M*. Since ¢ € M/,
this contradicts that ¢ € M*. )

COROLLARY 3.3. Suppose (supp u) N D is a uniqueness set for #ol(D). If H?;g is of

finite rank, then Hz)ig =0.

PROOF. Theorem 3.2(3) implies the corollary. In fact, if g € L2 nL*®, then g(z) —
gla) € (z—a)L? by [6, the proof in (1) of Theorem 5.4]. Thus (g(z) —g(a))/(z-a)
belongs to L2 N L. O

COROLLARY 3.4. Suppose du =v drdO /. Let Dy be an open subset of D and M =
{f € L?; f is analytic on Dy}. Then M is an invariant subspace and if H“j‘,/ﬁ is of finite
rank then Hy = 0.

PROOF. Itis easy to see that Jl* satisfies Theorem 3.2(3). O

COROLLARY 3.5. Suppose that if H}, is of finite rank then Hyj = 0. If M is an invariant
subspace which contains Al properly, then the codimension of M in M’ is infinite or
(M)® =M™,

PROOF. If dimJl'/M < oo, as in the proof of Proposition 2.2, then there exists

a nonzero polynomial b such that b’ < M. Hence b(M')® < M™. If (M) # M™,
by Theorem 3.2, this contradicts that if Hq‘!f is of finite rank, then Hgf =0. O

4. General case. In this section, we assume that du =do (r)d6 and do ([t,1)) >0
for any t > 0. Hence we can define the Fourier coefficients {.il j};‘;,w of M. We assume
M = i, that is, AL has the Fourier decomposition.
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THEOREM 4.1. Suppose . is an invariant subspace which contains zL% and ¢ =
z;":_m (l)j(r)eifg is a function in L®. Then H“g is of finite rank < ¥ if and only if there
exist complex numbers by,...,by such that by = 1 and, for any integer n,

{
ijrjqbn,j(r) EJ‘/Ln. (41)
j=0

If € is the minimum number of complex numbers b1, ...,by such that Zj}:O bjrfd)n,j (r)
€ My, for all n, then H“q% is of rank L.

PROOF. If H g is of rank < £, by Theorem 3.1 there exists a polynomial b = Zfzo bz
such that b¢ € . Then

[ ! . ¢
( > ¢j(r)eije> (Z bjrfeije) -y (z ¢n_j(r)hﬂ,j> oind (4.2)
Jj=0

Jj=—o0 n=-o0 \j=0

and so 2’5:0 bjrfcl)n,j(r) € J,, for any n. The converse and the second statement are
clear by Theorem 3.2. O

COROLLARY 4.2. Let ¢ = ¢ (v)e'? for some integer t in Theorem 4.1. Then Hj is
of finite rank < £ if and only if there exist complex numbers by, ...,by such that by = 1
and fort <n <{+t, by vt (r) € My.

PROOF. Since ¢j(r) =0for j#t,if n<torn>L+t, then Zfzobjﬂd)n,j(r) =0
Fort<mn<{¥+t, Zfzo lojrfcl)n,j(r) = by 1"t (r), thus the corollary follows. O

COROLLARY 4.3. Letp = 37 a;z/ + 37 ga_;z/ in Theorem 4.1. Then Hy, is of rank
< ¥ if and only if there exist complex numbers by,...,by such that by = 1 and for any
nonpositive integer anZO bjan_ir* =" € My and, for 0 <n < ¥, Xf:n bjan_jr3—n
e M.

PROOF. If n =¥ and n # 0, then

? l 3
z v d)n J(?") ijan_l,-rf*”’j: (z i An— J) (4.3)

j=0 Jj=0

and hence Xf:o bjrjcl)n,j(r) € My because zL2 < . Now Theorem 4.1 implies the
corollary.

Theorem 4.1 does not give an exact relation between the rank of Hg and the num-
ber £ of complex numbers by,...,by such that by = 1. However, we can show the
following: if H;‘iﬁ is of rank ¥, then there exist complex numbers by,...,b, such that
by =1, Z?:o bivipy_j(r) € My for any n and b = Z?:o b;zJ has just £ zeros in D.
That is, if £ = 1, then |by| < 1.

By Theorem 4.1, Hé‘ = 0 if and only if ¢, € M, for any n (i.e., ¢ € M). Moreover,
H“q% is of rank < 1 if and only if there exist complex numbers (bg, by) # (0,0) such that
by =1 and by, + b1v Ppy—1 € My, for any n. O
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5. Big Hankel operator and .t € H2. In this section, we assume that dy = do (v) d6
and do ([t,1)) > 0 for any t > 0. Hence we can define the Fourier coefficients {A/Lj}f:,k
of M and we assume . = .i(. In this case, Hzﬁ is close to H:’;g. Recall examples in
Section 2, that is, Ty, EX,Y (p), and Y*.

COROLLARY 5.1. Suppose A is an invariant subspace between zL% and H?, and ¢ =
Siajzl+3ajz). Then Hgg is of finite rank < £ if and only ifa_,, = 0 forn > £ and
there exists complex numbers by,...,by such that by =1 and zf-:n bjan,jrzf’” € My
for0 <n <{ and Zf:o bjan_jv> " =0 for € <n<0.

PROOF. Since Jt < H?, by Corollary 4.3 H@},‘ is of finite rank < £ if and only if there
exist complex numbers by,...,by such that by = 1 and Xf:o bjan,jrzj‘" =0forn<0
and Zf:n bjan_jvr> =" € My for 0 <n < 4. If Zfzo bjan_jr¥~" =0 for n < 0, then
bja,_j=0for 0 < j<{and n <0.Hence for each j (0<j=<¥), bja,=0ift > j.
Thusa_; =0if ¢t > ¥£. O

PROPOSITION 5.2. Suppose M is an invariant subspace between zL2 and e *H?
where k = 0, and ¢ = 3.7 b ;j(r)e% is a function in L*. Then H is of finite rank
< if and only if
S ewir)ei

P(z) = (5.1)

where Y, = Zf-:o biripy_j € My, for -k <m < ¥, and (by,...,by) € C’.

PROOF. Note that il < e"*°H? and ¢;(r) = 0 for j > 0. If H} is of finite rank < ¥,
then, by Theorem 4.1,

¢ . ¢
( > bl,'rfeije) ( > <;b—j(1f)eiﬂ’) = > Yn(r)en® (5.2)

j=0 j=0 n=—k

and @, = 25:0 bivipy_j € My for —k < n < £. The converse is also a result of
Theorem 3.1. O

COROLLARY 5.3. Suppose Jl is an invariant subspace in Proposition 5.2. If ¢ =
pi+p =37 a2/ + 37 ga 2/ and ¢ € L™, then Hy is of finite rank < £ if and
only if
S wi(r)el?

Zfzo bjrieti?

P(z) =+ (5.3)
where @, = Zﬁzobjan,jrf*|”*f‘ € My, for -k <n < ¥, and (bo,...,by) € CL. If
(bo,...,bp) = (0,...,0), then ¢, =0 and so ¢ = ¢ .

THEOREM 5.4. Suppose M is an invariant subspace between zL2 and e~ **°H? where
k=0, and ¢ :,Z;Ozl b_j(r)et? is a function in L.

(1) If M; N ri*1$2 = {0} for any j = 0, then there does not exist any finite rank Hy
except Hyj = 0.

(2) If there does not exist any finite rank H(;g except Hg =0, then M_x—jy NriT1L> =
{0} forany j = 0.
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PrROOF. (1)If Hﬁf is of finite rank £, by Proposition 5.2,

¢
Wn= D bjr/pp_j € dly, (5.4)
Jj=n
for 0 < n < £ because ¢,_j(r) =0 for 0 < j < n— 1. We may assume by = 1. As
n=~0—-1,r'¢p_1(r) € My_,. Since My_; "7!FL2 = {0}, p_1(r) =0. Asn="L-2,

b v lp )+l (r) € My, (5.5)

Since My_» Nnrt-1$2 = {0} and ¢_1(r) =0, p_»(r) = 0. we can get ¢p_;(r) = 0 for
j < 4. In Proposition 5.2, ¢, =0 for 0 <n < £ and so ¢ = 0.
@) Ifritlg € M_g—jy NTI*1L™, then put ¢ = ge {*+DO If g £ 0 then ¢ ¢ M and

Zj+1¢’ — Tj+1ge_i(k_j)9 = M,(k,j)e‘i(k_jm. (5.6)

Since Jt has the Fourier decomposition, t;e*/? < M and so z/*!¢ € . Theorem 3.1
gives a contradiction. O

We will apply results in this section to Example 2.4 in Section 2.

EXAMPLE 5.5. (i) Suppose M =1Tg (0 < <1).

(1) When ¢ = 37, ¢_;(r)e " is a function in L*, there does not exist any finite
rank Hy, except Hy = 0 if and only if 8 = 0.

(2) When ¢ = 37 ga;z/ + X7 a_;z/ is a function in L™, there does not exist any
finite rank Hy except Hy = 0 if and only if § = 0.

PROOE. Recall that Tp = Z;’:O@(T,g)jeifo and (Tp); = span{rip;(r?); pjis
a polynomial of degree at most Sj/1—f}.

(1) If B = 0, then (Tp); Nri*1¥> = {0} for any j > 0 and if B # 0, then (Tp); N
rit1$* £ {0} for enough large j. Theorem 5.4 implies (1).

(2)If B # 0, then there exists n such that 1 — 8 < B(n—1). Hence (Tg),-1 2 ¥"*!. Sup-
pose ¢ = 2, then z"¢p = r"* el 10 and so z"Pp € (Tg)n_1e!™ V0 C Tp. By
Theorem 3.1, Hg; is of rank < and Hfg #0. O

(ii) Suppose M =E™ (0 <m < ).

(1) When ¢ = 37, ¢_;(r)e 49, there does not exist any finite rank Hg except
H¢ = 0 if and only if m = 0.

(2) When ¢ = 37 ga;z/ + X7 a2/ is a function in L™, there does not exist any
finite rank H§ except Hj = 0 if and only if m = 0 or 1.

PROOF. We recall that (E)™ = Y7, ®(E™);eY? and (E™); = span{r/,...,rJ*2m},

(1) If m = 0, then (E™); nr/*1%2 = {0} for any j > 0 and if m + 0, then (E™); N
I+l £ {0} for any j = 0. Theorem 5.4 implies (1).

(2) If m = 0, by (1) there does not exist any finite rank H“jﬁ except Hgﬁ =0.Ifm=1,
then (E™),, = span{r™,»"*2} for n = 0. When ng is of finite rank £, by Corollary 5.1,
ap,=0forn>fandif 0<n <4,

¢
D> bjan_jr¥ " =cr"+dr"t? (5.7)
J=n
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for complex constants c,d. Hence, for 0 <n < ¢,
bja,-j=0 forn+2=<j<4. (5.8)

Since by =1, ap¢y=0for0<n<{andsoa_;=0for 0<j<¥. Whenm > 2, if
¢ =2z,thenz¢p =712 € (E™)y = span{l,r?,...,r*"} and z¢p € E™ because (E™), C E™.
However H{ # 0. O

(ili) Suppose M = Yk,

(1) When ¢ = 37, ¢_;(r)e 49, there does not exist any finite rank H';% except
Hy = 0 if and only if k = 0.

(2)When p =, +¢p_ =37 ga;z/ +37,a_jz/ and ¢, are functions in L*, there
does not exist any finite rank Hd”; except H$ =0 if and only if k = 0.

PROOF. Since H(;‘, = H'ﬁ;, it is sufficient to prove (1). We recall that Y* =
Yk @(YF) el where Y = span{1,7?,...,7%*} and (Y¥); = v7(Y¥), for j > 0, and
(YK)_; = span{r?{-J, j <@ <k} for 1 < j<k.If k=0, then Y* = [2. If k > 1,
(Y*)_i = span{r¥}. Theorem 5.4(2) implies that there exists a nonzero finite rank H‘g.

O

6. Small Hankel operator and .l 2 H2. In this section, we assume that du =
do(r)deé and do ([t,1)) > 0 for any t > 0. Hence we can define the Fourier coeffi-
cients {Jl/tj}j‘; of Ji. In this case, H“d‘ﬁ is close to prmall and far from Hz,ig. Note that if
M’ is an invariant subspace and M’ < e?H?, then A = (il')* is an invariant subspace
and Jl 2 e'?H2.

—00

PROPOSITION 6.1. Suppose (Al is an invariant subspace which contains e**?H? for
some nonnegative integer k. If M # L2, there exists at least a nonzero finite rank H“gﬁ.

PROOE. If 2" e/l for all n > 1, then z¢z" € M for all £ > 1 because z.l < M. Let €
be the closed linear span of {z/z"; n > 1, £ = 0}, then ¢ < .1l and g < ¢ for arbitrary
polynomial g of z and Z. It is well known that € = L2. This contradiction implies that
there exists at least 7 such that 2" ¢ M and n = 1. If ¢ = 2", then z"*¥¢ € M. Then
H“q% # 0 but H;% is of finite rank < n + k, by Theorem 3.1. O

PROPOSITION 6.2. Suppose J is an invariant subspace which contains e**H? for
some nonnegative integer k. The following statements are valid.

W If =37 bj(r)eli® is a function in L, then there exists a function ¢’ in L?
such that ¢’ = Z?;é bi(r)eiif + PP ¢-j(r)e"% and Hﬁvﬁ’ = Hﬁ'

) If =Xk dj(r)eV? is a function in L™, then H“g =0.

B Ifd =237y ¢;(r)ei? is a function in L*, then H“j)‘ is of rank < £ + k < co.
Conversely, if one of (1) or (2) is valid, then M contains e’*H?2,

PROOF. Both (1) and (2) are clear because .Ul 2 e*9H2. (3) is a result of Theorem 3.1.
The converse is also clear. O

We will consider Example 2.4 in Section 2.

EXAMPLE 6.3. (ii) Suppose Al = (E¥)*(0 < k < ) and ¢ = X7 P;(r)eV? is a
function in L*.
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(1) H = 0 if and only if

1
L b_j(rrittde =0 (j=0,0<t<k). 6.1)

(2) Hjﬁ is of rank < 1 if and only if there exist complex numbers (bg,b1) # (0,0)
such that

1 1
bOJ ¢_j(rrittdo = fblj b_j1 (rrtHdo (6.2)
0 0

forj>=0,0<t<k.
(3) Suppose do =rdr/2m. When ¢ = 37 ga;z/ + 37 a2/, if Hjﬁ is of rank < 1,
then Hﬁ =0.

PROOF. From the remark in the last part of Section 4, (1) and (2) follows. (3) By (2),
H(;‘) is of rank < 1 if and only if there exist complex numbers (bg,b;) # (0,0) such that

1 1
b(]a_j m = 7b1a«—j—1 P — (63)

2j+2t+3
for j >0, 0 <t < k. When k # 0, for each j,as t =0,
1
2j+3"
1 1
looa,j 2]74_3 = —bla,j,l ﬁ

boa,j — = —bla,j,l
2j+1
J (6.4)

This implies that a_; = a_j—-; = 0, for j = 0, and so ¢ = Z‘f:lajzj. When k = 0,
Corollary 3.3 implies (3) O

(iv) Suppose .l = gH? for some unimodular function g in H? and ¢ is a function
in L*. Hy is of finite rank £ if and only if

d=q > wire?, (6.5)
j=—t

where @ _p(r) # 0.

PROOF. If p =G> 7 ,y;(r)ei’?, then z'¢p € Al and so, by Theorem 3.1, H} is of
finite rank < £. Since @_;(r) # 0, b ¢ A for any polynomial b of degree < £ -1 and
o) Hg,‘ is of finite rank . The converse is clear. O

(v) Suppose it = H2@Se~" and S is a closed subspace in £2. Let p = 37, ¢ (v)e'?
be a function in L*. By Theorems 3.1 and 4.1, H"’gbt is of finite rank < £ if and only if
¢;(r) =0for j < —(£+2) and there exist complex numbers by, ...,by such that by = 1,

¢
> biri¢u_j(r)=0 for —(£+1)<n<-1,
=0 6.6)

[4
> biri¢p_i_j(r)€S.
J=0



30 T. NAKAZI AND T. OSAWA

7. Restricted shift operator and i = L?l. In this section, we assume u =rdr do/m
for simplicity. Let .t be an invariant subspace in L2 and % = L2 © M. For ¢ in LY =
L2NL®>,

Sef = U=PO)(@f) (fe€X), (7.1)

where P* is the orthogonal projection from L2 to 3. S¥ is called a restricted shift
operator. For any ¢ in LY, Sf’if commutes with §¥. We do not know whether if the
bounded linear operator T on ¥ commutes with S¥, then T = SZf for some ¢ in LY.
If TS? = S¥T and ¢ = TP*1 is bounded, then it is easy to see that T = Sf‘if (cf. [5,
page 784]). In the Hardy space instead of the Bergman space, Sarason [8] showed that
this is true without any condition and || T| = ||} || -

We can define the Hankel operator Hq@ as in the introduction. However H4M> is not
an intermediate Hankel operator. It is not so difficult to see the following: when % =
L2oMand ¢ in LY,

AR AR (7.2)

This is known for the Hardy space. In fact, for f in L2,
Hy f = (I-P")pf =P pP"f (7.3)

and so Hy f = SgP” f for f in L2. Hence Hy is of finite rank n if and only if Sj is of
finite rank n. It is easy to see that Sf;f is of finite rank £ < n if and only if there exists
an analytic polynomial p of degree £ < n such that p(¢) € M®. When ¢ is in L*,
Theorems 3.1 and 4.1 are true for H@i}.

Suppose ¢ is a function in L.

(1) L2 2 ker H 2 M.

(2) When the common zero set Z (L) of Al in D is empty, if H“j‘df is of finite rank then
H“fq,ﬁ = 0. This is a result of (1) and Proposition 2.1.

(3) If Z(AM) is not empty, there exists a nonzero finite rank Hfg
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