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ON THE EXISTENCE OF SOLUTION OF A TWO-POINTBOUNDARY
VALUE PROBLEM IN A CYLINDRICAL FLOATING ZONE
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Abstract. Existence of one solution for a two-point boundary value problem with a posi-
tive parameterQ arising in the study of surface-tension-induced flows of a liquid metal or
semiconductor is studied. On the basis of the upper-lower solutionmethod and Schauder’s
fixed point theorem, it is proved that the problem admits a solution when 0≤Q≤ 12.683.
This improves a recent result where 0≤Q< 1.
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1. Introduction. Consider the following nonautonomous two-point boundary value
problem (BVP) on [0,1]:

[
x
(
f ′

x

)′]′
+Q

[
f
(
f ′

x

)′
−x

(
f ′

x

)2]
= βx, (1.1a)

f(0)= f(1)=
(
f ′

x

)′∣∣∣∣∣
x=0
=
(
f ′

x

)′∣∣∣∣∣
x=1
−1= 0, (1.1b)

where ′ = d/dx. This problem arises in the study of surface-tension induced flows of
a liquid metal or semiconductor in a cylindrical floating zone of length 2L and radius
R. In dimensionless coordinates (r ,y), points of the cylinder are given by −1 ≤ y =
Y/L ≤ 1, 0 ≤ x = r/R ≤ 1, with free surface x = 1. The (y,r)-components of dimen-
sionless velocity (u,v) are, respectively, u = 2A3(Re)f/x and v = −2A3(Re)f ′/x,
where Re is the Reynolds number (Q = 2A3 Re), A = L/R is the aspect ratio and β is
a constant to be determined. Assuming that the dimensionless pressure p is a qua-
dratic function of y , we find that the r -component of the acceleration equation in
the Navier-Stokes energy system describing the flow of fluid and its temperature in
the cylinder becomes (1.1a). The physical boundary conditions reduce to the condi-
tions (1.1b) if we make the assumption that the free boundary is time-independent
but not “flat.”
Numerical solutions of (1.1) have been found [3] for 0 ≤ Q ≤ 32.7 and Q ≥ 1749.

However, a theoretical proof on the existence of solutions of (1.1) has been done only
for 0 ≤ Q < 1 in [4]. Hence there is still a large gap between numerical experiments
and theoretical results. In the present paper, on the basis of the upper-lower solution
method and Schauder’s fixed point theorem, we prove the existence of solutions for
(1.1) with 0 ≤ Q ≤ 12.683. Thereby we make a greater improvement of the existing
results [4].
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Our main result is the following theorem.

Theorem 1.1. For 0 ≤Q ≤ 12.683, there exists a constant β such that (1.1) admits
a solution f = f(x) satisfying on (0,1)

−0.0406≤ f(x)≤ 0, −0.0935≤ f ′(x)≤ 1
3
, −0.43≤ f ′′(x)≤ 4

3
. (1.2)

2. A technical treatment of (1.1). We observe that in (1.1), equation (1.1a) is a third
order equation with an unknown constant β, while the boundary value condition (1.1b)
contains four equalities. Hence following [4], we make the following technical treat-
ment of (1.1).
Differentiating (1.1a) with respect to x, we obtain

[(
f ′

x

)′]′′
+
[
1+Qf
x

](
f ′

x

)′′
−
[
1+Q(xf)′

x2

](
f ′

x

)′
= 0, (2.1a)

f(0)= f(1)=
(
f ′

x

)′∣∣∣∣∣
x=0
=
(
f ′

x

)′∣∣∣∣∣
x=1
−1= 0. (2.1b)

Let (f ′/x)′ = g. Then (2.1) has the following form:

g′′ +
[
1+Qf
x

]
g′ −

[
1+Q(xf)′

x2

]
g = 0, (2.2a)

g(0)= g(1)−1= 0. (2.2b)

To prove the existence of solutions for (1.1), we reduce to finding a fixed point
problem. On the basis of the differential inequality technique to construct upper and
lower solutions of (2.2), we consider the following set:

D={f | f ∈C1[0,1], f (0)=f(1)=0, h(x)≤f(x)≤0, m(x)≤f ′(x)≤n(x)}, (2.3)

where

h(x)= 25
119

x2(x7/5−1), n(x)= 1
3
x4,

m(x)= 5x
(
1
26
x26/5− 1

17
x17/5+ 1

7
x7/5− 10

119

)
.

(2.4)

For any f ∈D, if (1) equation (2.2) has a unique solution g(x); and (2) the problem

(
f∗′

x

)′
= g, (2.5a)

f∗(0)= f∗(1)= 0, (2.5b)

also has a unique solution f∗(x), then we may define an operator

T : f 
 �→ f∗, f ∈D, (2.6)

where f∗ is the solution of (2.5). Thus, given Q ∈ [0,12.683], if we can prove that
(3) T has a fixed point, namely, there exists f ∈ D such that Tf = f . Then f is a
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solution of (2.1). Integrating (2.1a) from 1 to x and using (2.1b), we obtain (1.1a) at
once, here β= [(f ′/x)′′+((1+Qf)/x)(f ′/x)′−Q(f ′/x)2]|x=1. Therefore, f must be
the solution of (1.1).
In the following, we shall carry out the above three processes, respectively.

3. The solution of the problem (2.2). We consider the boundary value problem on
[x1,x2]

y ′′ = a(x)y ′ +b(x)y, y
(
x1
)=A1, y

(
x2
)=A2, (3.1)

where a(x),b(x)∈ C1[x1,x2], and b(x) > 0.

Lemma 3.1. Suppose that there exist functions ω(x), ω(x) ∈ C2[x1,x2] such that
for x1 ≤ x ≤ x2,

ω(x)≥ω(x),
ω′′(x)≤ a(x)ω′(x)+b(x)ω(x),
ω′′(x)≥ a(x)ω′(x)+b(x)ω(x),
ω
(
xi
)≤Ai ≤ω(xi), i= 1,2.

(3.2)

Then the problem (3.1) has a unique solution y =y(x), and
ω(x)≤y(x)≤ω(x), x1 ≤ x ≤ x2. (3.3)

Moreover, there exists a positive number N which depends only on the interval [x1,x2]
and the function pairs ω(x),ω(x) such that

∣∣y ′(x)∣∣≤N, x1 ≤ x ≤ x2. (3.4)

Since b(x) > 0, we use the maximum principle, it is easy to prove the uniqueness of
solutions of (3.1), and the other aspects of Lemma 3.1 are generalizations of Nagumo’s
theorem (see [1, Theorem 1.5.1]).

Theorem 3.2. Assume f ∈D and 0 ≤Q ≤ 12.683. Then the boundary value prob-
lem (2.2) has a unique solution g = g(x).

Proof. Notice for f ∈D, x ∈ (0,1], we have
1+Q(xf)′

x2
= 1
x2

[
1+Q(xf ′ +f )]

≥ 1
x2

[
1+Q(xn(x)+h(x))]

= 1
x2

[
1+QF(x)],

(3.5)

where

F(x)= xn(x)+h(x)= 5x2
(
1
26
x26/5− 1

17
x17/5+ 22

119
x7/5− 15

119

)
. (3.6)

By a simple argument, we show that F(x) is decreasing on [0,c], and increasing on
[c,1], where c = 0.566505 . . . . Hence F(x) takes minimum at x = c, that is,

min
x∈[0,1]

F(x)= F(c)=−0.078836006··· ≥ −0.07884. (3.7)
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Therefore for 0≤Q≤ 12.683, we have

1+Q(xf)′
x2

> 0, x ∈ (0,1]. (3.8)

For any positive integer n≥ 2, consider the boundary value problem

g′′ = −
[
1+Qf
x

]
g′ +

[
1+Q(xf)′

x2

]
g, (3.9a)

g
(
1
n

)
= 0, g(1)= 1. (3.9b)

We set ω(x)≡ 0, ω(x)= xα, where α> 0 is sufficiently small, so that

α2+αQf ≤ 1+Q(xf)′. (3.10)

Then

ω′′(x)≤−
[
1+Qf
x

]
ω′(x)+

[
1+Q(xf)′

x2

]
ω(x),

ω′′(x)≥−
[
1+Qf
x

]
ω′(x)+

[
1+Q(xf)′

x2

]
ω(x),

(3.11)

for all x ∈ [1/n,1], n ≥ 2, ω(1) = 0 < 1 =ω(1), and ω(1/n) = 0 < 1/nα =ω(1/n).
By Lemma 3.1, we obtain that (3.9) has only one solution gn = gn(x) which satisfies

0≤ gn(x)≤ xα, x ∈
[
1
n
,1
]
, (3.12)

and {g′n(x)} is uniformly bounded on [1/2,1], and hence {g′n(1)} is bounded. Without
loss of generality, we let {g′n(1)} →α0 as n→∞.
We consider the solution of (3.9a) satisfying the initial conditionsg(1)=1,g′(1)=α0.

Obviously, it exists on [0,1] and satisfies

0≤ g(x)≤ xα, (3.13)

namely, g(x) is the solution of (2.2). For the uniqueness of the solutions, it is easy to
show by (3.8). This completes the proof.

To prove Theorem 1.1, we give the bound of g(x) and g′(x) on [0,1].

Theorem 3.3. For f ∈D, 0≤Q≤ 12.683, the solution g(x) of (2.2) satisfies

g(x) > 0, g′(x) > 0, 0<x < 1, (3.14)

lim
x→0+

xg′(x)= 0, (3.15)

x11/5 ≤ g(x)≤ x2/5, (3.16)

2
5
x11/5 ≤ xg′(x)≤ 11

5
x2/5. (3.17)
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Proof. (i) Since 1+Q(xf)′ > 0, x ∈ [0,1], we easily see that g(x) > 0, g′(x) ≥ 0
on (0,1) by the maximum principle. Next we assert that g′(x) �= 0 for any x ∈ (0,1).
If not, then there exists x0 ∈ (0,1) such that g′(x0) = 0. We have g′′(x0) > 0 from
(2.2a), namely, g(x) takes a local minimum at x = x0. Hence g(x) must have a local
maximum at x1 ∈ (0,x0). This is impossible because we have g′′(x1) > 0 from (2.2a),
hence a contradiction.
(ii) Rewrite (2.2a) as follows

x(xg′)′ = −Qfg′ +[1+Q(xf)′]g. (3.18)

Owing to 0 ≤ x ≤ 1, f ≤ 0, 1+Q(xf)′ > 0, g > 0, we have x(xg′)′ > 0, that is,
(xg′)′ > 0, and hence xg′ is increasing on (0,1). Using (3.14), we obtain xg′ > 0
for x ∈ (0,1), and therefore limx→0+xg′(x) exists, and limx→0+xg′(x) ≥ 0. If there
exists α > 0 such that limx→0+xg′(x) = α, then for α/2, there is a δ > 0, so that
α/2 < xg′(x) < g′(1) for x ∈ (0,δ), or α/2x < g′(x) < (1/x)g′(1). Integrating it
from x to δ, we have

α
2
ln
δ
x
< g(δ)−g(x) < g′(1) ln δ

x
. (3.19)

Thismeans g(x)→−∞ asx→0+, contradicting with g(0)=0. Thus limx→0+xg′(x)=0.
(iii) Equation (2.2a) can be converted to the following form:

(
x2g′

)′ −(xg)′ −Q(xfg)′ = −2Qxfg′. (3.20)

Integrating the above equation from 0 to x, using (3.15) and g(0)= 0, we obtain

g′ =
[
1+Qf
x

]
g− 2Q

x2

∫ x
0
tfg′dt, (0<x < 1). (3.21)

Hence as −0.0406 ≤ f(x) ≤ 0, g′(x) ≥ 0, 0 ≤ Q ≤ 12.683, we have Qf > −3/5. This
implies

2
5x
g(x)≤ g′(x)≤ 1

x
g(x)+ 6

5x

∫ x
0
g′dt = 11

5x
g(x). (3.22)

We integrate (3.22) from 1 to x and obtain (3.16).
(iv) We combine (3.16) with (3.22) and yield (3.17).
This completes the proof.

4. The solution of the boundary value problem (2.5). Integrating (2.5a) from 0 to
x and using (2.5b), we see that

f∗′(x)= kx+x
∫ x
0
g(t)dt, (4.1)

f∗(x)= 1
2
kx2+

∫ x
0

(
s
∫ s
0
g(t)dt

)
ds, (4.2)

where k = −2∫ 10 (s ∫ s0 g(t)dt)ds. By Theorem 3.2, we know that g(x) exists and is
unique, so (2.5) has a unique solution f∗ = f∗(x) on [0,1].
In the following, we estimate the bound of f∗ and f∗′.
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Since

k=−2
∫ 1

0

(
s
∫ s
0
g(t)dt

)
ds =−2

∫ 1

0

(
g(t)

∫ 1

t
s ds

)
dt =−

∫ 1

0

(
1−t2)g(t)dt, (4.3)

equations (4.1) and (4.2) become

f∗′(x)=−x
∫ 1

0

(
1−t2)g(t)dt+x

∫ x
0
g(t)dt, (4.4)

f∗(x)=−1
2
x2
∫ 1

0

(
1−t2)g(t)dt+ 1

2

∫ x
0

(
x2−t2)g(t)dt. (4.5)

From (4.4), we have

f∗′(x)=−x
∫ x
0

(
1−t2)g(t)dt−x

∫ 1

x

(
1−t2)g(t)dt+x

∫ x
0
g(t)dt

=−x
∫ 1

x

(
1−t2)g(t)dt+x

∫ x
0
t2g(t)dt.

(4.6)

By (3.14) and (3.16), we have the following inequalities

f∗′(x)≤ x
∫ x
0
t2dt = 1

3
x4 =n(x)≤ 1

3
,

f∗′(x)≥−x
∫ 1

x

(
1−t2)t2/5dt+x

∫ x
0
t2t11/5dt

= 5x
(
1
26
x26/5− 1

17
x17/5+ 1

7
x7/5− 10

119

)

=m(x)≥−0.0935.

(4.7)

From (4.5), it follows that

f∗(x)= 1
2

(
x2−1)

∫ x
0
t2g(t)dt− 1

2
x2
∫ 1

x

(
1−t2)g(t)dt. (4.8)

By (3.14) and (3.16), we obtain

0≥ f∗(x)≥ 1
2

(
x2−1)

∫ x
0
t2t2/5dt− 1

2
x2
∫ 1

x

(
1−t2)t2/5dt

= (25)
119

x2(x7/5−1)= h(x)≥−0.0406.
(4.9)

Using similar arguments, we have

−0.43≤ f∗′′(x)≤ 4
3
. (4.10)

In summary, we get the following inequalities

−0.0406≤ f∗(x)≤ 0, −0.0935≤ f∗′(x)≤ 1
3
, −0.43≤ f∗′′(x)≤ 4

3
. (4.11)
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5. T has a fixed point. We define a norm on C1[0,1] by

‖f‖ :=max |f |+max
∣∣f ′∣∣, x ∈ [0,1]. (5.1)

Then C1[0,1] is a Banach space. It is easy to check that D in Section 2 is a nonempty,
closed, bounded, convex subset of C1[0,1]. By Sections 3 and 4, we see that T is
well defined and TD ⊆D. In addition, T maps bounded subsets of D into a compact
subset of D.
In fact, let K ⊆ D be any bounded and closed subset, {fi} ⊆ K be a sequence of

functions with images {f∗i } ⊆ Cl(T(K)) under T . Then |f∗′i| ≤ 1/3 on [0,1] for each i.
Therefore, {f∗i } is equicontinuous on [0,1]. Hence, by Arzela-Ascoli theorem, there
exist a subsequence {f∗ik} of {f∗i } and g∗ ∈ Cl(T(K)) such that ‖f∗ik −g∗‖ → 0 as
k→∞. Thus Cl(T(K)) is compact.
Now we prove that the operator T is continuous.
By the definition of T and (4.2), we only need prove that for any given f0 ∈ D and

any ε > 0, there exists δ > 0 such that as ‖f −f0‖< δ and f ∈D,

max
x∈[0,1]

∣∣g(x)−g0(x)∣∣< ε, (5.2)

where g and g0 are solutions of (5.3),

g′′ +
[
1+Qf
x

]
g′ −

[
1+Q(xf)′

x2

]
g = 0, g(0)= g(1)= 0, x ∈ [0,1].

g′′ +
[
1+Qf0
x

]
g′ −

[
1+Q(xf0)′

x2

]
g = 0, g(0)= g(1)= 0, x ∈ [0,1].

(5.3)

Let p(x)= g(x)−g0(x). Then by (5.3), we have

L[p]= p′′ +[1+Qf0]p′ −
[
1+Q(xf0)′

x2

]
p

=−
(
Q
x2

)[(
f −f0

)(
xg′ −g)−(f ′ −f ′0)xg]=−G(x),

(5.4)

with p(0) = p(1) = 0. For any 0 ≤ x ≤ ε, f ∈ D and 0 ≤Q ≤ 12.683, using (3.16), we
obtain ∣∣p(x)∣∣= ∣∣g(x)−g0(x)∣∣≤ 2x2/5 ≤ 2ε2/5 = ε1. (5.5)

For x ∈ [ε,1], ‖f −f0‖→ 0 and 0≤Q≤ 12.683, we claim that |p(x)|< ε1.
Set

ε∗ = (1−0.07884Q)ε1. (5.6)

If ‖f −f0‖ is sufficient by small, x ∈ [ε,1] and 0 ≤ Q ≤ 12.683, then by (3.16) and
(3.17), we have

∣∣G(x)∣∣≤ Q
ε2
[
max

{|xg′|+|xg|+|g|}]∥∥f −f0∥∥
≤ Q
ε2

(
11
5
+1+1

)∥∥f −f0∥∥
= 21Q

5ε2
∥∥f −f0∥∥< ε∗.

(5.7)
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Fix f0, let p be a solution of (5.4) with the boundary conditions |p(ε)| ≤ ε1 and p(1)=
0. By (5.7), we have

L[p]−ε∗ ≤ L[p]+F(x)≤ L[p]+ε∗, (ε ≤ x ≤ 1). (5.8)

Let p± be the solutions of the following problems

L[p]±ε∗ = 0, p±(1)= 0, p±(ε)= p(ε). (5.9)

Then using the comparison theorem, we show that

p−(x)≤ p(x)≤ p+(x), x ∈ [ε,1]. (5.10)

Nowwe prove that for anyx ∈ [ε,1], there isp+(ε)≤ ε1. In fact, we see thatp+(x)≤ ε1
as |p(ε)| ≤ ε1. If not, then there exists a point x+ ∈ (ε,1) such that p+(x+) > ε1. By
p+(ε)= p(ε)≤ ε1, there must be a point y+ ∈ (ε,1), such that p+(x) takes maximum
at y+, namely

p+
(
y+
)
> ε1, p+′

(
y+
)= 0, p+′′

(
y+
)
< 0. (5.11)

But by (5.6) and (5.11), we see that the following hold

p+′′
(
y+
)+ε∗ =

[
1+Qf0

(
y+
)+Qf ′0(y+)y+
y2+

]
p+
(
y+
)
> (1−0.07884Q)ε1. (5.12)

Hence, using (5.6), we get

p+′′
(
y+
)
> (1−0.07884Q)ε1−ε∗ = 0, (5.13)

a contradiction. For x ∈ [ε,1] and |p(ε)| ≤ ε1, we argue similarly and obtain p−(x)≥
−ε1. Thus, when x ∈ [ε,1] and |p(ε)| ≤ ε1, there be |p(x)| ≤ ε1.
Therefore, for any given ε > 0, if we choose

δ= ε∗

21Q/5ε2
, (5.14)

where ε∗ satisfies (5.6), then for f ∈ D, maxx∈[0,1] |g(x)− g0(x)| = ε1 = 2ε2/5 as
‖f −f0‖ < δ, and the continuity of T is proved.
To sum up, we see that the operator T satisfies the conditions of Schauder’s fixed

point theorem [2], and thus T has at least one fixed point in D.
By Sections 2, 3, 4, and 5, Theorem 1.1 is proved.
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