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HYDRODYNAMIC FLOW BETWEEN ROTATING ECCENTRIC
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Abstract. The flow of a viscous, incompressible fluid between two eccentric rotating
porous cylinders with suction/injection at both the cylinders, for very small clearance
ratio is studied. The expressions for various flow characteristics are obtained using per-
turbation analysis. Streamlines and pressure plots are shown graphically for various values
of flow parameters and discussed.
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1. Introduction. In the present investigation we have considered the viscous flow
between eccentric porous rotating cylinders. The effect of uniform suction and in-
jection is studied on the walls of the cylinders. Several authors have analysed flow
through rotating eccentric cylinders for various flow situations. In particular the com-
plex hydrodynamical lubrication problem as flow between two rotating eccentric cylin-
ders was analysed by Reynolds [10]. Wannier [13] presented an exact solution of the
Stokes equation for the flow between rotating eccentric cylinders. Here, the pressure
distribution reduces to the classical Sommerfeld solution of the Reynolds equation
in the limit of small clearance ratio, and provides a correction for curvature effects.
Wood [14] has studied the asymptotic expansion at large Reynolds number for steady
motion between non-coaxial eccentric rotating cylinders using modified bipolar coor-
dinate system. Kamal [6] has considered the effect of the inertial terms on the flow be-
tween rotating eccentric cylinders. As no restriction was laid on the clearance ratio, the
analysis is somewhat complicated when applied to the lubrication problem. Kulinski
and Ostrach [7] also have considered the effect of inertia on the flow in a journal
bearing by using a perturbation procedure for small eccentricity. Sood and Elrod [12]
have used numerical techniques to solve the full Navier-Stokes equations for the flow
between eccentric rotating cylinders but for a clearance ratio of 1.0 only. DiPrima and
Stuart [3] have studied the hydrodynamic flow between rotating eccentric cylinders
using the modified bipolar coordinate system. They derived the Sommerfeld pressure
distribution and associated flow from the Navier-Stokes equation by a straightforward
and systematic expansion in the clearance ratio (assumed small).
Dintenfass [2] considered the role of cartilage elasticity coupled with the non-

newtonian behaviour of synovial fluid to explain the joint lubrication. Dawson [4]
suggested the existence of more than one mode of lubrication namely boundary lu-
brication, and this idea was supported by McCutchen [9] who concluded that weeping
lubrication was not the sum total of joint lubrication but was supplemented with
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boundary lubrication. Fein [5] was first to give a mathematical model for synovial
joints. He concludes that the joint is hydrodynamically lubricated with other phe-
nomena such as the non-newtonian nature of the fluid weeping, playing a secondary
role. Ling [8] presented an analytical model to account for non-linearity of cartilage.
He considered the fluid filled cartilage as a composite which consists of (i) a rigid
substrate, and (ii) a fluid filled matrix layer. The two surfaces were modelled as two
circular porous discs whichwere pressedwith the fluid film in between. Themovement
of the synovial fluid in porous disc was taken to be governed by Darcy’s law. Chandra
[1] considered the porous plate model for synovial joint under squeezing. Sambasiva
Rao et al. [11] have studied the effect of thin film of synovial fluid contained between
slider bearings. Hence the problem of lubricated contact of the cartilage surface is
very complex and so only a step-by-step study seems to be feasible in this direction.
One of the most important area for the application of the problem is the human

(synovial) joints. Synovial joints provided by nature in human body to carry out the
trouble freemotion of a bone past another have long been identified as bearing system.
In fact these joints function as excellent bearings in tribological conditions. From an
engineering point of view, the synovial joints are weight bearing systems operating
under a wide range of loading conditions. The mechanism of the synovial joint is akin
to any bearing system in tribological conditions. Finally, even the simplest model of
the synovial joint must take into consideration the porosity of the cartilage and the
eccentricity of the two surfaces involved. Hence, here an attempt on the flow between
two eccentric rotating porous cylinders is made. To be exact in finding the effects of
the porosity on the flow field on a system, consider the flow in the porous media and
the slip in the tangential velocity field that one will encounter at the porous interface.
But here as the thickness of the porous medium in the human bones is very thin, it
is assumed that there is no tangential flow of lubricating fluid in the porous medium
and hence the slip expected at the porous interface is absent, thus considering only
a normal flow of the lubricating fluid into the porous cartilage. It is assumed that the
normal velocity of the fluid in the porous cartilage is uniform. These normal velocities
at the inner and outer cylinders are taken as v and u, respectively. Expressions for
various flow characteristics are obtained using perturbation analysis.

2. Mathematical analysis. We consider a viscous, incompressible fluid confined
between two infinitely long circular cylinders of radii a and b (b > a), with centers
set a distance “ae” apart. In order to ensure that the two cylinders do not touch each
other we have,

0≤ ε≤ 1, (2.1)

where

ε= e
δ
, δ= b−a

a
. (2.2)

The parameter ε is the eccentricity and δ the clearance ratio. The polar coordinate
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Figure 2.1. Geometry and coordinate systems.

system shown in Figure 2.1 has its origin at the axis of the inner cylinder with the
ray θ = 0 through the axis of the outer cylinder. As in [14], the modified bipolar
coordinates are introduced by means of the conformal transformation

Z = (aζ+γ)
1+γζ

, Z = reiθ, ζ = ρeiφ, (2.3)

where

γ = −(1+β)+[(1+β)2−4ε2β]1/2
2εβ

, (2.4)

β= [1+δ+εδ−γ]
1−(1+δ)γ−εγδ

. (2.5)

The coordinate curves ρ equal to constant are circles; in particular the inner and outer
cylinders are given by ρ = 1 and ρ = β, respectively. An advantage of the modified
bipolar coordinate system as compared to the usual bipolar coordinate system is that,
in the limit ε → 0, the ρ,φ coordinate system reduces to the r ,θ coordinate system
except for a scale factor of a. The Jacobian J of the transformation (2.3) is given by

J =
(
1+2γρcosφ+γ2ρ2

)2
(
1−γ2

)2 . (2.6)

The element of arc length in two dimensions is

ds2 = dr 2+r 2dθ2 = a2

J
dρ2+ a2ρ2

J
dφ2. (2.7)

Let uρ and uφ denote the velocity components in the ρ andφ directions, respectively,
and let p be the pressure, σ the density, and ν the kinematic viscosity. Then the



96 S. MEENA ET AL.

momentum and continuity equations are

∂uρ

∂t
+
√
J
a

uρ
∂uρ

∂ρ
+
√
J

aρ
uφ

∂uρ

∂φ
− 1
a

∂
∂φ

(√
J
ρ

)
uρuφ+ ρ

a
∂
∂ρ

(√
J
ρ

)
u2

φ

=−
√
J

aσ
∂p
∂ρ
+ ν

√
J

a2

∂
∂ρ

[
J
ρ

∂
∂ρ

(ρuρ√
J

)]
+ 1
ρ2

∂
∂φ

[
J

∂
∂φ

(uρ√
J

)]

+ ν
a2

(
− 2J
ρ2

∂uφ

∂φ
+ 1
ρ
∂J
∂ρ

∂uφ

∂φ
− 1
ρ

∂J
∂φ

∂uφ

∂ρ

)
,

(2.8)

∂uφ

∂t
+
√
J
a

uρ
∂uφ

∂ρ
+
√
J

aρ
uφ

∂uφ

∂φ
− ρ
a

∂
∂φ

(√
J
ρ

)
uρuφ+ 1

a
∂
∂φ

(√
J
ρ

)
u2

ρ

=−
√
J

aσρ
∂p
∂φ

+ ν
√
J

a2

∂
∂ρ

[
J
ρ

∂
∂ρ

(ρuφ√
J

)]
+ 1
ρ2

∂
∂φ

[
J

∂
∂φ

(uφ√
J

)]

+ ν
a2

(
2J
ρ2

∂uρ

∂φ
− 1
ρ
∂J
∂ρ

∂uρ

∂φ
+ 1
ρ

∂J
∂φ

∂uρ

∂ρ

)
,

(2.9)

∂
∂ρ

(
ρ√
J
uρ

)
+ ∂
∂φ

(uφ√
J

)
= 0. (2.10)

The boundary conditions are

uφ = q1, uρ = v, at ρ = 1,

uφ = q2, uρ =u, at ρ = β.
(2.11)

From the continuity (2.10) a stream function ψ can be introduced with

uρ =
√
J
ρ

∂ψ
∂φ

, uφ =−
√
J
∂ψ
∂ρ

. (2.12)

Assuming the flow to be steady and by using the vector form of the vorticity equation,
the vorticity ω in the axial direction is given by

1
ρ

(
∂ψ
∂φ

∂Ω
∂ρ

− ∂ψ
∂ρ

∂Ω
∂φ

)
= ν

a

(
∂2

∂ρ2
+ 1
ρ

∂
∂ρ
+ 1
ρ2

∂2

∂φ2

)
ω, (2.13)

where

ω=− J
a

(
∂2

∂ρ2
+ 1
ρ

∂
∂ρ
+ 1
ρ2

∂2

φ2

)
ψ. (2.14)

Using the fact that, in lubrication problems the clearance ratio δ is small and also to
facilitate the necessary algebraic calculations, it is convenient to choose α = β−1 as
the length scale. Equations (2.4) and (2.5) reveal

α(δ,ε)= β−1= δ
√
1−ε2

[
1− 1

2
δ
(
1−

√
1−ε2

)]
+O

(
δ3
)
, (2.15)

for δ small. Hence α is uniformly small for all ε, 0≤ ε≤ 1, when δ is small.
If we let

ρ = 1+αx, (2.16)

and introduce the following non-dimensional quantities

ψ=αq1Ψ , ω= q1Ω
aα

, u=αq2U, v =αq2V. (2.17)
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Then

uρ = αq1
√
J

ρ
∂ψ
∂φ

, uφ =−q1
√
J
∂ψ
∂x

. (2.18)

Now equations (2.13) and (2.14) take the form

(1+αx)−1RM

(
∂Ψ
∂φ

∂Ω
∂x

− ∂Ψ
∂x

∂Ω
∂φ

)
=
(

∂2

∂x2
+ α
1+αx

∂
∂x

+ α2

(1+αx)2
∂2

∂φ2

)
Ω, (2.19)

with

Ω =−J
(

∂2

∂x2
+ α
1+αx

∂
∂x

+ α2

(1+αx)2
∂2

∂φ2

)
Ψ . (2.20)

The parameter RM is the modified Reynolds number given by

RM = q1a
ν

α2. (2.21)

Consistent with the scaling (2.16), the pressure p takes the form

p = µq1
aα2

P, (2.22)

where µ = σν is the viscosity and P is the dimensionless pressure.
The boundary conditions (2.11) become

∂Ψ
∂x

=− 1√
J
,

∂Ψ
∂φ

= ηρ√
J
V at x = 0,

∂Ψ
∂x

=− η√
J
,

∂Ψ
∂φ

= ηρ√
J
U at x = 1,

(2.23)

where η= q2/q1.
From the above it is clear that the functional form of Ψ and P is

Ψ = Ψ(x,φ;ε,η,α,RM
)
, P = P

(
x,φ;ε,η,α,RM

)
. (2.24)

Expanding J in powers of α, we find that

J(x,φ;ε,α)= J0(φ;ε)+αJ1(x,φ;ε)+o
(
α2), (2.25)

where

J0(φ;ε)= (1−εcosφ)2

1−ε2
, (2.26)

J1(x,φ;ε)= 2(1−εcosφ)√
1−ε2

[
− ε(ε−cosφ)

2(1−ε2)
+ 1−εcosφ−√1−ε2√

1−ε2
x
]
. (2.27)

The expansions for Ψ and P are of the form

Ψ
(
x,φ;ε,η,α,RM

)
= Ψ00(x,φ;ε,η)+RMΨ10(x,φ;ε,η)+αΨ01(x,φ;ε,η)+O

(
α2,R2

M,αRM
) (2.28)

P
(
x,φ;ε,η,α,RM

)
= P00(x,φ;ε,η)+RMP10(x,φ;ε,η)+αP01(x,φ;ε,η)+O

(
α2,R2

M,αRM
)
.

(2.29)
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The expansion of Ω, obtained from equation (2.20), is

Ω
(
x,φ;ε,η,α,RM

)
=Ω00(x,φ;ε,η)+RMΩ10(x,φ;ε,η)+αΩ01(x,φ;ε,η)+O

(
α2,R2

M,αRM
)

=−J0 ∂
2Ψ00
∂x2

−RMJ0
∂2Ψ10
∂x2

−α
[
J0

∂2Ψ01
∂x2

+J1
∂2Ψ00
∂x2

+J0
∂Ψ00
∂x

]
.

(2.30)

Substituting these expansions into the differential equation (2.19) and the boundary
conditions (2.23) and making use of the expansion of J, we obtain three problems
for Ψ00, Ψ10, Ψ01 given in the following. In addition, it is necessary to make use of the
condition that the pressure P is singlevalued in φ. The appropriate equations for P00,
P10, P01, respectively, are obtained by introducing dimensionless variables in (2.9) and
then substituting the expansions (2.28) and (2.29) for Ψ and P .

The Reynolds approximation: α= 0, RM = 0.

∂4Ψ00
∂x4

= 0, (2.31)

∂Ψ00
∂φ

= ηV
√
1−ε2

1−εcosφ
,

∂Ψ00
∂x

=
√
1−ε2

1−εcosφ
at x = 0,

∂Ψ00
∂φ

= ηU
√
1−ε2

1−εcosφ
,

∂Ψ00
∂x

=− η
√
1−ε2

1−εcosφ
at x = 1,

(2.32)

∂P00
∂φ

=−J0 ∂
3Ψ00
∂x3

. (2.33)

The inertial or RM correction: α= 0, RM ≠ 0.

∂4Ψ10
∂x4

= ∂3Ψ00
∂x3

∂Ψ00
∂φ

− 1
J0

∂Ψ00
∂x

∂
∂φ

(
J0

∂2Ψ00
∂x2

)
, (2.34)

∂Ψ10
∂x

= ∂Ψ10
∂φ

= 0 at x = 0, x = 1, (2.35)

∂P10
∂φ

=−J0 ∂
3Ψ10
∂x3

+√J0
(
∂Ψ00
∂φ

∂
∂x

− ∂Ψ00
∂x

∂
∂φ

)(√
J0

∂Ψ00
∂x

)
. (2.36)

The curvature or α correction: α≠ 0, RM = 0.

∂4Ψ01
∂x4

=−2∂
3Ψ00
∂x3

− 1
J0

∂2

∂x2

(
J1

∂2Ψ00
∂x2

)
, (2.37)



HYDRODYNAMIC FLOW BETWEEN ROTATING ECCENTRIC CYLINDERS . . . 99

∂Ψ01
∂φ

= ηVε(ε−cosφ)
2(1−εcosφ)2

,

∂Ψ01
∂x

=− ε(ε−cosφ)
2(1−εcosφ)2

=M(φ) at x = 0,

∂Ψ01
∂φ

= ηU
(
2−ε2−εcosφ

)
2(1−εcosφ)2

at x = 1,

∂Ψ01
∂x

=−η
[(

2−ε2−εcosφ
)

2(1−εcosφ)2
−

√
1−ε2

(1−εcosφ)

]
=N(φ) at x = 1,

∂P01
∂φ

=
(
x+ J1

2J0

)
∂P00
∂φ

−J0
∂2

∂x2

(
∂Ψ01
∂x

+ J1
2J0

∂Ψ00
∂x

= Ψ00
)
.

(2.38)

3. Solutions of the successive problems. In this section, the solution of the above
three problems are given.

The Reynolds approximation: α= 0, RM = 0. The general solution of (2.31) is

Ψ00(x,φ)=
3∑

n=0
A00n(φ)xn. (3.1)

The functions A00n are determined so that the boundary conditions (2.32) are satis-
fied and so that P00 is periodic and singlevalued. This latter condition requires that∫ 2π
0 (∂P00/∂φ) dφ= 0.
We find

Ψ00(x,φ)=−
√
1−ε2

2+ε2
(η+1)(3x2−2x3)

+
√
1−ε2

1−εcosφ
[−x+(η+2)x2−(η+1)x3]

+2ηk(φ)
[
V +3(U−V)x2−2(U−V)x3],

(3.2)

P00(x,φ)= 24η(U−V)
(1−ε2)

[
−2εsinφ+ ε2

4
sin2φ+ 1

2

(
2+ε2

)
φ
]
K(φ)

+ 2+ε2

2
L(φ)+ 3

4

√
1−ε2 log(1−εcosφ)+

√
1−ε2

4
(1−εcosφ)

+ 6ε(η+1)(2−ε2−εcosφ
)
sinφ(

2+ε2
)√

1−ε2
+G00,

(3.3)

where

K(φ)= tan−1
√
1+ε
1−ε

tan
(
φ
2

)
, L(φ)=

∫
K(φ) dφ, (3.4)

A000 and G00 are arbitrary constants. Note that Ψ00 is symmetric and the pressure P00
is antisymmetric where the line φ= 0.
To show that (3.3) is truly the Sommerfeld pressure distribution it is necessary

to convert from the φ coordinate of the modified bipolar coordinate system to the θ
coordinate of the polar coordinate system. This is done as follows. On the circle ρ = 1,
r = a, it follows from (2.5) that

dθ = 1√
J

∣∣∣∣
ρ=1

dφ. (3.5)
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Substituting for J from equations (2.24), (2.25), and (2.26) we obtain

∫ θ

0
dθ =

∫φ

0

[ √
1−ε2

1−εcosφ
+α

ε(ε−cosφ)
2(1−εcosφ)2

+O
(
α2)] dφ. (3.6)

The integral on the right-hand side of (3.6) can be evaluated by using Sommerfeld
transformation, 1+εcosX = (1−ε2)/(1−εcosφ). We find that,

θ =X−α
2sinχ
e
√
1−ε2

+O
(
α2). (3.7)

In the limit α→ 0, we have θ = χ and 1+εcosθ = (1−ε2)/(1−εcosφ). It follows that

cosφ= ε+cosθ
1+cosθ , sinφ=

√
1−ε2 sinθ
1+εcosθ

. (3.8)

Using (3.8) and (2.15) to express α in terms of δ, we have from (3.3) and (2.22),

p−p0 = µq1
aδ2(1−ε2)

P000

= 6εµq1a(η+1)(2+εcosθ)sinθ
(b−a)2

(
2+ε2

)2(1+εcosθ)2
+ µq1a
(b−a)2

(
1−ε2

)

× 24η(U−V)(
1−ε2

)
{[
−2εsinφ+ ε2

4
sin2φ+ 1

2

(
2+ε2

)
φ
]
K(φ)

+ 2+ε2

2
L(φ)+ 3

4

√
1−ε2 log(1−εcosφ)

+
√
1−ε2

4
(1−εcosφ)

}
+O

(
α,RM

)
,

(3.9)

where p0 is a constant. When the outer cylinder is at rest, that is, η = 0 this is the
Sommerfeld pressure distribution.

The inertial or RM correction: α= 0, RM ≠ 0. Having obtained Ψ00, the right-
hand side of (2.34) is given as follows:

− 2ε
(
1−ε2

)
sinφ

(1−εcosφ)2

3∑
n=0

B10n(φ)xn+[V +3(U−V)x2−2(U−V)x3]C100(φ)

+[x−(η+2)x2+(η+1)x3]D100(φ)−(x2−x
)
E100(φ)−(x3−x2)F100(φ)

+[6(η+1)x3−(7η+11)x2+2(η+3)x−1]H100(φ)−(12x3−18x2+6x)M100(φ),
(3.10)
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where

B100(φ)= 6(η+1)
2+ε2

− η+2
1−εcosφ

,

B101(φ)=−18(η+1)(η+3)
2+ε2

− 36(η+1)2(1−εcosφ)
(2+ε2)2

+ 2(7+7η+η2)
1−εcosφ

,

B102(φ)= 36(η+1)(3+2η)
2+ε2

− 108(η+1)2(1−εcosφ)(
2+ε2

)2 − 12(η+1)(η+2)
1−εcosφ

,

B103(φ)= 12(η+1)2
[
− 5
2+ε2

+ 1
1−εcosφ

+ 6(1−εcosφ)(
2+ε2

)2
]
,

(3.11)

C100(φ)= η
√
1−ε2

1−εcosφ

[
−24η(U−V)K(φ)− 6

√
1−ε2(η+1)
1−εcosφ

+ 12(η+1)√1−ε2(
2+ε2

) ]
,

(3.12)

D100(φ)=−24η(U−V)K(φ)ε
√
1−ε2 sin(φ)

(1−εcosφ)2
, (3.13)

E100(φ)=−12η(1−ε2)(U−V)K(φ)
(1−εcosφ)2

{
24η(U−V)(1−εcosφ)εsinφ

1−ε2
K(φ),

+ 2ε(η+2)sinφ√
1−ε2

+ 6η(U−V)(1−εcosφ)√
1−ε2

,

− 12ε(η+1)sinφ(1−εcosφ)(
2+ε2

)√
1−ε2

}
,

(3.14)

F100(φ)=−12η
√
1−ε2(U−V)K(φ)
(1−εcosφ)2

{
− 48εη(U−V)(1−εcosφ)sinφ√

1−ε2
K(φ),

−12η(U−V)(1−εcosφ)−6ε(η+1)sinφ,

+ 24ε(η+1)(1−εcosφ)sinφ(
2+ε2

) }
,

(3.15)

H100(φ)=−6η(U−V)
√
1−ε2

(1−εcosφ)2
(
1+4ε

√
1−ε2K(φ)sinφ

)
, (3.16)

M100(φ)=−6η(U−V)
(η+1)(1−ε2

)
(
2+ε2

)
(1−εcosφ)2

(
1+4ε

√
1−ε2K(φ)sinφ

)
. (3.17)

The general solution of (2.34) is given by

Ψ10(x,φ)=
3∑

n=0
A10n(φ)xn− 2ε

(
1−ε2

)
sinφ

(1−εcosφ)2

3∑
n=0

B10n(φ)
n!

(n+4)!x
n+4

+ x4

7!

(
210V +6(U−V)(7−2x)x2)C100(φ)

+ 2x5

7!

(
21−7(η+2)x+3(η+1)x2)D100(φ)

− 2x5

6!
(x−3)E100(φ)− 2x6

7!
(3x−7)F100(φ)

+ 2x4

7!

(
18(η+1)x3−7(7η+11)x2+42(η+3)x−105)H100(φ)

− x5

140

(
2x2−7x+7)M100(φ).

(3.18)
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The functions involving φ are determined so that the boundary conditions (2.35) are
satisfied and so that P10 is periodic and singlevalued. Thus we have

A101(φ)= 0, (3.19)

A102(φ)

=−2ε
(
1−ε2

)
sinφ

(1−εcosφ)2

3∑
n=0

(n+1)!
(n+4)!B10n(φ)+ 13U+22V

840
C100(φ)+ 24−18η

7
D100(φ)

+ 1
120

E100(φ)+ 1
280

F100(φ)+ 1
168

(5η−16)H100(φ)+ 33
280

M100(φ)

+ 3
(
1−ε2

)
η

35
(
2+ε2

) [ (η+1)(13U−197V)
2+ε2

− 118
3

η(U−V)− 2
3
(31V +74U)

]
,

(3.20)

A103(φ)

= 2ε
(
1−ε2)sinφ

(1−εcosφ)2

3∑
n=0

(n+2)n!
(n+4)! B10n(φ)− (9U+26V)

420
C100(φ)− (22−13η)

2520
D100(φ)

− 1
72

E100(φ)− 26
7!

F100(φ)− 1
1260

(32η−101)H100(φ)− 13
210

M100(φ)

− 2
(
1−ε2

)
η

35
(
2+ε2

) [ (η+1)(13U−197V)
2+ε2

− 118
3

η(U−V)− 2
3
(31V +74U)

]
,

(3.21)

P10(φ;ε)

=−3ε(η+1)
2

35(2+ε2) cosφ+
1
7

(
1− 4

5
η+η2

)
log(1−εcosφ)− 27

35
(η+1)2(
2+ε2

)2 (1−εcosφ)2

+ 26V+9U
70

S1(φ)− 13η−22
420

S2(φ)+ 1
12

S3(φ)
13
420

S4(φ)+ 32η−101
210

S5(φ)

+ 13
35

S6(φ)+ 12√
1−ε2

η2V(U−V)S7(φ)− 6η(η+1)
2+ε2

VS8(φ)+2η(η+2)Vφ

+
(
12η(η+1)(13U−197V)

35(2+ε2)2
− 1472η2(U−V)

35
(
2+ε2

) − 24η(31V +74U)
105

(
2+ε2

) )

×
(
2+ε2

2
φ−2εsinφ+ ε2

4
sin(2φ)

)
,

(3.22)

where

S1(φ)=− 24η2
√
1−ε2

(U−V)
[
L(φ)−εK(φ)sinφ+ 1

2

√
1−ε2 log(1−εcosφ)

]

+6η(η+1)φ+ 12η(η+1)
2+ε2

(φ−εsinφ),
(3.23)

S2(φ)=− 24εη√
1−ε2

(U−V)
[
−cosφK(φ)−

√
1−ε2φ+ 1

ε
K(φ)

]
, (3.24)
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S3(φ)=−144η
2

1−ε2
(U−V)2

[
(1−εcosφ)2K(φ)2−

√
1−ε2

2
L(φ)+ ε

2
K(φ)sinφ

− 1
4

(
1−ε2

)
log(1−εcosφ)

]

− 24η(η+2)√
1−ε2

(U−V)
[
−εK(φ)cosφ−

√
1−ε2

4
φ+ ε

√
1−ε2

4
sinφ

]
,

(3.25)

S4(φ)=− 576η2

2
(
1−ε2

) (U−V)2
(
K(φ)2

)
(1−εcosφ)2− 144η2(U−V)√

1−ε2

×
[
L(φ)−εK(φ)sinφ+ 1−ε2

2
log(1−εcosφ)

]

+ 72η(η+1)√
1−ε2

(U−V)
[
−
√
1−ε2

2
φ+K(φ)(1−εcosφ)

]

− 288η(η+1)(
2+ε2

)√
1−ε2

(U−V)
[
−
√
1−ε2

4
+ 1
2
K(φ)(1−εcosφ)2+ ε

4
sinφ

]
,

(3.26)

S5(φ)=−24η(U−V)
[
(1−εcosφ)K(φ)−

√
1−ε2

2
φ
]
− 6η(U−V)√

1−ε2
φ, (3.27)

S6(φ)=−24η(η+1)(U−V)
√
1−ε2(

2+ε2
) [

(1−εcosφ)K(φ)−φ
2

]

− 6η(η+1)
2+ε2

(U−V)φ,
(3.28)

S7(φ)= L(φ)−εK(φ)sinφ+
√
1−ε2

2
log(1−εcosφ), (3.29)

S8(φ)=φ−εsinφ. (3.30)

We observe that the stream function Ψ10 is antisymmetric and the pressure is sym-
metric about the line φ= 0.

The curvature or α correction: α≠ 0, RM = 0. The right-hand side of (2.37)
is given by

48η(U−V)K(φ)
(1−εcosφ)

(
3−3εcosφ−2

√
1−ε2

)
+24B010(φ,ε), (3.31)

where

B010(φ,ε)=
ε
√
1−ε2(η+1)(2cosφ+ε)

(
3−3εcosφ−2√1−ε2

)
2
(
2+ε2

)
(1−εcosφ)2

,

Ψ01(x,φ)=
3∑

n=0
A01n(φ)xn+[B010(φ)−(U−V)C010(φ)

]
x4,

(3.32)

C010(φ)=− 2ηK(φ)
(1−εcosφ)

(
3−3εcosφ−2

√
1−ε2

)
, (3.33)
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A010(φ)= S010+a010, (3.34)

A011(φ)=M(φ)=− ε(ε−cosφ)
2(1−εcosφ)2

, (3.35)

A012(φ)=−2M(φ)−N(φ)+B010(φ)−(U−V)C010(φ)−3S010

+3
[

ηUεsinφ
2(1−εcosφ)

+ 2ηUK(φ)√
1−ε2

+ 1−ε2

3
(
2+ε2

) − (η+1)(4−ε2−3√1−ε2
)

6
(
2+ε2

)
]
,

(3.36)

A013(φ)=M(φ)+N(φ)+2B010(φ)−2(U−V)C010(φ)+2S010

−2
[

ηUεsinφ
2(1−εcosφ)

+ 2ηUK(φ)√
1−ε2

+ 1−ε2

3
(
2+ε2

) − (η+1)(4−ε2−3√1−ε2
)

6
(
2+ε2

)
]
,

(3.37)

S010(φ)=− ηVεsinφ
2(1−εcosφ)

, (3.38)

and the pressure is as follows:

P01(φ;ε)=
[
− 8ε
2+ε2

+(η+1)
(
− ε
1−ε2

+ 6ε
(
2−ε2

)
(
2+ε2

)√
1−ε2

)]
sinφ

+
[

ε2

2+ε2
+ η+1

2

(
ε2

1−ε2
− 6ε2(

2+ε2
)√

1−ε2

)
sin2φ

]

+
[
6η(U−V)(
1−ε2

)3/2
(
2ε2+6

√
1−ε2+3ε2

√
1−ε2−4

)
+ 12ηU

(
2+ε2

)
(
1−ε2

)3/2
]
L(φ)

+ 24εη(
1−ε2

)3/2 sinφK(φ)
(
2−3

√
1−ε2(U−V)−2U

)

+ 3η(
1−ε2

) log(1−εcosφ)
(
−3
(
2−3

√
1−ε2(U−V)+2(3U+V)

))

+ 3ηε2(
1−ε2

)3/2 sin2φK(φ)
(
−
(
2−3

√
1−ε2(U−V)+2U

))

+ 3ηε(
1−ε2

) cosφ(2−3√1−ε2(U−V)−4U
)

+ 3ηUε2

2
(
1−ε2

) cos2φ+ 6ηV(
1−ε2

) + 9η(U−V)√
1−ε2

.

(3.39)

As in the Reynolds approximation, Ψ01 is symmetric and the pressure P01 is antisym-
metric about the line φ= 0.

4. Results and discussions. Having calculated the streamfunction and pressure
distribution, graphs are plotted to study the effect of suction/injection on the flow
values of eccentricity ranging between 0.3 and 0.5 with η(= q2/q1) the ratio of the
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velocity of the outer to the inner cylinder to be 2 and −1. Figures 1, 2, 3, 4, and 5
display the contour plot of the stream function Ψ(x,φ) for values of ε = 0.3, η = 2
and RM = 0.01. It has been observed that the streamlines are almost circular following
the contour of the body. Graphs clearly reveal that change in the value of U and V
does not affect the flow pattern for a small value of ε with η = 2.0. Figures 6, 7, 8, 9,
and 10 show the streamline pattern for the flow between counter rotating cylinders.
Separation is observed in all cases obtained by varying the signs of U and V . It is
seen that the outer cylinder drags more fluid with itself than the inner cylinder. As
the values of U and V vary the flow pattern gets slightly deviated with a change in
the sense of movement. As the values of U and V vary the flow pattern gets slightly
deviated with a change in the sense of movement. Now from Figures 1, 2, 3, 4, 5, 6, 7,
8, 9, and 10 it can be concluded that when the cylinders rotate with equal speeds but

(1) U = V = 0. (2) U = 0.133682; V = 0.2661364.

(3) U =−0.133682; V = 0.2661364. (4) U = 0.133682; V =−0.2661364.

(5) U =−0.133682; V =−0.2661364.

Figures 1, 2, 3, 4, and 5 give the streamlines for ε = 0.3; η = 2.0; RM =
0.01; α= 0.939368.
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in opposite direction, the effect of suction/injection is felt even for a small value of
the eccentricity parameter.
Now increasing the eccentricity parameter ε to 0.5, as in the previous case, the

streamlines are drawn for the same values of η, that is, 2 and −1. For η = 2 the
streamline pattern is shown in Figures 11, 12, 13, 14, and 15. The streamline patterns
show a small deviation from the usual circular pattern. Comparing the same with the
case for which ε= 0.3, it has been observed that eccentricity plays a vital role in flow
separation. The pattern remains unaltered for various values of U and V except with
a change in the sense of movement. Finally, from Figures 16, 17, 18, 19, and 20 we
observe a clear separation which encircles the inner cylinder. There is a slight variation

(6) U = V = 0. (7) U = 0.2661364; V = 0.5322728.

(8) U =−0.2661364; V = 0.5322728. (9) U = 0.2661364; V =−0.5322728.

(10) U =−0.2661364; V =−0.5322728.

Figures 6, 7, 8, 9, and 10 give the streamlines for ε= 0.3; η=−1.0; RM = 0.01; α=
0.939368.
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in the separated flow region which gets shifted in accordance to the values assigned
to U and V .

(11) U = V = 0. (12) U = 0.1509782; V = 0.3019564.

(13) U =−0.1509782; V = 0.3019564. (14) U = 0.1509782; V =−0.3019564.

(15) U =−0.1509782; V =−0.3019564.

Figures 11, 12, 13, 14, and 15 give the streamlines for ε = 0.5; η = 2.0; RM =
0.01; α= 0.827934.

Figures 21(a–e), 22(a–e), 23(a–e), and 24(a–e) show the corresponding pressure
curves for various physical parameters. For ε = 0.3, η = 2, RM = 0.01 and with U =
V = 0, that is, the case where there is no suction/injection. Figure 21a reveals that
as θ increases, pressure increases to a certain limit (θ = 180) and then gradually de-
creases indicating the fact that pressure is periodic in nature. Figures 21b and 21c
show the pressure plots for the U < V . There is a fall in the magnitude pressure as
in comparison with Figure 21a. For U > V , there is a slight rise in the magnitude of
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pressure as observed in Figures 21d and 21e. Figures 21a, 21b, 21c, 21d, and 21e are
clubbed into a single graph (Figure 21(a–e)) indicating the effect of suction/injection
for ε= 0.3 and η= 2.0. This graph clearly reveals the periodic nature of pressure.
As discussed in the above case, the pressure graphs are drawn for ε= 0.3, η=−1,

RM = 0.01. Here the cylinders rotate with equal speed in opposite directions. Thus
eventhough the patterns remain alike here the trend is reversed. This is seen from
Figures 22a, 22b, 22c, 22d, and 22e. Similarly changing the values of the eccentricity
parameter to 0.5, the pressure distribution is shown for η= 2 and −1 in Figures 21(a–
e), 22(a–e), 23(a–e), and 24(a–e).

(16) U = V = 0. (17) U = 0.3019564; V = 0.6039128.

(18) U =−0.3019564; V = 0.6039128. (19) U = 0.3019564; V =−0.6039128.

(20) U =−0.3019564; V =−0.6039128.

Figures 16, 17, 18, 19, and 20 give the streamlines for ε = 0.5; η = −1.0; RM =
0.01; α= 0.939368.
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(a) U = V = 0.
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(c) U =−0.133682; V = 0.2661364.
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(d) U = 0.133682; V =−0.2661364.
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(e) U =−0.133682; V =−0.2661364.
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Figure 21. The pressure distribution for ε= 0.3; η= 2.0; RM = 0.01; α= 0.939368.
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(a) U = V = 0.
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(b) U = 0.2661364; V = 0.5322728.
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(c) U =−0.2661364; V = 0.5322728.
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(d) U = 0.2661364; V =−0.5322728.

0 1 2 3 4 5 6 7
−200

−150

−100

−50

0

p

θ

(e) U =−0.2661364; V =−0.5322728.
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Figure 22. The pressure distribution for ε= 0.3; η=−1.0; RM = 0.01; α= 0.939368.
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(a) U = V = 0.
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(b) U = 0.1509782; V = 0.3019564.
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(c) U =−0.1509782; V = 0.3019564.
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(d) U = 0.1509782; V =−0.3019564.
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(e) U =−0.1509782; V =−0.3019564.
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Figure 23. The pressure distribution for ε= 0.5; η= 2.0; RM = 0.01; α= 0.827934.
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(a) U = V = 0.
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(b) U = 0.3019564; V = 0.6039128.
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(c) U =−0.3019564; V = 0.6039128.
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(d) U = 0.3019564; V =−0.6039128.
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(e) U =−0.3019564; V =−0.6039128.
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Figure 24. The pressure distribution for ε= 0.5; η=−1.0; RM = 0.01; α= 0.939368.
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