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Abstract. Solving systems of nonlinear equations and inequalities is of critical impor-
tance in many engineering problems. In general, the existence of inequalities in the prob-
lem adds to its difficulty. We propose a new projected Hessian Gauss-Newton algorithm
for solving general nonlinear systems of equalities and inequalities. The algorithm uses
the projected Gauss-Newton Hessian in conjunction with an active set strategy that identi-
fies active inequalities and a trust-region globalization strategy that ensures convergence
from any starting point. We also present a global convergence theory for the proposed
algorithm.
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1. Introduction. The solution of systems of nonlinear equations and inequalities is
the goal of many scientific and engineering applications. In constrained optimization
problems this task is often required to ensure that the feasibility set is not empty. This
is critical specially in algorithms that are based on the assumption that the feasibility
region is not empty, for example, interior-pointmethods, (cf. El-Bakry, Tapia, Tsuchiya,
and Zhang [6]). In this paper, we provide a new algorithm for effectively solving such
systems.

In this paper, we consider the problem of finding a solution x� that satisfies the
following set of nonlinear equalities and inequalities:

F(x)= 0, G(x)≤ 0, (1.1)

where x ∈�n, F = (f1,f2, . . . ,fm)T , and G = (g1,g2, . . . ,gp)T . We assume that m ≤ n
and no restriction is imposed on p. The functions fi, i= 1, . . . ,m and gj, j = 1, . . . ,p
are assumed to be twice continuously differentiable.

We define the indicator matrix W(x)∈ �p×p , whose diagonal entries are

wi(x)=

1, if gi(x)≥ 0,

0, if gi(x) < 0.
(1.2)

Using this matrix, problem (1.1) can be transformed to the following equivalent
equality constrained optimization problem:

minimize
∥∥W(x)G(x)

∥∥2
2, subject to F(x)= 0. (1.3)
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The matrix W(x) is discontinuous; however, the function W(x)G(x) is Lipschitz
continuous and the function G(x)TW(x)G(x) is continuously differentiable (Dennis,
El-Alem, and Williamson [3]).

Our proposed algorithm is iterative. We start with a point x0 ∈�n. Then the algo-
rithm generates a sequence of iterates {xk}. One iteration of the algorithm produces,
at the point xk, a point xk+1 = xk+ sk that is a better approximation to a solution
x� than xk. We measure the progress towards a solution using the �2 exact penalty
function associated with problem (1.3);

Φ(x;r)=G(x)TW(x)G(x)+rF(x)TF(x), (1.4)

where r > 0 is a parameter. Our algorithm uses the trust-region globalization strategy
to ensure that, from any starting point x0, the sequence of iterates {xk} generated
by the algorithm converges to a solution of problem (1.3). The basic idea of the trust-
region algorithms is as follows. Approximate problem (1.3) by a model trust-region
subproblem. The trial step is obtained by solving this subproblem. The trial step is
tested and the trust-region radius is updated accordingly. If the step is accepted,
then we set xk+1 = xk+sk. Otherwise, the radius of the trust-region is decreased and
another trial step is computed using the new value of the trust-region radius. Detailed
description of this algorithm is given in Section 2.

The following notations are used throughout the rest of the paper. Subscripted func-
tions are function values at particular points; for example, Fk = F(xk),Gk =G(xk) and
so on. However, the arguments of the functions are not abbreviated when emphasizing
the dependence of the functions on their arguments. The ith component of a vector
V(xk) is denoted by either (Vk)i or Vi(xk). We use the same symbol 0 to denote the
real number zero, the zero vector, and the zero matrix. Finally, all norms used in this
paper are �2-norms.

2. Algorithmic framework. This section is devoted to present the detailed descrip-
tion of our trust-region algorithm for solving problem (1.1). The reduced Hessian ap-
proach is used to compute a trial step sk. In particular, the trial step sk is decomposed
into two orthogonal components; the normal component uk and the tangential com-
ponent vk. The trial step sk has the form sk =uk+vk =uk+Zkv̄k, where Zk is a matrix
whose columns form an orthonormal basis for the null space of ∇FT

k .
The matrix Z(x) can be obtained from the QR factorization of ∇F(x) as follows:

∇F(x)= [Y(x)Z(x)
][R(x)

0

]
, (2.1)

where Y(x) is the matrix whose columns form an orthonormal basis for the column
space of ∇F(x) and R(x) is an m×m upper triangular matrix. When ∇F(x) has full
column rank, the matrix Y(x)∈�n×m, Z(x)∈�n×(n−m), and R(x) is nonsingular.

Using this factorization, the first-order necessary conditions for a point x� to be a
stationary point of problem (1.3) can be written in the following form:

[
Z(x�)T∇G(x�)W(x�)G(x�)

F(x�)

]
=
[
0
0

]
. (2.2)
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We obtain the normal component uk by solving the following trust-region subprob-
lem:

minimize
1
2

∥∥∇FT
k u+Fk

∥∥2, subject to ‖u‖ ≤ σ∆k (2.3)

for some σ ∈ (0,1), where ∆k is the trust-region radius.
Given the normal component uk, we compute the tangential component vk by solv-

ing the following trust-region subproblem:

minimize
(∇GkWkGk+∇GkWk∇GT

kuk
)TZkv̄+ 1

2
v̄TZT

k∇GkWk∇GT
kZkv̄,

subject to ‖Zkv̄‖ ≤
√
∆2

k−‖uk‖2,
(2.4)

then, we set vk = Zkv̄k.
Once the trial step is computed, we test it to determine whether it is accepted. To

do that, we compare the actual reduction in the merit function in moving from xk to
xk+sk versus the predicted reduction. We define the actual reduction as

Aredk =GT
kWkGk−G

(
xk+sk

)TW(xk+sk
)
G
(
xk+sk

)
+rk

[
‖Fk‖2−

∥∥F(xk+sk
)∥∥2]. (2.5)

The predicted reduction in the merit function is defined to be

Predk = ‖WkGk‖2−
∥∥Wk

(
Gk+∇GT

k sk
)∥∥2+rk

[
‖Fk‖2−

∥∥Fk+∇FT
k sk

∥∥2]. (2.6)

After computing sk, the parameter rk is updated to ensure that Predk ≥ 0. Our way
of updating rk is presented in Step 3 of Algorithm 2.1.

After updating rk, the step is tested for acceptance. If Aredk /Predk < η1, where
η1 ∈ (0,1) is a small fixed constant, then the step is rejected. In this case, the radius
of the trust-region ∆k is decreased by setting ∆k = α1‖sk‖, where α1 ∈ (0,1), and
another trial step is computed using the new trust-region radius.

If Aredk /Predk ≥ η1, then the step is accepted and the trust-region radius is up-
dated. Our way of updating ∆k is presented in Step 4 of Algorithm 2.1.

Finally, we use the first-order necessary conditions (2.2) to terminate the algorithm.
The algorithm is terminated when, for some εtol > 0,

∥∥ZT
k∇GkWkGk

∥∥+‖Fk‖ ≤ εtol. (2.7)

Now, we present the algorithmic framework of our proposed method.

Algorithm 2.1

Step 0 (initialization).
Given x0 ∈�n, compute W0. Set r0 = 1 and ζ = 0.1.
Choose εtol,α1,α2, η1, η2,∆min,∆max, and∆0 such that εtol > 0, 0<α1 < 1<α2,
0< η1 < η2 < 1, and ∆min ≤∆0 ≤∆max.
Set k= 0.

Step 1 (test for convergence).
If ‖ZT

k∇GkWkGk‖+‖Fk‖ ≤ εtol, then terminate the algorithm.
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Step 2 (compute a trial step).
If ‖Fk‖ = 0, then

(a) Set uk = 0.
(b) Compute v̄k by solving problem (2.4) with uk = 0.
(c) Set sk = Zkv̄k.

Else
(a) Compute uk by solving problem (2.3).
(b) If ‖ZT

k (∇GkWkGk+∇GkWk∇GT
kuk)‖ = 0, then set v̄k = 0.

Else, compute v̄k by solving (2.4).
End if.

(c) Set sk =uk+Zkv̄k and xk+1 = xk+sk.
End if.

Step 3 (update the parameter rk).
(a) Set rk = rk−1.
(b) If Predk ≤ rk/2[‖Fk‖2−‖Fk+∇FT

k sk‖2], then set

rk = 2
[
G
(
xk+sk

)TW(xk+sk
)
G
(
xk+sk

)−GkWkGk
]

‖Fk‖2−
∥∥∥Fk+∇FT

k sk
∥∥∥2 +ζ. (2.8)

End if.

Step 4 (test the step and update ∆k).
If Aredk /Predk < η1, then

Set ∆k =α1‖sk‖.
Go to Step 2.

Else if η1 ≤Aredk /Predk < η2, then
Set xk+1 = xk+sk.
Set ∆k+1 =max(∆k,∆min).

Else
Set xk+1 = xk+sk.
Set ∆k+1 =min{∆max,max{∆min,α2∆k}}.

End if.

Step 5. Set k= k+1 and go to Step 1.

It is worthmentioning that either direct or iterativemethods can be used to solve the
trust-region subproblems arising in the above algorithm. Recently Abdel-Aziz [2] pro-
posed a new method for computing the projection using implicitly restarted Lanczos
method which proved to be very successful in solving nonlinear structural eigensys-
tems (see Abdel-Aziz [1]).

3. Convergence analysis. In this section, we present our global convergence the-
ory. However, for the global convergence results to follow, we require some assump-
tions to be satisfied by the problem. Let {xk} be the sequence of points generated by
the algorithm and let Ω be a convex subset of �n that contains all iterates xk and
xk+sk, for all trial steps sk examined in the course of the algorithm. On the set Ω, the
following assumptions are imposed.
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(A1) The functions F and G are twice continuously differentiable for all x ∈Ω.
(A2) The matrix ∇F(x) has full column rank.
(A3) All of F(x),∇F(x),G(x),∇G(x),∇2fi(x) for i = 1, . . . ,m,∇2gj(x), for j =

1, . . . ,p, and (∇F(x)T∇F(x))−1 are uniformly bounded in Ω.

3.1. Important lemmas. We present some important lemmas that are needed in
the subsequent proofs.

Lemma 3.1. Let assumptions (A1), (A2), and (A3) hold, then at any iteration k,

‖uk‖ ≤K1‖Fk‖, (3.1)

where K1 is a positive constant independent of k.

Proof. The proof is similar to the proof of [4, Lemma 7.1].

In the following lemma, we prove that, at any iteration k, the predicted reduction
in the 2-norm of the linearized constraints is at least equal to the decrease obtained
by the Cauchy step.

Lemma 3.2. Let assumptions (A1), (A2), and (A3) hold, then the normal component
uk of the trial step satisfies

‖Fk‖2−
∥∥Fk+∇FT

k uk
∥∥2 ≥K2‖Fk‖min

{
∆k,‖Fk‖

}
, (3.2)

where K2 is a positive constant independent of k.

Proof. See Powell [8].

Lemma 3.3. Let assumptions (A1), (A2), and (A3) hold. Then the predicted decrease
obtained by the trial step satisfies

Predk ≥ rk
K2

2
‖Fk‖min

{
∆k,‖Fk‖

}
, (3.3)

where K2 is as in Lemma 3.2.

Proof. The proof follows directly from our way of updating the parameter rk and
Lemma 3.2.

The following lemma provides a lower bound on the decrease obtained by the step
sk on the linearization of ‖W(xk)G(xk+sk)‖2.

Lemma 3.4. Let assumptions (A1), (A2), and (A3) hold. Then

‖WkGk‖2−
∥∥Wk

(
Gk+∇GT

k sk
)∥∥2

≥K3
∥∥ZT

k
(∇GkWkGk+∇GkWk∇GT

kuk
)∥∥

×min
{∥∥ZT

k
(∇GkWkGk+∇GkWk∇GT

kuk
)∥∥, √∆2

k−‖uk‖2
}

−2‖uk‖‖∇GkWkGk‖−
∥∥Wk∇GT

kuk
∥∥2,

(3.4)

where K3 is a positive constant independent of k.
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Proof. From the way of computing the step vk, it satisfies the fraction of Cauchy
decrease condition. Hence, there exists a constant K3 > 0 independent of k, such that

−2(∇GkWkGk+∇GkWk∇GT
kuk

)TZkv̄k− v̄T
k Z

T
k∇GkWk∇GT

kZkv̄k

≥K3
∥∥ZT

k
(∇GkWkGk+∇GkWk∇GT

kuk
)∥∥

×min
{∥∥ZT

k
(∇GkWkGk+∇GkWk∇GT

kuk
)∥∥, √∆2

k−‖uk‖2
}
.

(3.5)

See Moré [7] for a proof. We also have,

‖WkGk‖2−
∥∥Wk

(
Gk+∇GT

k sk
)∥∥2 ≥−2

(∇GkWkGk+∇GkWk∇GT
kuk

)TZkv̄k

− v̄T
k Z

T
k∇GkWk∇GT

kZkv̄k

−2GT
kWk∇GT

kuk−uT
k∇GkWk∇GT

kuk.

(3.6)

The proof follows from inequalities (3.5) and (3.6).

Lemma 3.5. At any iteration k, Wk+1 =Wk+Dk, where D(xk)∈�p×p is a diagonal
matrix whose diagonal entries are

(dk)i =



1, if

(
gk
)
i < 0 and

(
gk+1

)
i ≥ 0,

−1, if
(
gk
)
i ≥ 0 and

(
gk+1

)
i < 0,

0, otherwise.

(3.7)

Proof. The proof is straightforward.

Lemma 3.6. Let assumptions (A1) and (A3) hold. At any iteration k, there exists a
positive constant K4 independent of k, such that

‖DkGk‖ ≤K4‖sk‖, (3.8)

where Dk ∈�p×p is the diagonal matrix whose diagonal entries are given in (3.7).

Proof. See El-Alem and El-Sobky [5, Lemma 5.6].

The following two lemmas give upper bounds on the difference between the actual
reduction and the predicted reduction.

Lemma 3.7. Let assumptions (A1), (A2), and (A3) hold, then

|Aredk−Predk | ≤K5‖sk‖2
(
1+rk‖Fk‖+rk‖sk‖

)
, (3.9)

where K5 is a positive constant independent of k.

Proof. Using (2.5), (2.6), and Lemma 3.5, we have

|Aredk−Predk | ≤
∣∣∣∥∥Wk

(
Gk+∇GT

k sk
)∥∥2−GT

k+1(Wk+Dk)Gk+1
∣∣∣

×rk
∣∣∣∥∥Fk+∇FT

k sk
∥∥2−‖Fk+1‖2∣∣∣. (3.10)
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Therefore,

Aredk−Predk ≤
∣∣∣sTk

[
∇GkWk∇GT

k −∇G(xk+ξ1sk)Wk∇G(xk+ξ1sk)T
]
sk
∣∣∣

+
∣∣∣sTk∇2G

(
xk+ξ1sk

)
WkG

(
xk+ξ1sk

)
sk
∣∣∣

+
∥∥∥Dk

[
Gk+∇G

(
xk+ξ2sk

)T sk]∥∥∥2
+rk

∣∣∣sTk
[
∇Fk∇FT

k −∇F
(
xk+ξ3sk

)∇F
(
xk+ξ3sk

)T]sk∣∣∣
+rk

∣∣∣sTk∇2F
(
xk+ξ3sk

)
F
(
xk+ξ3sk

)
sk
∣∣∣,

(3.11)

for some ξ1,ξ2,and ξ3 ∈ (0,1). Hence, by using the assumptions and inequality (3.8),
the proof follows.

Lemma 3.8. Let assumptions (A1), (A2), and (A3) hold, then

∣∣Aredk−Predk
∣∣≤K6rk‖sk‖2, (3.12)

where K6 is a positive constant independent of k.

Proof. The proof follows directly from Lemma 3.7, the fact that rk ≥ 1, and the
problem assumptions.

The following lemma gives a lower bound on the predicted decrease obtained by
the trial step.

Lemma 3.9. Let assumptions (A1), (A2), and (A3) hold, then there exists a constant
K7 that does not depend on k such that, for all k,

Predk ≥ K3

2

∥∥∥ZT
k

(
∇GkWkGk+∇GkWk∇GT

kuk

)∥∥∥
×min

{∥∥∥∥ZT
k

(
∇GkWkGk+∇GkWk∇GT

kuk

)∥∥∥∥,
√
∆2

k−‖uk‖2
}

−K7‖Fk‖
(
‖Fk‖+‖∇GkWkGk‖

)
+rk

[
‖Fk‖2−

∥∥∥Fk+∇FT
k sk

∥∥∥2],
(3.13)

where K3 is as in Lemma 3.4.

Proof. The proof follows directly from the definition of Predk and Lemmas 3.1
and 3.4.

Now, we prove several results that are crucial to our global convergence theory.
The following lemma demonstrate that as long as ‖Fk‖ > 0, an acceptable step must
be found. In other words, the algorithm cannot loop infinitely without finding an
acceptable step. To state this result, we need to introduce one more notation that
is used throughout the rest of the paper. The jth trial iterate of iteration k is denoted
by kj .

Lemma 3.10. Let assumptions (A1), (A2), and (A3) hold. If ‖Fk‖ ≥ ε, where ε is any
positive constant, then an acceptable step is found after finitely many trials.
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Proof. The proof is by contradiction. Assume that ‖Fk‖ ≥ ε > 0 and there is no
finite j that satisfies the condition Aredkj /Predkj ≥ η1. Hence, for all j, we have

(1−η1)≤
∣∣∣∣Aredkj

Predkj
−1
∣∣∣∣=

∣∣Aredkj −Predkj
∣∣

Predkj
≤ 2K6∆2

kj

K2εmin
{
ε,∆kj

} . (3.14)

A contradiction arises if we let ∆kj goes to zero. This completes the proof.

Lemma 3.11. Let assumptions (A1), (A2), and (A3) hold. For all trial steps j of any
iteration k generated by the algorithm, ∆kj satisfies

∆kj ≥K8‖Fk‖, (3.15)

where K8 is a positive constant that does not depend on k or j.

Proof. Consider any iterate kj . If the previous step was accepted; that is, if j = 1,
then ∆k ≥∆min. If we take ν = supx∈Ω ‖F(x)‖, then we have

∆k ≥∆min ≥ ∆min

ν
‖Fk‖. (3.16)

Now, assume that j > 1. We have from the way of updating the trust-region radius,
δkj ≥α1‖skj−1‖. But the trial step skj−1 was rejected. Hence,

(1−η1) <
∣∣Aredkj−1−Predkj−1

∣∣
Predkj−1

<
2K6

∥∥skj−1∥∥2
K2‖Fk‖min

{‖Fk‖,∥∥skj−1∥∥} . (3.17)

If ‖skj−1‖<min{(1−η1)K2/4K6,1}‖Fk‖, thenwe obtain (1−η1) < (1−η1)/2. This con-
tradiction implies that it must be the case that ‖skj−1‖ ≥min{(1−η1)K2/4K6,1}‖Fk‖.
Therefore, we have

∆kj =α1‖skj−1‖>α1min
{
(1−η1)K2/4K6,1

}‖Fk‖. (3.18)

Inequalities (3.16) and (3.18) prove the lemma.

Lemma 3.12. Let assumptions (A1), (A2), and (A3) hold. Then, for any iterate kj at
which the parameter rkj is increased,

rkj‖Fk‖ ≤K9
(‖Fk‖+‖∇GkWkGk‖

)
, (3.19)

where K9 is a positive constant that does not depend on k or j.

Proof. The proof follows from Lemma 3.2 and inequalities (3.13) and (3.15).

Lemma 3.13. Let assumptions (A1), (A2), and (A3) hold. If ‖ZT
k∇GkWkGk‖ ≥ ε0, where

ε0 is a positive constant, then there exists two constants K10 and K11 that depend on ε0
but do not depend on k or j, such that, if ‖Fk‖ ≤K10∆k, then

Predk ≥K11∆k+rk
{∥∥Fk∥∥2−∥∥Fk+∇FT

k sk
∥∥2}. (3.20)

Proof. The proof is similar to the proof of Lemmas 7.7 and 7.8 of Dennis, El-Alem,
and Maciel [4].
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3.2. Global convergence theorem. In this section, we prove our global convergence
result for Algorithm 2.1. The following lemma proves that for the iteration sequence
at which rk is increased the corresponding sequence of ‖Fk‖ converges to zero.

Lemma 3.14. Let assumptions (A1), (A2), and (A3) hold. If rk→∞, then

lim
ki→∞

∥∥Fki∥∥= 0, (3.21)

where {ki} indexes the iterates at which the parameter rk is increased.

Proof. The proof follows directly from Lemma 3.12 and assumption (A3).

In the following theorem, we prove that the sequence {‖Fk‖} converges to zero.

Theorem 3.15. Let assumptions (A1), (A2), and (A3) hold. Then the iteration se-
quence satisfies

lim
k→∞

∥∥Fk∥∥= 0. (3.22)

Proof. Suppose that there exists an infinite subsequence of indices {kj} indexing
iterates that satisfy ‖Fkj‖ ≥ ε. From Lemma 3.10, there exists an infinite sequence
of acceptable steps. Without loss of generality, we assume that all members of the
sequence {kj} are acceptable iterates.

We consider two cases. If {rk} is bounded, then there exists an integer k̃ such that
for all k ≥ k̃, rk = r̃ . Therefore, from Lemmas 3.3 and 3.11, we have for any k̂ ∈ {kj}
and k̂≥ k̃,

Predk̂ ≥
r̃
2
K2
∥∥Fk̂∥∥min

{
∆k̂,

∥∥Fk̂∥∥}≥ r̃K2

2

∥∥Fk̂∥∥2min
{
K8,1

}
. (3.23)

Since all the iterates of {kj} are acceptable, then for any k̂∈ {kj}, we have

Φk̂−Φk̂+1 =Aredk̂ ≥ η1 Predk̂ . (3.24)

Hence, from the above two inequalities, we have

Φk̂−Φk̂+1 ≥
η1ε2r̃K2

2
min

{
k8,1

}
. (3.25)

This gives a contradiction with the fact that {Φk} is bounded when {rk} is bounded.
Now, consider the case when {rk} is unbounded. Hence, there exists an infinite

number of iterates {ki} at which the parameter rk is increased. From Lemma 3.14, for
k sufficiently large, the two sequences {ki} and {kj} do not have common elements.
Let k̄ and k̂ be two consecutive iterates at which the parameter rk is increased and
k̄ < kj < k̂, where kj ∈ {kj}. The parameter rk is the same for all iterates k that satisfy
k̄≤ k < k̂. Since all the iterates of {kj} are acceptable, then for all kj ∈ {kj},

Φkj −Φkj+1 =Aredkj ≥ η1 Predkj . (3.26)

From Lemmas 3.3 and 3.11 and inequality (3.26), we have

Φkj −Φkj+1
rkj

≥ η1
K2

2
‖Fk‖2min

{
K8,1

}
. (3.27)
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If we sum over all iterates that lie between k̄ and k̂, we have

k̂−1∑
kj=k̄

Φkj −Φkj+1
rkj

≥ η1K2ε2

2
min

{
K8,1

}
. (3.28)

Therefore,

GT
k̄Wk̄Gk̄−GT

k̂Wk̂Gk̂

rk̄
+
[∥∥Fk̄∥∥2−∥∥Fk̂∥∥2

]
≥ η1K2ε2

2
min

{
K8,1

}
. (3.29)

Since rk→∞, then for k̄ sufficiently large, we have

∥∥Fk̄∥∥2−∥∥Fk̂∥∥2 ≥ η1K2ε2

4
min

{
K8,1

}
. (3.30)

But this contradicts Lemma 3.14. Hence, in both cases, we have a contradiction. Thus,
the supposition is wrong and the theorem is proved.

Theorem 3.16. Let assumptions (A1), (A2), and (A3) hold. Then the iteration se-
quence satisfies

liminf
k �→∞

∥∥ZT
k∇GkWkGk

∥∥= 0. (3.31)

Proof. The proof is by contradiction. Suppose that ‖ZT
k∇GkWkGk‖ > ε holds for

all k generated by the algorithm.
Assume that there exists an infinite subsequence {ki} such that ‖Fki‖>α∆ki , where

α is a positive constant. For later use, we take α=K10. Since ‖Fk‖→ 0, we have

lim
ki→∞

∆ki = 0. (3.32)

Consider any iterate kj ∈ {ki}. There are two cases to consider. First, consider the
case where the sequence {rk} is unbounded. We have for the rejected trial step j−1
of iteration k,‖Fk‖>K10∆kj =α1K10‖skj−1‖. Using inequalities (3.3) and (3.9) and the
fact that the trial step skj−1 was rejected, we have

(
1−η1

)≤
∣∣Aredkj−1−Predkj−1

∣∣
Predkj−1

≤ 2K5
∥∥skj−1∥∥+2K5rkj−1

(∥∥skj−1∥∥2+∥∥skj−1∥∥∥∥Fk∥∥)
rkj−1K2min

(
α1K10,1

)∥∥Fk∥∥
≤ 2K5

rkj−1K2α1K10min
(
α1K10,1

) + 2K5
(
1+α1K10

)
K2α1K10min

(
α1K10,1

)∥∥skj−1∥∥.
(3.33)

Because {rk} is unbounded, there exists an iterate k̂ sufficiently large such that for all
k≥ k̂, we have

rkj−1 >
4K5

K2α1K10min
(
α1K10,1

)(
1−η1

) . (3.34)

This implies that for all k≥ k̂,

∥∥skj−1∥∥≥ K2α1K10min
(
α1K10,1

)(
1−η1

)
4K5

(
1+α1K10

) . (3.35)
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From the way of updating the trust-region radius, we have

∆kj =α1
∥∥skj−1∥∥≥ K2α2

1K10min
(
α1K10,1

)(
1−η1

)
4K5

(
1+α1K10

) . (3.36)

This gives a contradiction. So ∆kj cannot go to zero in this case.
Second, consider the case when the sequence {rk} is bounded. There exists an in-

teger k̄ and a constant r̄ such that for all k≥ k̄, rk = r̄ . Let k≥ k̄ and consider a trial
step j of iteration k, such that ‖Fk‖>K10∆kj , where K10 is as in Lemma 3.13.

If j = 1, then from our way of updating the trust-region radius, we have ∆kj ≥∆min.
Hence ∆kj is bounded in this case. If j > 1 and

∥∥Fkl∥∥>K10∆kl (3.37)

for l= 1, . . . ,j, then for the rejected trial step j−1 of iteration k, we have

(
1−η1

)≤
∣∣Aredkj−1−Predkj−1

∣∣
Predkj−1

≤ 2K6
∥∥skj−1∥∥

K2min
(
K10,1

)∥∥Fk∥∥ . (3.38)

Hence,

∆kj =α1
∥∥skj−1∥∥≥ α1K2min

(
K10,1

)(
1−η1

)∥∥Fk∥∥
2K6

≥ α1K2min
(
K10,1

)(
1−η1

)
K10

2K6
∆k1 ≥ α1K2min

(
K10,1

)(
1−η1

)
K10

2K6
∆min.

(3.39)

Hence ∆kj is bounded in this case too. If j > 1 and (3.37) does not hold for all l, there
exists an integer m such that (3.37) holds for l=m+1, . . . ,j and

∥∥Fkl∥∥≤K10∆kl (3.40)

for l= 1, . . . ,m. As in the above case, we can write

∆kj ≥
α1K2min

(
K10,1

)(
1−η1

)
2K6

∥∥Fk∥∥≥ α1K2min
(
K10,1

)(
1−η1

)
K10∆km+1

2K6
. (3.41)

But from our way of updating the trust-region radius, we have

∆km+1 ≥α1‖skm‖. (3.42)

Now, using (3.40), Lemma 3.13, and the fact that the trial step skm is rejected, we can
write (

1−η1
)≤

∣∣Aredkm−Predkm
∣∣

Predkm
≤ 2K6r̄‖skm‖

K11
. (3.43)

This implies ‖skm‖ ≥ (K11(1−η1)/2K6r̄ ). Hence

∆kj ≥
α2

1K2min
(
K10,1

)(
1−η1

)2K10K11

4K2
6 r̄

. (3.44)

This implies that ∆kj is bounded in this case too. Hence ∆kj is bounded in all cases.
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This contradiction implies that for kj sufficiently large, all the iterates satisfy ‖Fk‖ ≤
K10∆kj . This implies, using Lemma 3.13, that {rk} is bounded. Letting kj ≥ k̄ and using
Lemma 3.13, we have

Φkj −Φkj+1 =Aredkj ≥ η1 Predkj ≥ η1K11∆kj . (3.45)

As k goes to infinity the above inequality implies that

lim
k→∞

∆kj = 0. (3.46)

This implies that the radius of the trust-region is not bounded below.
If we consider an iteration kj > k̄ and the previous step was accepted; that is, j = 1,

then ∆k1 ≥∆min. Hence ∆kj is bounded in this case.
Assume that j > 1, that is, there exists at least one rejected trial step. For the

rejected trial step skj−1 , using Lemmas 3.8 and 3.13, we must have

(
1−η1

)
<

r̄K6
∥∥skj−1∥∥2

K11∆kj−1
. (3.47)

From the way of updating the trust-region radius, we have

∆kj =α1
∥∥skj−1∥∥> α1K11

(
1−η1

)
r̄K6

. (3.48)

Hence ∆kj is bounded. But this contradicts (3.46). The supposition is wrong. This
completes the proof of the theorem.

From Theorems 3.15 and 3.16, we conclude that, given any εtol > 0, the algorithm
terminates because ‖ZT

k∇GkWkGk‖+‖Fk‖< εtol, for some k finite.

4. Concluding remarks. We have introduced a new trust-region algorithm for solv-
ing nonlinear systems of equalities and inequalities. Our active set is simple and nat-
ural. It is similar to Dennis, El-Alem, and Williamson’s approach for treating the active
constraints [3]. At every iteration, the step is computed by solving two simple trust-
region subproblems similar to those for unconstrained optimization.

Our theory proves that the algorithm is globally convergent in the sense that, in the
limit, a subsequence {kj} of the iteration sequence generated by the algorithm satisfies
the first-order conditions (2.2). We point out here that our convergence result only
gives first-order stationary-point convergence. This means that there may be a case
where a subsequence of the iteration sequence satisfies (2.2) but does not necessarily
satisfies (1.1). This can only happen when the corresponding sequence of matrices
{ZT

kj∇GkjWkj} does not have full column rank in the limit.
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