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ABSTRACT. Let g : X — X. The concept of a semigroup of maps which is “nearly commu-
tative at g” is introduced. We thereby obtain new fixed point theorems for functions with
bounded orbit(s) which generalize a recent theorem by Huang and Hong, and results by
Jachymski, Jungck, Ohta, and Nikaido, Rhoades and Watson, and others.
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1. Introduction. By a semi-group of maps we mean a family H of self maps of a
set X which is closed with respect to composition of maps (f cg = fg) and includes
the identity map iz (x) = x, for x € X. We often associate with a function g: X — X
following semi-groups:

Oy =1{g" IneNU{0}}, (1.1)

where N is the set of positive integers and g°= iy4, and

Co={f'X—XI|fg=4gf} (1.2)

A quick check confirms that C, is a semi-group.

If H is a semi-group of self maps of aset X and a € X, H(a) = {h(a) |la€ H}.In
particular, if H = Og4, Og4(a) = {g"(a) | n € NU{0}} and is called the orbit of g at a.

In general, Lemma 3.2 and some theorems in Section 3 will be stated in the context
of semi-metric spaces. A semi-metric on a set X is a function d : X x X — [0, ) such
that d(x,y) =d(y,x) for x,y € X and d(x,y) = 0if and only if x = y. A semi-metric
space is a pair (X;d), where X is a topological space and d is a semi-metric on X.
The topology t(d) on X is generated by the sets S(p,e) = {x | d(x,p) < €} with the
requirement that p is an interior point of S(p,€). A sequence {x,} in X converges
in t(d) to p € X (denoted as x,, — p) if and only if d(x,,p) — 0. We let t(d) be
T, (Hausdorff) to ensure unique limits. Thus, a metric space (X,d) is a semi-metric
space having the triangle inequality. For further details on semi-metric spaces, see,
for example, [1, 4, 6].

If g : X — X, a semi-metric space (X;d) is complete (g-orbitally complete) if and only
if every Cauchy sequence (in the usual sense) in X (O4(x)) converges to a point of X.
g is continuous at p € X if and only if whenever {x,} is a sequence in X and x,, — p,
then f(x;,) — f(p). And if S is a bounded subset of X, 6(S) = sup{d(x,y) | x,y € S}.

We are now ready to focus on the intent of this paper, namely, to introduce a gen-
eralized “local commutativity” and to demonstrate the concept’s usefulness.
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2. Nearly commutative semi-groups. In [2], a semi-group H of maps is said to be
near-commutative if and only if for each pair f,g € H, there exists h € H such that
fg =gh. We generalize as follows.

DEFINITION 2.1. A semi-group H of self maps of a set X is nearly commutative
(n.c.) at g : X — X if and only if (f € H) implies that there exists h € H such that

fag=gh.

Of course, O, and C, are n.c. at g. Observe also that a near-commutative semi-
group H of self maps of a set X is n.c. at each g € H. The following provides for
each a € (0,%) an example of a semi-group H = S, of self maps which is not near-
commutative but is n.c. at a particular g: X — X.

EXAMPLE 2.2. Let X =[0,%) and a € (0,). Let g(x) = ax and define
Sa={a"x" | x€[0,0), neN, meNU{0}}, (2.1)

where S, is nearly commutative (n.c.) at g. For if f(x) = a™x™" is a representative
element of S;, then fg(x) = f(g(x)) =a™(ax)" =a™"x". We want h(x) =a"x’ €
Sa such that fg = gh. Now, g(h(x)) = a(a"x*) = a"*'x*, so we can let s = n and
r+1=m+mn; thatis,r =m+(n-1).SinceneNand (n-1), me NuU{0}, s and r
so designated imply h € S,. Thus, (f € H = S,;) implies that there exists h € H such
that fg = gh. Since iy € S;, S, is clearly a semi-group, and we are finished. On the
other hand, S, is not a near-commutative semi-group. For example, let f(x) = a?x?
and h(x) = a’x3. We want t(x) = a”x* such that fh = ht. So we must have 3s = 6
and (2+37) =6.Butthenr =4/3,and r ¢ NuU {0}.

Now, let Jt,, and N, denote the set of all n X n real matrices and the set of all
nonsingular n x n real matrices, respectively. Then, both sets Jl,, and N, are semi-
groups of linear transformations A : R” — R" relative to composition of maps (matrix
multiplication).

EXAMPLE 2.3. N, is n.c. For if A,B € N, there exists C = B-1(AB) € N,, such that
AB = BC.

EXAMPLE 2.4. ., is n.c. at any B € N, by Example 2.3. But Jl,, is not near commu-
tative. For instance, if n = 2, B = [} ], and A = [} 3], there exists no 2 x 2 matrix C
such that AB = BC.

Now, let g : X — X. Since any semi-group of self maps which commute with g is a
subset of Cy4, we might hope that Hy = {f : X - X | fg = gh for some h : X — X}
would be a maximal semi-group which is n.c. at g. However, H; so defined need
not be n.c. at g! For example, let X = [0,), g(x) = 1/(x+ 1), and f(x) = x/2.
Then h(x) = 2x + 1 satisfies f(g(x)) = g(h(x)) for x € [0, ). However, there ex-
ists no k € Hy such that h(g(x)) = g(k(x)); that is, 2(x +1)71 +1 = (k(x) +1)7!
(note that x, k(x) > 0).

Note that the map g(x) = 1/(x + 1) was not surjective. So consider the following
example.
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EXAMPLE 2.5. Let X be any set and let g : X — X be surjective. Then the family of
all self mappings of X, ¥ = {f | f: X — X}, is n.c. at g. For suppose f € F; we need
h € ¥ such that fg(x) = gh(x) for all x € X. So let a € X. Since g is onto, we can
choose x,; € X such that g(x;) = f(g(a)). Choose such an x, for each a € X and
define h(a) = x;. Then h: X — X and g(h(a)) = g(x,) = f(g(a)) for a € X; that is,
fg=gh.

PROPOSITION 2.6. Suppose that H is a semigroup of maps whichis n.c.atg: X — X.
If f € H and n € N, there exists hy,, € H such that fg" = g"*h, (i.e., H is n.c. at g").

PROOF. Let f € H. Since, H is n.c. at g, there exists h; € H such that fg = gh;. So
suppose that k € N such that fg* = gkhy for some hy € H. Then

f* " = (fg")g = (g*hi)g = g* (hig). (2.2)

Since hy € H, there exists hy,1 € H such that hyg = ghy.1, and therefore (2.2) implies
fgktt = gk(ghis1) = g8 hi, 1, as desired. O

Throughout this paper, P denotes a function P : [0,) — [0,00) which is non-
decreasing, and satisfies lim,_. P"(t) = 0 for t € [0, ). (For example, we could let
P(t) = ot for some x € (0,1), or t/(t +1).) And throughout this paper, we appeal to
the following lemma.

LEMMA 2.7. Let H be a semi-group of self maps of a set X and suppose that H is
nearly commutative at g : X — X. Let d : X x X — [0, ). Suppose that for each pair
X,y € X there exists a choice v =v({x,y}), s =s({x,»}) € H, and u,v € {x,y} for
which

d(gx,gy) <P(d(ru,sv)). (2.3)

Then, if n € N, for each pair x,y € X there exist vy,s, € H and uy,,v, € {x,y}
such that
d(g™x,g"y) < P"(d(rnun,Snvn)). (2.4)

PROOF. By (2.3), inequality (2.4) holds for n = 1, so suppose that n € N for which
(2.4) is true. Then, if x,y € X,

A(g"'x,g"y) =d(g(9"x),9(g"y)) <P(d(ru,sv)), (2.5)

where 7,s € H and u,v € {g"x,g"y}, by (2.3). Specifically, u = g"c, v = g"d, where
c,d € {x,y}. And since 7,s € H, there exist v',s’ € H such that rg" = g"r’ and
sg" = g"s’, by Proposition 2.6. So (2.4) implies that

dru,sv) =d(rg"(c),sg"(d)) =d(g"(r'c),g"(s'd)) < P"(d(rnun,snvy)), (2.6)

where 1,8, € H and u,,, vy, € {v'c,s’d}. Thus, rnu, € {(rnr’)c, (rns’)d}, where v, v’
and v, s" are elements of H, since H is a semi-group. So ¥, U;, = ¥y +1Un+1, Wherery, .1 €
{rnv', 78’} (.e., ¥y41 € H) and uy4 € {c,d} C {x,y}. Similarly, s,vy = Sp+1Vn+1,
where 5,1 € H and vy,41 € {x,y}. Thus, (2.6) implies that

d(ru,sv) < P"(d(rns1Un+1,5041Vn+1)),  TnelsSns1 € H, Uni1, U1 € {X, ). (2.7)
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But P is nondecreasing, and therefore (2.7) and (2.5) yield

d(g"“x,g"“y) < P(p"(d(rn+1un+1,Sn+1vn+1))) (2.8)
:P”“(d(?’nnunﬂ’s’l”v””))’ .

with 41,5041 € H and Up+1,Vn41 € {Xx,¥}. So, (2.4) is true for all n by induction.
O

3. Fixed point theorems

DEFINITION 3.1. Let (X;d) be a semi-metric space and let H be a semi-group of self
maps of X. Amap g: X — X is P-contractive relative to H if and only if (2.3) holds.
(We will also say, “g is a P-contraction relative to H.”)

LEMMA 3.2. Let (X;d) be a T, semi-metric space and let H be a semi-group of self
maps of X n.c. atg : X — X. Suppose that g is P-contractive relative to H and thatM C X
such that B=U{H(c) | c € M} is bounded. Then d(g"(x),g"(y)) — 0 uniformly on B
as n — oo. Specifically, if € > 0, there exists k € N such that

(n=k) = (d(g"(x),g"(y)) <€ Vx,y €B). 3.1)

PROOF. By hypothesis 6 (B) < c, P*(6(B)) — 0 as n — «. Let € > 0. We can choose
k € N such that
P"(5(B)) <e forn =k. (3.2)

Let x,y € B. If n € N, since g is P-contractive relative to H, Lemma 2.7 yields
n,Sn € H and u,, v, € {x,y}(C B) such that

d(g"(x),g"(y)) < P"(d(rnun,SnVn)). (3.3)

Since u,, € B, there exist h € H and ¢ € M such that u,, = h(c). But r,,h € H,
so rp,h € H. Therefore, v,u,, = (rp,h)(c) € H(c) C B. Likewise, s,v, € B. But then
Ad(rpun, SnVy) < 6(B) and therefore,

P"(d(¥nun,Snvn)) < P"(6(B)) formeN, (3.4)
since P is nondecreasing and n is arbitrary. Formulae (3.2), (3.3), and (3.4) imply
d(g"(x),g"(y)) <e formz=k. (3.5)

Since the choice of k in (3.2) was independent of x and 1y, (3.5) holds for all x,y € B.
O

THEOREM 3.3. Let (X;d) be a T, semi-metric space, and let H be a semi-group of
self maps of X which is n.c. at g € H. Suppose that H(a) is bounded for some a € X
and X is g-orbitally complete. If g is a P-contraction relative to H, then g"(a) — c for
some c € X. If g is continuous at c, g(c) = c.

PROOF. Since X is g-orbitally complete, to show that g"(a) — ¢ for some c € X it
suffices to show that {g"(a)} is a Cauchy sequence.
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To this end, let € > 0. Since, H(a) is bounded, Lemma 3.2 with B = H(a) implies
that there exists k € N such that

n>k=d(g"(x),g"(y)) <e Vx,ye€H(a). (3.6)
Therefore, if m > n > k, m = n+v for some v € N, and
d(g"(a),g™(a)) =d(g"(a),g"(g"(a)) <€, 3.7)

since a, g"(a) € H(a). We conclude that {g"(a)} is Cauchy, and there exists ¢ € X
such that g"(a) — c.

Now, if g is continuous at c, lim,_. g(g"(a)) = g(c), since g"*(a) — c. But then
g™*t(a) — c also, so g(c) = ¢ since (X;d) is a T» semi-metric space. O

DEFINITION 3.4. Let X and Y be topological spaces. A map g: X — Y is closed if
and only if g(M) is closed in Y whenever M is a closed subset of X.

Note that the conclusion of Lemma 3.2 asserts that d(g*(xx),g*(yx)) — 0 for any
sequences {xy} and {yy} in B.

THEOREM 3.5. Let (X;d) be a bounded and complete T, semi-metric space, and let
H be a semi-group of maps n.c. at g € H. If g is closed and P-contractive relative to H,
(i) there exists p € X such that {p} = n{g"™(X) | n € N},
(ii) p is the unique fixed point of g,
(iii)) g"(x) — p forall x € X.

PROOF. Let x € X.By Theorem 3.3, {g"(x)} converges to p for some p € X. More-
over, p € n{g"(X) | n € N}. Otherwise, there exists k € N such that p ¢ g*(X). Since
g*(X) is closed, there exists € > 0 such that S(p,€) ng*(X) = @. Thus, d(g"(x),p) = €
for n = k since g"(X) is a subset of g*(X) for n = k. This contradicts the fact that
gtx)—p.

In fact, {p} = n{g"(X) | neN}.Forif g € n{g"(X) | n € N}, for each k € N we can
choose xi, v € X such that g¥(xx) = p and g*(yx) = q. So

d(p,a) = d(g*(xx),g"(vk)) — 0, (3.8)

by Lemma 3.2 with M = X.

Clearly, (i) implies that p is a fixed point of g, since g({p}) C {p}. Thus, if x € X,
d(g"(x),p) =d(g"(x),g"(p)) — 0 as n — oo, so (iii) holds. Similarly, if g is a fixed
point of g, then d(p,q) = (g"(p),g"™(q)) — 0, so that g = p. Thus, p is the only fixed
point of g. O

In the following we need the triangle inequality, so we require the underlying space
to be a metric space.

THEOREM 3.6. Let (X,d) be a metric space and let H be a semi-group of self maps
of X n.c. at some g € H. Suppose that X is g-orbitally complete and there exists k € N
such that for each pair x,y € X, there exist v,s € H and u,v € {x,y} for which

d(gkx,g*y) < P(d(ru,sv)). (3.9)
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(i) If there exists a € X such that H(a) is bounded, then there exists c € X such
that lim,,_., g"(a) = c. If h is continuous for some h € H, then h(c) = c. (Specifically,
g(c) = c if g is continuous at c.)

(i) If H(x) is bounded for each x € X, there exists a unique ¢ € X such that
gt(x)—c for all x € X. If g is continuous at c, c is a unique common fixed point
forallh € H.

PROOF. Suppose that H(a) is bounded. Since H is n.c. at g, Proposition 2.6 says
that H is n.c. at g*. And X is g*-orbitally complete since X is g-orbitally complete.
Therefore, (3.9) and Theorem 3.3 imply that

r}lizn (g*)™(a) =c for some c € X. (3.10)

To see that lim,, .. g"(a) = ¢, let € > 0. Then (3.10) and Lemma 3.2 (with B = H(a))
imply that there exists p € N such that d((g*)? (a),c) <€/2 and d(g*? (x),g*? (v)) <
€/2 for x,y € B; that is,

d(g* (a),c) < % d(g*" (g' (), g (@) < % VieN, (3.11)
since g € H = gi(a) € H(a). So, if n > kp, n = kp +1i for some i € N, and
d(g™(a),c) <d(g™(a),g"" (a)) +d(g** (a),c), (3.12)
or
d(g"(@),c) = d(g" (9'(@)),g"" (@) +d(g"" (@), ) < 5+ 5 =€, (3.13)

by (3.11). Consequently, g"(a) — c.
Now, let h € H and suppose that h is continuous at c. Then, lim,,.., h(g"(a)) = h(c)
and

d(h(0),c) = lim d(hg"(@),g" (@) = lim d(h(g")" (@), (g*)" (). (3.14)

But H is n.c. at g¥, so for n € N there exists h, € H such that hgk" = g¥"h,,. Then,
by (3.14),
d(h(c),c) = lim d((g")" (hn(@)), (g")" (@) =0, (3.15)

since a,hy(a) € H(a) and Lemma 3.2 holds for g*. Thus, (i) holds.

To prove (ii), suppose that H(x) is bounded for each x € X. If a,b € X, g"(a) — ¢,
and g"(b) — ¢p for some c4,cp € X by (i). But ¢, = ¢p, since H(a) UH (b) is bounded,
and therefore, Lemma 3.2 applied to g* implies that d(ca,cp) = limy ... d((g¥)"(a),
(g™ (b)) = 0.

Thus, there exists a unique ¢ € X such that g"(x) — ¢ for all x € X. We know that
g(c) = ¢ by part (i), if g is continuous at c. Since g"(d) = d for all n if d is a fixed
point of g, and therefore g"(d) — d, ¢ must be the only fixed point of g. Moreover,
h(c) = c for all h € H (even though h may not be continuous). This follows, since
Proposition 2.6 applied to g* implies that for each n € N,

d(c,h(c)) = d((g")" (c),h(g")"(©)) = d((g")" (), (g")" (hu(c))) (3.16)

for some h, € H. But H(c) is bounded, so Lemma 3.2 applied to g* implies that the
right member of (3.16) converges to zero as n — o, and thus, ¢ = h(c). O
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REMARK 3.7. Theorem 3.3 appreciably generalizes Theorem 2.1 in [5] and Theorem
3.6 generalizes Corollary 2.3 in [5]—and hence Theorem 2 in [3] and the theorems of
Rhoades and Watson [9]. Note that in Theorem 3.6(ii), the mappings h € H (h + g)
need not be continuous. Remember also that Cy and Oy are special instances of H.

The following example suggests that the requirement in Theorem 3.6(ii), that H (x)
be bounded for each x € X, is not as restrictive as may first appear.

ExAMPLE 3.8. Let S = {continuous functions f : [0,0) — [0,00) | there exists
ar € (0,0) such that f(x) < x for x > ar}. (So, e.g., {f | f(x) =mx+b, me[0,1)
and b >0} c S,and In(x+b) € S for b > 1.) Then (1) Su {is} is a semi-group under
composition of functions, and (2) Of(x) is bounded for f € S and x € [0, ).

First note that, we can let My denote the maximum value of f on [0,ar] for each
f € S since each f is continuous. To see that (1) is true, let f,g € S. We need only
to show that go f = gf € S. Clearly, gf is a continuous self map of [0, ). So let
agy = max{ay,My} and suppose that x > azr. We want gf(x) < x. Now, x > ayy
implies that x > ay so that (i) f(x) < x.If f(x) > ag4, then g(f(x)) < f(x) < x by
(i) and the definition of ag4. If f(x) < ay, g(f(x)) <My < ayr < x. So, in any event,
(go f)(x) <xif x > agy, and thus, go f € S. (2) follows easily by using induction
to show that (f € S) implies that (if x € [0,»), f"(x) <max{x,Mr} for n € N). We
omit the details.

If welet P(t) = «t for fixed «x € (0,1) and t € [0, ), we have the following corollary.

COROLLARY 3.9. Let (X,d) be a bounded complete metric space and let g : X — X be
continuous. Suppose that H is a semi-group of self maps of X n.c. atg and g € H. If there
exists «x € (0,1) such that for any pair x,y € X there existv,s € H and u,v € {x,y}
for which

d(gx,gy) < xd(ru,sv), (3.17)

then there exists a unique ¢ € X such that g"*(x) — ¢ for x € X, and c = gc = hc for
allh € H.
4. Some consequences

DEFINITION 4.1. A gauge function is an upper semicontinuous (u.s.c.) function
¢ :[0,00) - [0,00) such that ¢(0) =0 and ¢(t) <t forall t > 0.

LEMMA 4.2. Let (X,d) be a metric space and let H be a semi-group of self maps of
X which is n.c. at g € H. Suppose that H(x,y) = H(x) UH () is bounded for x,y € X
and there exists a gauge function ¢ such that

d(gx,9y) < p(6(H(x,y))) forx,y € X. (4.1)

Then, there exists a nondecreasing continuous function P : [0,00) — [0,0) such that
P"(t) — O for allt > 0 and which satisfies the following condition: for any pair x,y € X
there existr =r(x,y), s=5s(x,y) € H, and u,v € {x,y} such that

d(gx,gy) <P(d(ru,sv)). 4.2)
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PROOF. Let x,y € X and suppose that (4.1) holds. Since, ¢ is a gauge function, as
is well known [2], there exists a nondecreasing continuous function P : [0, ) — [0, o)
such that P"(t) — 0 for t = 0, and

¢(t) <P(t), P(t)<t Vte(0,00). 4.3)
Since P is continuous, (4.3) implies that for any t > 0, there exists €; € (0,t) such that
t'e(t—e,t+e) = Pp(t) <P(t'). (4.4)

And since H(x,y) is bounded, the definition of § implies that there exist r,s € H
and u,v € {x,y} such that, with t = §(H(x,y)),

t=6(H(x,y)) =2d(ru,sv) > 6(H(x,y)) —¢€;. (4.5)
So, with t’ = d(ru,sv), (4.4) and (4.5) imply that
¢ (5(H(x,y))) <P(d(ru,sv)). (4.6)

Therefore, (4.1) implies that d(gx,gy) < P(d(ru,sv)). O
The following theorem provides a generalization of Theorem 2.1 in [2].

THEOREM 4.3. Let (X,d) be a complete metric space and let H be a semi-group of
self maps of X which is n.c. at some g € H. Suppose that the following conditions are
satisfied:

(i) H(x) is bounded for all x € X, g is continuous,
(ii) there exists a gauge function ¢ and k € N such that

d(ghkx,g*y) < p(8(H(x,y))) forx,y e X. 4.7)

Then
(a) H has a unique common fixed point ¢ and g"(x) — c for x € X.
(b) If for each h € H — {i4} there exists k = k;, € N such that (4.7) holds with g =
h, then
h"(x) —c VxeX, heH-{ig}. (4.8)

PROOF. Now, (i) implies that H(x,y) = H(x) UH () is bounded for x,y € X. To
see that (a) is true, note that H is n.c. at g¥ by Proposition 2.6 and substitute g* for g in
Lemma 4.2 to conclude that (3.9) holds. Consequently, we can appeal to Theorem 3.6(ii)
to obtain a ¢ € X such that g"(x) — ¢ for x € X. And since g is continuous, c is the
unique fixed point of g and a fixed point for each h € H. Thus, c is the unique common
fixed point of H (remember, g € H) and therefore (a) holds.

To prove (b) note that, by part (a), if h € H — {ig}, h = g, h"(c) = g(c) = ¢ for
n € N. But Theorem 3.6 applied to h yields a unique c¢; € X such that h"(x) — ¢, for
all x € X. Since h"(c) = ¢ for all n,c; = c. O

REMARK 4.4. Theorem 4.3 generalizes Theorem 2.1 in [2] in the following ways:
(i) The semi-group H is not required to be near-commutative (i.e., n.c. at each
h € H), but n.c. only at g,
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(ii) g is the only member of H required to be continuous,
(iii) in (b), (4.7) is required to hold only for k = kj,, not for all k > kj,.
Theorem 4.3 yields the following corollary, which generalizes the theorem of Ohta
and Nikaido [8] by requiring only that the orbits of f—but not all of X—be bounded.

COROLLARY 4.5. Let f be a continuous self mapping of a metric space (X,d) having
bounded orbits Oy (x) for all x € X. If there exist c € (0,1) and k € N such that

A(frx, f*y) <cs({fit |t e {x,y}, ie NU{0}}) (4.9)

for all x,y € X, then f has a unique fixed point.

Observe that Lemma 3.2 does not require that g € H, whereas the theorems in
Section 3 do. The requirement that g € H was convenient in the proof, but the follow-
ing proposition says that it is not necessary when Oy4(a) is bounded. Moreover, this
result is needed for the proof of Theorem 4.7.

PROPOSITION 4.6. If H is a semi-group of self maps n.c. at g and g ¢ H, then
Hy; = {g"h | n e NU {0} and h € H} is a semi-group which is n.c. at g. Moreover,
g€ Hy;and H C H.

PROOF. H, is a semi-group. For if g"h;,g™h, € Hy, since H is n.c. at g, we have
g'higmh = gt(h1g™)h: = g"(g™h3)ha = g"*"™ (hy), where hy = h3h, € H.

Hyisn.c.at g, since (H n.c. at g) implies that there exists h, € H such that (g"h)g =
g"(hg) = g"(gh2) = g(g"h>). O

It is clear that if g : X — X is a P-contraction relative to H, then it is certainly a
P-contractionrelative to Hy since H C Hy. We use this fact in the proof of Theorem 4.7.

THEOREM 4.7. Let C be a compact subset of a normed linear space X which is star-
shaped with respect toq € C. Let T : C — C be continuous and let H be a semi-group of
dffine maps I: C — C n.c. at T such that I1(q) = q. If for each pair x,y € C there exist
I,J € H and u,v € {x,y} for which

|ITx -Ty| < [[lu-Jvl|, (4.10)

then there exists a € C such that a = Ta and a = Ia for all continuous I € H.

PROOF. Choose a sequence {k;} in (0,1) such that k,, — 1, and for each n € N, let
Tn(x) =k,Tx+(1—kyn)q. (4.11)

Since C is star-shaped with respect to q, T, : C — C for n € N. Moreover, if I € H,
there exists J € H such that

ITyx =I(kyTx+(1-kyu)q) = knoI(Tx)+ (1-ky)Iq

=knT(Jx)+(1—kyn)q = TuJx, (4.12)

since I is affine, H is n.c. at T, and Iq = q. Thus, for each n € N, H is a semi-group of
affine maps which is n.c. at T,,. Then, by Proposition 4.6, Hr,, is a semi-group of self
maps of C whichis n.c. at Ty,, T, € Hr,,, and H C Ht,, for n € N.
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Now fix n. By hypothesis, for each pair x,y € C there exist I,J € H(C Hr,) and
u,v € {x,y} such that
[|Tx—Ty|| < |[Tu-Jv|], (4.13)

SO
[|Thx — Tuy|| < knllIu—Jv|], (4.14)

by (4.11). Therefore, since T, is continuous and k, € (0,1), Corollary 3.9 applied to
T, and Hr, (C compact implies that C is bounded and complete) implies that there
exists a unique x, € C such that

Xn =Tn(xn) =1(xn) VIEHr,. (4.15)

Thus we have a sequence {x,} in C which satisfies (4.15). Since C is compact, {x,}
has a subsequence {x;, } which converges to some a € C. Equations (4.11) and (4.15)
thus imply that
a = lim x;, = lim k;, Tx;, + lim (1 —k;,)q = lim Ix;,. (4.16)
n—oo n—oo n—oo n— oo
But T is continuous, so (4.16) implies that a = Ta, and a = Ia for all continuous I.
O

REMARK 4.8. We see that Theorem 4.7 does indeed extend Theorem 3 in [7] if we
observe that the family & in Theorem 3 [7]. is a family of sets which is a subset of Cj.
We can let

H ={maps h:C — C | his affine, h € C,}. (4.17)

Then H is a semi-group and % C H.

5. Conclusion. We conclude with further evidence of the generality and applicabil-
ity of the concept of being nearly commutative at a function g. The theorem below
generalizes Theorem 4.2 in [5] by replacing the semi-group C,r with a more general
semi-group H.

THEOREM 5.1. Let f and g be commuting self maps of a compact metric space (X,d)
such that g f is continuous. If H is a semi-group of self maps of X which is n.c. at gf,
and

fx#gy=d(fx,gy) <6(H(x,y)), .1

then there exists a unique point a € X such thata = fa =ga = ha forallh € H.

We leave the proof of Theorem 5.1 to the interested reader.
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