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Abstract. We obtain a solution formula of the differential equation ẋ(t)+a(t)x(t)+
b(t)x(g(t)) = f(t). At the same time, we study its oscillation and asymptotic stability
properties.
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1. Introduction and preliminary. In this paper, we investigate the global asymp-

totic behavior as well as oscillation of equations with piecewise constant argument

ẋ(t)+a(t)x(t)+b(t)x(g(t))= f(t) for t > 0 (1.1)

subject to the initial condition

x(0)= x0, (1.2)

where a(t),b(t), and f(t) are locally integrable functions on [0,∞), g(t) is a piecewise

constant function defined by

g(t)=np for t ∈ [np−l,(n+1)p−l) (n∈N), (1.3)

where p and l are positive constants satisfying p > l.
Since the argument deviation of (1.1), namely

τ(t)= t−g(t) (1.4)

is negative in [np− l,np) and positive in [np,(n+1)p− l), equation (1.1) is said to

be of alternately advanced and retarded type.

Equations with piecewise constant argument (EPCA) deviation were investigated in

many papers (see [1, 2, 3, 4, 5, 6, 7, 8, 9]). Since EPCA combine the features of both

differential and difference equations, their asymptotic behavior as t → ∞ resembles

in some cases the solution growth of differential equations, while in others it inherits

the properties of difference equations. So this makes EPCA more interesting.

Definition 1.1. A function x : [0,∞) → R is a solution of (1.1) and (1.2) if the

following conditions hold:

(i) x is continuous on [0,∞).
(ii) x is differentiable in [0,∞), except possibly at the points t =np−l,n∈ {1,2, . . .},

where one-sided derivatives exist.
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(iii) x(0) = x0 and x satisfies (1.1) in (0,p− l) and in every interval of the form

[np−l,(n+1)p−l) for n∈ {1,2, . . .}.

A solution of (1.1) and (1.2) is oscillatory if it has no last zero. Let [·] denote the

greatest integer function. This paper was motivated by [7] in which the equation

ẋ(t)+Ax(t)+Bx(g(t))= f(t) for t > 0 (1.5)

was investigated, where A and B are r × r matrices, x is an r -vector and f(t) is a

locally integrable function on [0,∞).

2. The case a(t)≡ 0. In this case, (1.1) becomes

ẋ(t)+b(t)x(g(t))= f(t) for t > 0. (2.1)

To simplify the notation, define

B(a,b)= 1−
∫ b
a
b(s)ds, B(0,−l)= 1, x(np)= xn,

In =
[
np−l,(n+1)p−l) for n= 1,2, . . . .

(2.2)

Theorem 2.1. Let b(t) and f(t) be locally integrable on [0,∞). Then (1.2), (1.4),

and (2.1) has a unique solution on [0,∞) given by

x(t)= B(g(t),t)

g(t)/p∏

j=1

B
(
(j−1)p,jp−l)
B(jp,jp−l)




×

x0+

g(t)/p∑
j=1


 j∏
i=1

B
(
(i−1)p,(i−1)p−l)
B
(
(i−1)p,ip−l)


∫ jp

(j−1)p
f (s)ds




+
∫ t
g(t)

f (s)ds,

(2.3)

where B(a,b) is defined in (2.2).

In addition, if b(t) and f(t) are integrable on (−∞,0], this solution can be continued

backwards on (−∞,0] and is given by

x(t)= B(g(t),t)

−g(t)/p∏

j=1

B
(
(−j−1)p,−jp−l)
B(−jp,−jp−l)




×

x0+

−g(t)/p∑
j=1


 j∏
i=1

B
(
(−i−1)p,(−i−1)p−l)
B
(
(−i−1)p,−ip−l)


∫ −jp

(−j−1)p
f (s)ds




+
∫ t
g(t)

f (s)ds

(2.4)

Proof. We use the notation given in (2.2).

In each interval of the type In, (2.1) becomes

ẋ(t)+b(t)x(np)= f(t) (2.5)
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which has a unique solution whenever a preassigned value for x(np) is given. The

solution of (2.1), with x(np)= xn, is

x(t)= B(np,t)xn+
∫ t
np
f (s)ds for t ∈ In, (2.6)

and with x((n+1)p)= xn+1 is

x(t)= B((n+1)p,t
)
xn+1+

∫ t
(n+1)p

f (s)ds for t ∈ In+1. (2.7)

Continuity of the solution at t = (n+1)p−l requires

B
(
np,(n+1)p−l)xn+

∫ (n+1)p−l

np
f (s)ds

= B((n+1)p,(n+1)p−l)xn+1+
∫ (n+1)p−l

(n+1)p
f (s)ds,

(2.8)

so that

xn+1 = B
(
np,(n+1)p−l)

B
(
(n+1)p,(n+1)p−l)xn+

1
B
(
(n+1)p,(n+1)p−l)

∫ (n+1)p

np
f(s)ds, (2.9)

from which it follows that

xn=

 n∏
j=1

B
(
(j−1)p,jp−l)
B(jp,jp−l)




x0+

n∑
j=1


 j∏
i=1

B
(
(i−1)p,(i−1)p−l)
B
(
(i−1)p,ip−l)


∫ jp

(j−1)p
f (s)ds


. (2.10)

Substituting (2.10) into (2.6) yields (2.3). The continuation of (2.3) on (−∞,0] is ob-

tained in a similar way. This completes the proof.

Theorem 2.2. Let b(t) be locally integrable on [0,∞). Assume that |b(t)| < B1

(B1 > 0) for t ∈ [0,∞) and

∣∣∣∣∣∣
B
(
(n−1)p,np−l)
B(np,np−l)

∣∣∣∣∣∣<α< 1 for n∈ {1,2, . . .}. (2.11)

(a) If f(t)≡ 0 then the trivial solution of (2.1) is globally asymptotically stable.

(b) If limt→∞f(t)= 0 then every solution of (2.1) tends to zero as t→∞.

Proof. (a) Note that for t ∈ In∣∣∣∣∣∣B
(
g(t),t

)g(t)/p∏
j=1

B
(
(j−1)p,jp−l)
B(jp,jp−l)


x0

∣∣∣∣∣∣< B2αn|x0|, (2.12)

where B2 = 1+B1 max{l,p−l}. Therefore (a) is proved.

(b) We observe that the remaining term in (2.3) tends to zero as t→∞. For t ∈ In∣∣∣∣∣
∫ t
g(t)

f (s)ds

∣∣∣∣∣<max{l,p−l}max
{|f(t)| : t ∈ In

}
. (2.13)



600 Q. MENG AND J. YAN

Similarly, Fj =
∫ jp
(j−1)p f (s)ds → 0 as j → ∞. Hence, given ε > 0, choose P1 such that

|Fj|<K if j < P1 and |Fj|< ε(1−α)B3/2B2 for j ≥ P1, choose P2 so that if n> P2 then

αn < εB3/2KB2P1, where B3 = 1/|1−B1l|. If n>max{P1,P2}, then

∣∣∣∣∣∣
g(t)/p∏
j=1

B
(
(j−1)p,jp−l)
B(jp,jp−l)


g(t)/p∑

j=1


 j∏
i=1

B
(
(i−1)p,(i−1)p−l)
B
(
(i−1)p,ip−l)


∫ jp

(j−1)p
f (s)ds



∣∣∣∣∣∣

≤
n∑
j=1




 n∏
i=j+1

∣∣∣∣∣B
(
(i−1)p,ip−l)
B(ip,ip−l)

∣∣∣∣∣

 1∣∣B(jp,jp−l)∣∣ |Fj|




≤ 1
B3

P1∑
j=1




 n∏
i=j+1

αi

|Fj|


+ 1

B3

n∑
j=P1+1




 n∏
i=j+1

αi

|Fj|


≤ ε

B2
,

(2.14)

where we define
∏n
i=n+1B((i−1)p,ip−l)/B(ip,ip−l)= 1. This completes the proof.

Theorem 2.3. Let b(t) be locally integrable on [0,∞). Every solution of the equation

ẋ(t)+b(t)x(g(t))= 0, x(0)= x0, (2.15)

is oscillatory if B(np,(n+1)p−l)/B(np,np−l) is not eventually positive.

Proof. Let x(t) be a solution of (2.15). The continuity of x(t) at t = (n+1)p− l
in (2.6) gives

x
(
(n+1)p−l)= B(np,(n+1)p−l)xn. (2.16)

Again using (2.6) with t =np−l we have that

x(np−l)= B(np,np−l)xn. (2.17)

From (2.16) and (2.17) we obtain that

x
(
(n+1)p−l)= B

(
np,(n+1)p−l)
B(np,np−l) x(np−l). (2.18)

It is easy to see that the sequence {x(np − l)} oscillates if B(np,(n + 1)p − l)/
B(np,np−l) is not eventually positive. Therefore x(t) oscillates if {x(np−l)} oscil-

lates. This completes the proof.

Corollary 2.4. If b(t)≤ 0, the sign of every solution of (2.15) is identical with the

sign of its initial value.

The proof of Corollary 2.4 is obvious from (2.3).
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Remark 2.5. Corollary 2.4 can be recounted that if b(t) ≤ 0, then all solutions of

(2.15) are nonoscillatory. The following example is to illustrate Theorem 2.3.

Example 2.6. Consider the equation

ẋ(t)+(2−t)x
(

2
[
t+1

2

])
= 0, t > 0 (2.19)

with x(0) = x0. Theorem 2.1 asserts that (2.19) subject to x(0) = x0 has a unique

solution on [0,∞). The solution of (2.19) is given by

x(t)=
[

1−2(t−n)+ t
2−n2

2

] n∏
j=1

4j−5
7−4j


x0 for t ∈ [2n−1,2n+1). (2.20)

From Theorem 2.3, all solutions of (2.19) are oscillatory if

B
(
2n,2(n+1)−1

)
B(2n,2n−1)

=−1+ 6
7−4n

(2.21)

is not eventually positive.

3. The case (1.1). To simplify the notation, define

B(a,b)= 1−
∫ b
a
b(s)exp

(∫ s
a
a(u)du

)
ds,

F(a,b)=
∫ b
a
f (s)exp

(∫ s
a
a(u)du

)
ds,

∫ 0

−p
a(s)ds = 0, x(np)= xn,

In =
[
np−l,(n+1)p−l) for n= 1,2, . . . .

(3.1)

We state some theorems for (1.1). The proofs of Theorems 3.1, 3.2, and 3.3 can

be obtained by the techniques used in the proofs of Theorems 2.1, 2.2, and 2.3 of

Section 2.

Theorem 3.1. Let a(t),b(t), and f(t) be locally integrable on [0,∞). Then (1.1) and

(1.2) has a unique solution on [0,∞) given by

x(t)= B(g(t),t)exp

(
−
∫ t
g(t)

a(s)ds
)

×

g(t)/p∏

j=1

exp

(
−
∫ jp
(j−1)p

a(s)ds
)
B
(
(j−1)p,jp−l)
B(jp,jp−l)




×

x0−

g(t)/p∑
j=1


 j∏
i=1

exp

(
−
∫ ip
(i−1)p

a(s)ds
)
B−1

(
(i−1)p,ip−l)

B−1(ip,ip−l)


F(jp,(j−1)p

)
B(jp,jp−l)




+exp

(
−
∫ t
g(t)

a(s)ds
)
F
(
g(t),t

)
,

(3.2)

where B(a,b) and F(a,b) are defined in (3.1).
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In addition, if a(t),b(t), and f(t) are integrable on (−∞,0], this solution can be

continued backwards on (−∞,0] and is given by

x(t)=B(g(t),t)exp

(
−
∫ t
g(t)

a(s)ds
)

×

−g(t)/p∏

j=1

exp

(
−
∫ jp
(j−1)p

a(s)ds
)
B
(
(−j−1)p,−jp−l)
B(−jp,−jp−l)




×

x0−

−g(t)/p∑
j=1


 j∏
i=1

exp

(
−
∫−ip
(−i−1)p

a(s)ds
)
B−1
(
(−i−1)p,−ip−l)

B−1(−ip,−ip−l)


F(−jp,−(j−1)p

)
B(−jp,−jp−l)




+exp

(
−
∫ t
g(t)

a(s)ds
)
F
(
g(t),t

)
.

(3.3)

Theorem 3.2. Let a(t) and b(t) be locally integrable on [0,∞). Assume that

|a(t)|<A, |b(t)|< B1(A,B1 > 0) for t ∈ [0,∞) and∣∣∣∣∣B
(
(n−1)p,np−l)
B(np,np−l)

∣∣∣∣∣<α< 1 for n∈ {1,2, . . .}. (3.4)

(a) If f(t)≡ 0 then the trivial solution of (1.1) is globally asymptotically stable.

(b) If limt→∞f(t)= 0 then every solution of (1.1) tends to zero as t→∞.

Theorem 3.3. Let a(t) and b(t) be locally integrable on [0,∞). Every solution of

the equation

ẋ(t)+a(t)x(t)+b(t)x(g(t))= 0, x(0)= x0 (3.5)

is oscillatory if B(np,(n+1)p−l)/B(np,np−l) is not eventually positive.

In summary, equations with piecewise constant argument are interesting in their

own right, and have some curious and unpredictable properties. The systems of nonau-

tonomous differential equations of alternately retarded and advanced type can be

studied in similar ways.
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