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ABSTRACT. This paper is concerned with investigating the spatial decay estimates for a
class of nonlinear damped hyperbolic equations. In addition, we compare the solutions
of two-dimensional wave equations with different damped coefficients and establish an
explicit inequality which displays continuous dependence on this coefficient.
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1. Introduction. Spatial decay estimates for several types of partial differential
equations and systems have been the subject of extensive investigations in the lit-
erature for close to a century and a half. These studies were motivated by a desire to
formulate Saint-Venant and Phragmén-Lindel6f type principles in elasticity and heat
conduction. Roughly speaking, these estimates assert that the solution of the prob-
lem decays exponentially with distance from the boundary on which a mechanical
or thermal “load” has been applied. In the case of elliptic problems, this work has
been directed toward establishing a rational form of Saint-Venant’s principle and has
included studies in linear elasticity (see Toupin [18] and Knowles [9]), in nonlinear
plane elasticity (see Roseman [16]) and in linear viscoelasticity (see Edelstein [4]). In
a recent paper, Tahamtani [17] derived an explicit Saint-Venant type decay estimate
for solutions of the Dirichlet problem for nonlinear biharmonic equations defined in
a semi-infinite cylinder in R™ with homogeneous Dirichlet data on the lateral surface
of the cylinder.

A spatial decay estimate for transient heat conduction was first given by Edelstein
[3]. The result has been consistently improved by the studies completed by Knowles
[10], Horgan et al. [7], and Chirita [2].

Very little attention has been devoted to the study of hyperbolic differential equa-
tions. Horgan and Knowles [6] and Horgan [5] pointed out the paucity of Saint-Venant
type results for hyperbolic system of the kind describing elastic wave propagation.
The only previous work known to us on questions like this for the hyperbolic dif-
ferential equations is that of Quintanilla [15]. He considered the transient solutions
of the damped wave equation and established a spatial decay estimate of the kind
described by Knowles [10] for the heat conduction equation. The results we present
here generalize the work in [15] to nonlinear damped hyperbolic equations and obtain
stronger results involving an exponential decay of energy functional.

Alternatively, the results may be viewed as theorems of Phragmén-Lindel6f type
[1, 8, 14] for nonlinear damped hyperbolic equations.
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In this paper, we show that if the solution is bounded in an energy norm, then it
must decay exponentially in energy norm as the distance from the near end tends to
infinity. Finally, we compare the solutions of two damped wave equations with differ-
ent damped coefficients and establish an explicit inequality which displays continuous
dependence on this coefficient.

2. Preliminaries. In this paper, we derive a spatial decay estimate for a functional
defined on the solutions of the equation

oauge +vf(ug) = Au, (2.1)

where o and v are two positive numbers, A is the Laplace operator, and f is a nonlinear
function satisfying the inequalities

fvzalvl?, |[f)|=clvP !, (2.2)

forp>=2,c1>0,c2>0.
Our attention is focused on the initial-boundary problem for (2.1) in the space-time
region Q x (0, ), where

Q={(x1,x") ER":x; €RY, x" = (x2,X3,...,Xn) € Oy, CR" 7} (2.3)

is the semi-infinite prismatic cylinder and oy, denotes the open, bounded, and simply
connected cross section of Q. In addition, u(x1,x’,t) is required to satisfy the initial
and boundary conditions

u(x1,x,0) =0, ue(xy,x,0)=0, (x1,x)eqQ, (2.4)
u(x,x',t) =0, x €00y, x120,t>0, (2.5)
u(0,x',t) =g(x',t), x ' €0y,x1=0,t20, (2.6)

where the function g(x’,t) is a prescribed function and vanishes on the boundary
00y, . For convenience, we introduce the notation

Qr ={(x1,x"):0< T <x1}, or = {(x1,x") :x1 =T} 2.7)

We describe the quantity

AP(D) = inf (JD|W|de>(JD|v|de>71, 2.8)

veCs(D)

where C& (D) is the set of functions that are continuously differentiable with compact
support in D. In [13] examples are given, where for an analogous A?, a lower esti-
mate can be found by means of the first eigenvalues of some elliptic boundary-value
problem on D. We note that for p = 2, (2.8) is the Poincaré-Friedrich’s inequality

J v2dx sH(D)J Vv 2dx, 2.9)
D D
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see [11]. Young’s inequality is used often in this article. It states that

x\Pylia < iX+lE’”J’, +-=1, (2.10)

1.1
a p 4q
for x, ¥ > 0 and arbitrary ¢ > 0.

3. A decay theorem. In this section, we state a spatial decay estimate for the solu-
tion of the problem defined by (2.1), (2.4), (2.5), and (2.6). We recall that the following
equalities:

V- (uvVu) - vVuvu = vuf(u) + i(o(uut) —ou?,
dat 3.1)

Ve (ueVu) = VuVue = vuef (ug) + % (%uf)

are satisfied for all solutions of the nonlinear equation (2.1). Let 6 = v/ (1 + &); we may
consider
t
F(t,t1):=—| V-[(ur+éu)vuldt, x€Q,0=<t; <t. (3.2)
0

To obtain our estimates, it is suitable to recall that (see [15, Lemma 2.1, page 80])

o F(t,t1) = 1 +J2, (3.3)

where

51

i ;:J J (8IVul? —cadviul|u |V +crviue|? - sou?)dx dt, (3.4)
0 Jor

- N S-S ST SN .4 2)

]Z__JQT(2(1+(X)ut+2\VuI U dx. (3.5)

Applying Holder’s and Young’s inequalities we can estimate the second and fourth
terms of (3.4) as follows:

3
11:=cz6vJ J lul|u|P " dxdt
o (3.6)
1 h p-1 h p
scz—évj J |u|”dxdt+cz75"’5er j |ue|” dxdt,
pe 0 Jor p 0 Jor

ty
12:=6aj J u?dxdt
0 Jor
(3.7)

p-2 f1 2 1
< e”’éo(J J 1dxdt+—6aj J |ue | dxadt.
14 0 JQr pe 0 JQr

Using the quantity in (2.8), we find from (3.6)

-1

ty ty
Ilscziéw\’?’(QT)J J \Vul”’dxdtJrczp s’”évjj |uc|P dxdt. (3.8)
pe 0 Jor 0 Jor
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Dropping the first term on the right-hand side of (3.4), then from (3.4), (3.7), and (3.8)

we obtain

t
I v(l —cziaA*v(QT)) J J \Vul? dx dt
pe 0 JOr

ty 51
sva)J j |ut|pdxdt—vj J \Vul? dxdt
0 JOr 0 JQOr

-1

+V(C1—C2p

2 t p
——60<J J [us|” dx dt — Cqo, gPoaty,
pe 0 JOr

where Cq, is a positive constant depending only on Q-.
Next, utilizing the Poincaré-Friedrich’s inequality (2.9) we get from (3.5)

L sva-2 2, X o
JzzJQT[Z(l SvAT(Q1)) I Vul +2(1+a)ut]dx.

From (3.9), (3.10), and (3.3) it follows that

t
F(T,ty) le(T)J Hz(ut,Vu)dXJer(T)J J H? (uy, Vu)dx dt
Qr Qr 0 Qr

by —
—B{J Hz(ut,Vu)dx+J J H’”(ut,Vu)dxdt}—CQTp Zspétxtl,
o 0 Jor p
where

Hi(us,Vu) ::%IVu|i+ )|ut{i, fori=2,p,

o«
2(1+«x
Ni(T) =min {1, (1-6vA~2(Q.))},

Prers))
2v<c -c &Po ) ¢,
1—C2 ”

4(1—;0()5}_

1+«

No(T) = min{Zv(l —czi(s)\’” (QT)),
B= max{l,Zv,
We may always take € > 0 so large and 6 > 0 so small that

“lrsso.

1-6vA~2(Q) > 0, 1—czi5/\"’(QT) >0, cl—czp
We may define
51
Eu(T,t)=J {J H”(ut,Vu)dt+H2(ut,Vu)}dx
a: Lo

as the strain energy contained in Q. Inserting (3.14) in (3.11) we get

F(1,t1) = (y(T) - B)Eu(T,t) - Co, PSP Sty

Qr

(3.9

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

where B <y (1) =min{N; (1), N2 (T) }. Our next objective is to estimate the left-hand side
of (3.3). Due to the boundary conditions (2.5) and (2.6) and the divergence theorem,
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we obtain .
1
F(1,t1) J J (ue+6u)uy, dx’dt. (3.16)
oT

Qr

Using the Schwarz inequality we find

F(T,t1)
Qr

= Jotl UUT (s dx,)l/zﬂm (ufdx)"*+6 UT(ude’)”ZHdt. (3.17)

From Poincaré-Friedrich’s and the arithmetic-geometric mean inequalities we deduce

F(T tl)
Qr

51
< Lussaion J J IVu\de'dt+£J J u?dx’'dt. (3.18)
2¢ oT 2 0 or

Using Holder’s and Young’s inequalities

‘JQTF(T’tl)

1 h
<—— (1 ZA_Z I J p ’
<p62( +0 (o7)) . UTIVu\ dx'dt

t1 . _
+lj J Iutlpdx’dt+C(,Tp 25”*1(1+32+62)\—2(0T))t1,
pJo Jor 2p
(3.19)

where C}T is a positive constant depending only on 0.
We add appropriate terms into the right-hand side of (3.19) in order to put it into
the energy term (3.14). Thus,

p-

2
p-1 2
2 P (1 +€2+6°A7%(07))t1, (3.20)

F(t,t1)| <
Or

NO(T) Eu(T t)+Co,

where No(T) = max{1,(2(1+x)/ap),(2/pe?)(1+52A72(07))} and
%Eu('r,t) = fLT{ : H? (u;,Vu)dt + H? (ut,Vu)}dx'. (3.21)
Combining the estimates (3.15) and (3.20), we find
E, (T, t)+w(T) 0 Eu(T t) <My (1), (3.22)
where w(T) := No(T)(y(T)—B)"!, and
M, (T) := sz P [(1+2+82A72(0+))Co, +265Ca, ] (y(T)-B) 't1.  (3.23)

Inequality (3.22) immediately implies that

Eu(T,t) <E,(0,t)exp [— JOT w! (s)ds] +exp [— JOT w’l(s)ds]
(3.24)

X JOT exp [JOS wt (T)d?’] w ()M, (s)ds.

Now if we suppose that f(;x’ w H(T)dT = ~ and for fixed t;, lim_. M (T) = 0, then
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by I’'Hopital’s rule we have
T T s
lim exp [ —J w! (s)ds] J exp [J w! (1’)611/]0\)‘1(3)Mt1 (s)ds =0. (3.25)
~oo 0 0 0

Inequality (3.24) implies that lim;_ sup E, (7,t) < 0. Thus we may state the following
result.

THEOREM 3.1. Let u be a solution of the initial-boundary value problem (2.1), (2.2),
(2.4), (2.5), and (2.6). If the cylinder Q satisfies [, w ™' (T)dT = 0o and limy_ My, (T) =
0, then the following estimate holds for all T > 0,

51
J { H”(ut,Vu)dt+H2(ut,Vu)§»dx
ar LJo

<exp [ - JOT w’l(s)ds] LZ {Lt] H? (u;,Vu)dt + H* (uy, Vu)}dx (3.26)
0

+exp [— JOT w’l(s)ds] JOT exp [JOS w1 (r)dr] W ()M, (s)ds.

4. Continuous dependence on the damped coefficient. If f(u;) = u; in (2.1), we
denote by v (x1,x’,t) the solution of the linear equation

KUt +VUr = AU 4.1)

that satisfies the initial and boundary conditions in (2.4), (2.5), and (2.6) with v re-
placed by the constant v. For u to be the solution of (4.1), (2.4), (2.5), and (2.6) and v
to be the solution of (4.1), (2.4), (2.5), and (2.6) with damping coefficient v in (4.1), we
establish an explicit inequality which displays continuous dependence on the coeffi-
cient v.

If we now set w = u —v, then w satisfies

QWi + VWi + (V=) = Aw, (x1,x",t) € Q% (0,00),
w(x1,x,0) =0, wi(x1,x,0)=0, (x1,x)eqQ,
w(xy,x',t) =0, x' €00y, x120,t>0, (4.2)
w(0,x",t) =0, x'€0x,x1=0,t=0.
Using the methods of [12], we can treat the case in which v + u on the end x; = 0.
Calculations similar to those used in Section 3 lead to the equalities

t1 51
V- (wVw)dt = aww; + %wz +J (IVw|? - cw? + (v —V)wwy ) dt,
N 0 4.3)
! x 5 1 2 “ 2 ~
V- (wVw)dt = 5 Wi + §|Vw| +J (vwi + (v=v)wve)dt.
0

Similar to the definition of F in (3.2), we may define

t
®(T,t;) = J 1J BIVWI? + (v =9) (wy +dw) v + (v — xd)w?)dx dt
0 Jor (4.4)

1 .
+J (f\Vw|2 + gwt2 +xéww; + sz)dx,
0, \2 2 2
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where § is a positive constant to be specified later. By similar calculation techniques
of the previous section, from (4.4) we deduce

Mo (T) “tl(1|Vw|2+Lw2)dt+1|Vw\2+Lw2}dx'
O o Lo \2 20+ )t 2 21+t

31wl g [, w0 mlws
ZL%(ZWW‘ +2(1+(x)wt dx + . QT[cﬁwt+(v V) [we + dw]v]dx dt,
4.5)

where My(T) = max{l,e(1 + )/, e 1(1 + 52/\*2(0}))}. Making use of Schwarz in-
equality together with Poincaré-Friedrich’s and arithmetic-geometric mean inequali-
ties we have

J J wt+6w vedxdt
€ h
< =5%A72 J J [Vw|?dx dt (4.6)
2 Qr
£ b
+,J J wtzdxdt+—(v—\7)zj J vZdxdt.
2J)o Jo. 2¢ 0 Jor

From (4.5) and (4.6)

Mo(T) H“(1|Vw|2+Lw2)dt+1|Vw|2+Lw2}dx'
O e Lo \2 21 +a) ! 2 20 +w)

- t . rt
z(v—féz\’z(QT))J J IVwIdedtﬂSJ J w?dx dt
2 0 JOr 0 JOr

ot f, e [,
+JQT<2|Vw| s wE)ax v | vwiaxae- 5] | widxar

—J <1|Vw|2+Lw2>dx—i(v—\7)2ItlJ vidxdt
Qr \2 2(1+x) ¢ 2¢ 0o Jo, t :

Taking § > 0 so small that v > (5/2)5?\’2(97), we obtain

Mo(T) ”tl(vathZ)dH1\Vw\2+Lw2}dx'
or LJo \2 2(1+x) ¢ 2 2(1+x) ¢
b B 1 0(
- 2 2 - 2 .2
> M (T) QT{JO (2|Vw| +2(1+(X)wt>dt+2|Vw| +2(1+a)wt}dx s
_B Jtl(lww|2+Lw2)dt+lww\2 _ }dx -
or [ Jo \2 2(1+@) ¢ 2 (1+)

1 o
o v [ vpaxa,
2¢ o Jor

4.7)

where ~
[2(1+x)8]
104

M (T) :rnin{l, ,(2v—552\’2(QT))},

4.9
[s(1+o<)]} @9
DL

B:max{l,Zv,
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Let

E,(T t)'—J {Jtl(lIVw|2+Lw2>dt+l\Vw\2+ & wz}dx
WETTT o Lo \2 2(1+@) ¢ 2 2(1+) ¢ ’

0 o ! 2 X 2 1 2 [ 2} ,
aTEw(T’”'__LT“o <2|V“’| +2(1+o<)wf)dt+2'vw' T a Wi X
(4.10)

Upon inserting (4.10) in (4.8), we obtain the differential inequality (provided that
My (1) = B)

0 5 1 oo (1
a—TEw(T,t)Jr (M1 (T) = B)My (T)Ey, (T,t) < 2—6(\/—\/)2]0 JQT vidxdt.  (4.11)

It is well known that

o« (" 2dxd
2(1+(X)Jo Lvat xdt
X

by . 0( 1 .
L 2 2 L 2 2 (4.12)
SJQT{JO (ZIVU\ +2(1+(x)vt)dt+2|Vv| +2(1+0()vt}dx

< E,(0,t)exp [— JOT w‘”z(s)ds],

where

to
{J (EIVvIZJr « vf)dt+1|Vv|2+
0 0 2 2

2
2(1+ ) )vf}dx @-13)

X
Ev(o’t)zj 201+«

Q

is bounded (cf. [15, Theorem 3.1]), and w(T) is some positive function. Thus inserting
(4.12) into (4.11) leads to

aiTEw (T,t) + (M1 (T) = B)My (T Ew (T, 1)
(4.14)

< 1;:‘ (v—=V)2E, (0,t)My ' (T) exp [— JOT w12 (s)ds].

We now choose (M, (T) — B)My ' (T) = w~/2(T). But (4.14) may then be rewritten as

0 T 172 1+« 2 -1
a—T(exp[JO w (s)ds]Ew(T,t))s e (v—=Vv)°Ey,(0,6) My (T). (4.15)

An integration leads to

E,(T,t) <

1;:‘ (v—7)2E, (0,t) (JOT M (s)ds) exp [ - LT w”Z(s)ds]. (4.16)

We have thus established the following theorem.

THEOREM 4.1. Let u be the solution of the problem (4.1), (2.4), (2.5), and (2.6) and v
the solution of the same problem with v replaced by v. Then for arbitrary T >0,t >0
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the closeness of u and v in energy measure satisfies the following inequality:

I {Jtl<1|Vw|2+Lw2)dt+l|Vw|2+Lw2}dx
ar Lo \2 2(1+«x) * 2 2(1+a)  *

< 1;—:(\/ —V)?E, (0,t) ( LTM(;l (s)ds) exp [f IOT w”z(s)ds].

(4.17)
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