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ON THE EXTENDED HARDY’S INEQUALITY

YAN PING

(Received 16 February 2000)

ABSTRACT. We generalize a strengthened version of Hardy’s inequality and give a new
simpler proof.

2000 Mathematics Subject Classification. 26D15, 40A25.

In the recent paper [4], Hardy’s inequality was generalized. In this note, the results
given in [4] are further generalized and a new much simpler proof is given. The fol-
lowing Hardy’s inequality is well known [1, Theorem 349].

THEOREM 1 (Hardy’s inequality). Let A, > 0, Ay = Dp_1Ax, an =2 0 (n € N),
0< > 1 Anan < +oo, then
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Recently, [4] gave an improvement of Theorem 1, and the following result was
proved.

THEOREM 2. Let0 <Ay <Ay, Ap =24 1A, an=20 (M eN),0< Y7 | Apay < +oo,
then
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In this note, we will prove the following theorem.

THEOREM 3. Let 0 < Apyy1 <Ay, Ap=Dp g2k, an 20 meEN), 0< >0 Adpay <
+00, then
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To prove Theorem 3, we introduce some lemmas.

LEMMA 4. For x > 0, then
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PROOF. (i) Define f(x) as

f(x):xln(l+%)+%ln(1+ ) x € (0, +o0). (5)

S5x+1

It is obvious that when x > 0, the inequality

1 X 5 *1/2
<1+§> <e(1+5x+1) ©)

is equivalent to f(x) < 1. It is easy to see that

Py L 1) 25
fx) = x+1+ln(1+x) 25x+6)5x+1) @)

and for x € (0, + ), it can be shown that

11 25 25
(x+1)?2 x(x+1) 2(5Gx+1)2 2(5x+6)2
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f//(x) _

< 0.

Hence f’(x) is decreasing on (0,+). Then for any x € (0, +), we have f’'(x) >
limy ..o f'(x) =0, thus, f(x) is increasing on (0, +), and f(x) <limy_., . f(x) =1
for x € (0, +). The inequality (6) is valid.

(ii) Define g(x) as

), x € (0,4 ). 9

1 1
g(x) —xln(1+;> —ln(l— %+ 1

When x > 0, the inequality

e<1_ 2x1+1> < (“%)x (10)

is equivalent to g(x) > 1. For x € (0, +), it can be shown that

) = L . 1
g (x) = x+1+ln(1+x> x(2x+1)’

5x2+5x+1 an
g'(x)= d d > 0.

x2(x+1)2(2x+1)2

Hence, g'(x) is increasing on (0,+). Then for any x € (0, +), we have g'(x) <
limy_.0 g’ (x) =0, therefore, g(x) is decreasing on (0,+) and g(x) > limy_ ;. g(x)
=1 for x € (0,+). Inequality (10) is valid.

By virtue of (6) and (10), inequalities (4) are valid. This proves Lemma 4. O

REMARK 5. By a direct calculation, we have

-1/2 1
) <l (x>0). (12)

<1+5x+1 T 2(x+19/20)
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Then by (4) and (12), we have

1 1\~ 1
e0_2x+1><(1+;) <eb_2u449moj (x> 0). (13)
Inequality (13) is equivalent to
e 1\* e
2u+1wu»<e_o+}J Soxt1 XZO- (14)

Thus, [1, Lemma 2] is contained in Lemma 4. Inequalities (4) and (14) are the new
inequalities on the constant e (cf. [3, Theorem 3.8.26]; and [2, page 358]).

LEMMA 6 (see [1, Theorem 9]). Let gm >0, oty =0 (M =1,2,...,n), Zﬁzlgm =1,
then
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ot o gn
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PROOF OF THEOREM 3. Settingcy, >0, gm = A /An, Cm = Cmam (m=1,2,...,1),
by Lemma 6, we have

1 n
(cran)™ ™ (caa2)'™ -+ (cpan) ™ < A > AmCmdm. (16)
n -

Then we find that
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Define ¢ = ((Ams1)/Am)Am/Am A, (m = 1,2,...) and Ap = 0. Because 0 < Apsq <
Ap (m=1,2,...), we have

A 1/A
Am (Am+1) m . A1 7\3 A n .
Cmm = 7Am—l 5 <C1 C2 . Cnn) = AYH—I (n € N)!
Am
00 Am/A
c Z 2\n+1 _ (AmH) m/ m Z n+1
m = Am
n=m An( M /\2 . C}}«\Ln ) 1/An Am AHAH+1

(18)
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Then by (4) and (17), we obtain that

- A A Ay 1/A ad Agy | Am/Am
> Apsr(aytaz? - -apn) < Y <1+—) Am@m

Am
n=1 m=1
0 SAm -1/2 (19)
<e 1+ 7) AmAm.-
m:l( 5Am +A e
Hence inequality (3) is valid, and Theorem 3 is proved. O

REMARK 7. With inequality (12), Theorem 3 is obviously an improvement and an
extension of [4, Theorem 1].

Setting A, = 1, (3) changes into

s 5 -1/2
(alaz---an)”"<eZ (1+ ) an. (20)
| el Sn+1
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n

By inequality (12), we have

- 1/n - 1
2 (@maz-an) <en§[1‘ 2(n+ 19/20)]“”' (21)

Thus, inequalities (20) and (21) are obviously an improvement and extension of [5,
Theorem 3.1].
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