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DESCRIPTION OF THE STRUCTURE OF SINGULAR SPECTRUM
FOR FRIEDRICHS MODEL OPERATOR

NEAR SINGULAR POINT
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Abstract. The study of the point spectrum and the singular continuous one is reduced
to investigating the structure of the real roots set of an analytic function with positive
imaginary partM(λ). We prove a uniqueness theorem for such a class of analytic functions.
Combining this theorem with a lemma on smoothness of M(λ) near its real roots permits
us to describe the density of the singular spectrum.
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1. Statement of the problem. We consider a selfadjoint operator A2 given by

A2 = t2 ·+(·,ϕ)ϕ (1.1)

on the domain of functions u(t) ∈ L2(R) such that t2u(t) ∈ L2(R). Here ϕ ∈ L2(R)
and t is the independent variable. The action of the operator can be written as follows:

(
A2u

)
(t)= t2 ·u(t)+ϕ(t)

∫
R
u(x)ϕ(x)dx. (1.2)

The function ϕ is assumed to satisfy the smoothness condition

∣∣ϕ(t+h)−ϕ(t)∣∣≤ω(|h|), |h| ≤ 1, (1.3)

where the function ω(t) (the modulus of continuity of the function ϕ) is monotone

and satisfies a Dini condition

ω(t) ↓ 0 as t ↓ 0,
∫ 1

0

ω(t)
t

dt <∞. (1.4)

We are going to study the singular spectrum of the operator A2. Note that we define

the singular spectrum as the union of the point spectrum and the singular continuous

one. The structure of the spectrum σsing(S1) (the singular spectrum of the operator

S1 = t · +(·,ϕ)ϕ) has been studied in detail (see [2, 3, 6, 7, 8, 9, 10, 12, 13, 14]).

By using the simple change of variables t2 = x, one can show that outside of any

neighborhood of the origin the structure of the spectrum σsing(A2) is identical with

the one of the operator S1. This is due to the fact that this change of variables is

smooth outside of any neighborhood of the origin. Suppose that conditions (1.3), (1.4),

and also some additional conditions on the function ϕ are fulfilled only in a certain

interval (c,d)⊂R, then the main results of [2, 3, 6, 7, 8, 9, 10, 12, 13, 14] concerning
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the structure of σsing(S1) will remain true in any closed subinterval ∆ ⊂ (c,d). At

the same time, as it has been shown in [15], for the operator A2 the behavior of the

singular spectrum has quite different character in a neighborhood of the origin. Here

we can also use the pointed change of variables but, since (t2)′|0 = 0, it is not smooth

(i.e., not a diffeomorphism) near zero. Therefore, the point zero needs our special

attention and we are going to study the singular spectrum just in a neighborhood of

this singular point. Note that the origin is also a boundary point of the continuous

spectrum of A2 coinciding with the interval [0,+∞).

2. Analytic function M(z) and the singular spectrum. One of the approaches to

the investigation of the point and singular continuous spectra in the Friedrichs model

is based on studying some properties of analytic functions with positive imaginary

part. It is possible to define an analytic function in such a way that the singular spec-

trum of the perturbed operator embeds into its real roots.

Determine for z ∈ C\[0,+∞) an analytic function M(z) as follows:

M(z)= 1+
∫ +∞
−∞

∣∣ϕ2(t)
∣∣

t2−z dt. (2.1)

The proof of the following propositions is contained in [15].

Proposition 2.1. If conditions (1.3) and (1.4) are fulfilled, then the analytic function

M(z) defined in the complex plane with the slit (0,+∞) has continuous boundary values

on the edges of the slit.

We determine for λ > 0 the value M(λ) :=M(λ+i0) and let N := {λ > 0 :M(λ)= 0
}

be the set of roots of the analytic function M(z). The set N is bounded [15].

Proposition 2.2. If the function ϕ satisfies conditions (1.3) and (1.4), then the

singular spectrum of the operator A2, defined by (1.1), embeds into the set N plus the

origin, that is, σsing(A2)⊂N∪{0}.

So the investigation of σsing(A2) is reduced to the description of the set of roots

N . (It is not difficult to show that zero is not an eigenvalue of the operator A2 = t2 ·
+(·,ϕ)ϕ [15].) It follows that we need to study the behavior of the functionM(z) in a

neighborhood of its real roots. (The behavior of boundary functions and, in particular,

their sets of uniqueness were studied by many authors. See, for example, [1].) For this

purpose we prove a certain uniqueness theorem for this function, which imposes

some restrictions on the admissible structure of the set of its roots. This uniqueness

theorem may be applied in fact to the whole class of analytic functions. The functions

from this class admit a representation in a specific form. We start Section 3 with the

description of this class of functions.

3. Uniqueness theorem. It is self-evident that, using the change of variables t2 = τ ,

the function M(z) can be written in the form

M(z)= 1+
∫ +∞

0

ψ(τ)
τ−z dτ, z �∈ [0,+∞), (3.1)
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where

ψ(τ)=
∣∣ϕ2

(√
τ
)∣∣+∣∣ϕ2

(−√τ )∣∣
2
√
τ

. (3.2)

The following lemma describes a class of analytic functions. It is for this class that

a uniqueness theorem will be formulated.

Lemma 3.1. Let the function f(z) be written in the form

f(z)= 1+
∫ +∞

0

dν(t)
t−z , z ∈ C\[0,+∞), (3.3)

with a positive finite measure dν(t),

dν(t)≥ 0,
∫ +∞

0
dν(t) <∞. (3.4)

Then the function (f (z))−1 possesses the representation

(
f(z)

)−1 = 1−
∫ +∞

0

dµ(t)
t−z , (3.5)

where the positive finite measure dµ(t) has the following properties:

∫ 1

0

dµ(t)
t

≤ 1, (3.6)

∫ +∞
0

ydµ(t)
t2+y2

≤ 1 for y > 0. (3.7)

Proof. The function ϕ(z) := f(z)−1 has the integral representation

ϕ(z)=
∫ +∞
−∞

dν(t)
t−z (3.8)

with the positive finite measure dν(t) (in addition in our case dν(t)= 0 for t < 0), that

is, according to the definition (see [8, 9]),ϕ(z) is an analyticR0-function. Recall that for

the function to belong to the class R0 it is necessary and sufficient, for example, that

Imϕ(z)≥ 0 for Imz > 0, ϕ(iy) �→ 0 as y �→+∞, (3.9)

lim
y→+∞y Imϕ(iy) <∞. (3.10)

If this is the case, the following relation is easily established

lim
y→+∞y Imϕ(iy)=

∫ +∞
−∞

dν(t). (3.11)

Note that f(z) has no zeros in C \ [0,+∞). In fact, if Imz0 > 0 and f(z0) = 0,

then by the maximum principle for harmonic functions Imf(z) =
∫+∞
0 y/((t−x)2+

y2)dν(t) ≥ 0 is identically equal to zero in C+. This is possible provided that the

spectral function ν(t) is constant. Then from the integral representation f(z) = 1
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for all z ∈ C+. The case C− is treated analogously. Now if z = x0 < 0, then f(x0) =
1+

∫+∞
0 dν(t)/(t−x0)≥ 1. At the same time under certain smoothness conditions on

ν(t) the function f(z) can be continuously extended to the positive half of the real

axis (0,+∞), where it can already have zeros. Studying the density of this zero set as

a closed set of Lebesgue measure zero is the main purpose of this paper.

Verify that the function

g(z) := 1− 1
f(z)

= ϕ(z)
1+ϕ(z) , z ∈ C\[0,+∞), (3.12)

is also an analytic R0-function. Conditions (3.9) are obviously fulfilled for g(z). For

checking condition (3.10), note that Img(z)= Imϕ(z)/|1+ϕ(z)|2. Then clearly

lim
y→+∞y Img(iy)= lim

y→+∞y
Imϕ(iy)∣∣1+ϕ(iy)∣∣2 = lim

y→+∞y Imϕ(iy) <∞. (3.13)

Hence,

g(z)=
∫
R

dµ(t)
t−z (3.14)

with a finite positive measure dµ(t). If x > 0, the function g(−x)= 1−1/f(−x) take

real values, therefore by the Stiltjes inversion formula the spectral function µ(t) has

no points of growth in the interval (−∞,0). By letting µ(t) be left continuous at zero,

we can write

g(z)=
∫ +∞

0

dµ(t)
t−z . (3.15)

Then

1
f(z)

= 1−
∫ +∞

0

dµ(t)
t−z . (3.16)

Besides, using (3.11) and (3.13), we get

∫ +∞
0
dµ(t)= lim

y→+∞y Img(iy)= lim
y→+∞y Imϕ(iy)=

∫ +∞
0

dν(t). (3.17)

When x > 0, the following equality holds

∫ +∞
0

dµ(t)
t+x = g(−x)= 1− 1

1+
∫+∞
0 dν(t)/(t+x) . (3.18)

Letting x→ 0+ in it, we find

∫ +∞
0

dµ(t)
t

= 1− 1

1+
∫+∞
0 dν(t)/t

≤ 1. (3.19)

Since Reϕ(iy)=
∫+∞
0 (t/(t2+y2))dν(t)≥ 0 for y > 0, we obviously have

Img(iy)= Imϕ(iy)∣∣1+ϕ(iy)∣∣2 ≤ 1. (3.20)
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It follows that

∫ +∞
0

y
t2+y2

dµ(t)= Img(iy)≤ 1. (3.21)

This completes the proof.

The proof of a uniqueness theorem, which is formulated below, is based on

Lemma 3.1 and on the following remark. As it was shown in [4], if a positive locally

integrable (with respect to Lebesgue measure) function σ(t) defined on the real axis

satisfies the following condition:

sup
I⊂R

{(
1
|I|
∫
I
σ(x)dx

)
·esssup

x∈I

1
σ(x)

}
<∞, (3.22)

where I is an arbitrary finite interval of the real axis, then for the Hilbert transform Ĥ
of any g ∈ L1,σ (R) the following weighted norm inequality

∫
{|Ĥg|>a}

σ(t)dt ≤ C
a
·
∫ +∞
−∞

∣∣g(t)∣∣σ(t)dt, a > 0, (3.23)

holds with a constant C independent of g and a. (Here, and later, we denote by C
various absolute constants.)

Note that in the sequel we use the notation σ −mesI :=
∫
I σ(x)dx for I ⊂R.

Theorem 3.2 (uniqueness theorem). Let σ(t)dt be the measure on the real axis

with the positive weight function σ(t) being even, monotonically decreasing on the

positive half of the real axis

σ(t)= σ(−t); σ(t) ↓ as t ∈ (0,+∞), (3.24)

and satisfying condition (3.22). Let the analytic function f(z) be written in the form

(3.3) and (3.4). Then the estimate

σ −mes
{
x > 0 :

∣∣f(x+iy)∣∣<d}≤ Cd (3.25)

holds for all sufficiently small d> 0 with a constant C independent of y > 0.

Proof. For a= 1/d we have

σ −mes
{
x > 0 :

∣∣f(x+iy)∣∣<d}= σ −mes
{
x > 0 :

∣∣f−1(x+iy)
∣∣>a}. (3.26)

By Lemma 3.1,

f−1(x+iy)= 1−
∫ +∞

0

(t−x)dµ(t)
(t−x)2+y2

−i
∫ +∞

0

ydµ(t)
(t−x)2+y2

=: 1−u(x+iy)−iv(x+iy).
(3.27)
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Clearly,

∫
R
v(x+iy) dx

1+|x| ≤
∫ +∞

0
dµ(t)

∫
R

y
(t−x)2+y2

dx =π
∫ +∞

0
dµ(t) <+∞. (3.28)

Therefore (cf. [5, Chapter 6]), using the properties of the Poisson kernel, for τ ∈R and

δ > 0 we have

1
π

∫ +∞
−∞

τ−x
(τ−x)2+δ2

v(x+iy)dx

=
∫ +∞

0
dµ(t)

1
π

∫ +∞
−∞

τ−x
(τ−x)2+δ2

· y
(t−x)2+y2

dx

=
∫ +∞

0

τ−t
(τ−t)2+(y+δ)2dµ(t)

=u(τ+i(y+δ)).

(3.29)

Consequently,

u(τ+iy)= lim
δ→0+

1
π

∫ +∞
−∞

τ−x
(τ−x)2+δ2

v(x+iy)dx = Ĥx→τv(x+iy), (3.30)

that is, for any fixed y > 0 the next relation is valid

(
Ĥxv

)
(x+iy)=u(x+iy). (3.31)

Hence, by (3.23), for every y > 0

σ −mes
{
x :
∣∣u(x+iy)∣∣>a}≤ C

a

∫
R
v(x+iy)σ(x)dx. (3.32)

We will estimate the integral

∫
R
v(x+iy)σ(x)dx =

∫ +∞
0
dµ(t)

∫
R

yσ(x)
(t−x)2+y2

dx. (3.33)

For this we split the domain of inner integration into three parts

∫
R

yσ(x)
(t−x)2+y2

dx =
(∫ −1

−∞
+
∫ t/2
−1
+
∫ +∞
t/2

)
yσ(x)

(t−x)2+y2
dx. (3.34)

First observe that by (3.24) σ(|x|) ≤ σ(1) if |x| ≥ 1. Besides, substituting I = (0,1)
into (3.22), we find that for x ∈ (0,1)

C ≥
∫ 1

0
σ(t)dt · 1

σ(1)
≥
∫ x

0
σ(t)dt · 1

σ(1)
≥ σ(x)·x

σ(1)
, (3.35)

that is,

σ(x)≤ Cσ(1)· 1
x
, x ∈ (0,1). (3.36)
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Using the first inequality, we obtain

∫ −1

−∞

yσ(x)
(t−x)2+y2

dx ≤ σ(1)
∫ +∞
−∞

y
(t−x)2+y2

dx =πσ(1),
∫ t/2
−1

yσ(x)
(t−x)2+y2

dx ≤ y
(t/2)2+y2

∫ t/2
−1
σ(x)dx

≤ y
(t/2)2+y2

(
2
∫ 1

0
σ(x)dx+σ(1)· t

2

)
,

∫ +∞
t/2

yσ(x)
(t−x)2+y2

dx ≤ σ
(
t
2

)∫ +∞
−∞

y
(t−x)2+y2

dx =πσ
(
t
2

)
.

(3.37)

Thus we have

∫
R
v(x+iy)σ(x)dx ≤

∫ +∞
0
dµ(t)

[
πσ(1)+πσ

(
t
2

)

+ y
(t/2)2+y2

(
2
∫ 1

0
σ(x)dx+σ(1) t

2

)]
.

(3.38)

We estimate each summand separately using the properties of the measure dµ(t)
proved in Lemma 3.1. Combining (3.4) for dµ(t) and (3.7), we get

πσ(1)
∫ +∞

0
dµ(t)+2

∫ 1

0
σ(x)dx ·2

∫ +∞
0

2y
t2+(2y)2dµ(t) <∞. (3.39)

From the monotonicity of σ(t) for t > 0 and (3.36), it follows that

∫ +∞
0
dµ(t)σ

(
t
2

)
≤ 2Cσ(1)

∫ 1

0

dµ(t)
t

+σ
(

1
2

)∫ +∞
0
dµ(t) <∞. (3.40)

The last inequality is due to (3.6) and (3.4). Further, as (t/2)y ≤ ((t/2)2 + y2)/2
we have

σ(1)
∫ +∞

0

y(t/2)
(t/2)2+y2

dµ(t)≤ σ(1)
2

∫ +∞
0
dµ(t) <∞. (3.41)

Finally, we obtain

∫
R
v(x+iy)σ(x)dx ≤ C (3.42)

uniformly for y > 0. From this, by Chebyshev’s inequality, we get

σ −mes
{
x : v(x+iy) > a}≤ 1

a

∫
R
v(x+iy)σ(x)dx ≤ C

a
. (3.43)

It is obvious that for a> 4

{
x > 0 :

∣∣1+u(x+iy)∣∣> a
2

}
⊆
{
x > 0 :

∣∣u(x+iy)∣∣> a
4

}
. (3.44)
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At the same time

σ −mes
{
x > 0 :

∣∣f−1(x+iy)
∣∣>a}

≤ σ −mes
{
x > 0 :

∣∣Ref−1(x+iy)
∣∣> a

2

}

+σ −mes
{
x > 0 :

∣∣ Imf−1(x+iy)
∣∣> a

2

}
,

(3.45)

that is,

σ −mes
{
x > 0 :

∣∣f−1(x+iy)
∣∣>a}

≤ σ −mes
{
x > 0 :

∣∣u(x+iy)∣∣> a
4

}

+σ −mes
{
x > 0 :

∣∣v(x+iy)∣∣> a
2

}
.

(3.46)

However, according to (3.32) and (3.42),

σ −mes
{
x > 0 :

∣∣u(x+iy)∣∣>a}≤ 1
a

∫
R
v(x+iy)σ(x)dx ≤ C

a
. (3.47)

As a result we obtain

σ −mes
{
x > 0 :

∣∣f−1(x+iy)
∣∣>a}≤ C

a
. (3.48)

In view of (3.26), this completes the proof.

Being the function with positive imaginary part in the upper half-plane, f(x+iy)
has nontangential limits a.e. in the interval (0,+∞). Let f(x) := limy↓0f(x+iy). The

following theorem shows that the estimate (3.25) is also valid for the limit function

f(x). Namely,

σ −mes
{
x > 0 :

∣∣f(x)∣∣<d}≤ Cd. (3.49)

Theorem 3.3. Let (�,Σ,ρ) be a measure space, and let {ϕn} be a sequence of

measurable functions defined on a set � ∈ Σ. Suppose that for all sufficiently small

d> 0

ρ
{
x ∈ � :ϕn(x) < d

}≤ Cd (3.50)

with the constant C > 0 independent of n.

If for a.e. x ∈ � with respect to ρ there exists limn→+∞ϕn(x) =: ϕ(x), then the

analogous inequality is also valid for the limit function ϕ(x). Namely,

ρ
{
x ∈ � :ϕ(x) < d

}≤ Cd (3.51)

with the same constant C > 0.

Proof. If χ{ϕ<d}(t) is the indicator function of the set {ϕ < d} ≡ {x ∈ � : ϕ(x)
< d}, then

ρ{ϕ<d} =
∫

�
χ{ϕ<d}(t)dρ(t). (3.52)
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Suppose that for a certain t0 ∈ � the function χ{ϕ<d}(t0) = 1, that is, ϕ(t0) < d. If

ϕ(t0)= limn→+∞ϕn(t0), thenϕn(t0) < d for alln large enough. Thus, χ{ϕn<d}(t0)= 1

for these values of n. Therefore,

χ{ϕn<d}
(
t0
)
�→ χ{ϕ<d}

(
t0
)

as n �→+∞. (3.53)

Hence, a.e. in � with respect to ρ

χ{ϕ<d}(t)≤ liminf
n→∞ χ{ϕn<d}(t). (3.54)

It now follows that

ρ{ϕ<d} =
∫

�
χ{ϕ<d}(t)dρ(t)≤

∫
�

liminf
n→∞ χ{ϕn<d}(t)dρ(t). (3.55)

By Fatou’s lemma∫
�

liminf
n→∞ χ{ϕn<d}(t)dρ(t)≤ liminf

n→∞

∫
�
χ{ϕn<d}(t)dρ(t)

≡ liminf
n→∞ ρ

{
ϕn < d

}≤ Cd, (3.56)

and the proof is complete.

Corollary 3.4. The estimate (3.49) holds.

Proof. Let the sequenceϕn(x) := |f(x+iyn)|, where yn ↓ 0. By the absolute con-

tinuity of the measure dρ(t) := σ(t)dt, the limit limn→∞ϕn(x) = |f(x)| also exists

a.e. in (0,+∞) with respect to ρ.

It is clear that this theorem imposes some restrictions on the decrease character

of such analytic functions in a neighborhood of their real roots and therefore on the

structure of the set of these roots, too.

A first uniqueness theorem of this type was obtained by Pavlov [11]. Then Naboko

proved some theorems of this kind for operator-valued functions (see [8, 9]). One can

apply these theorems in our case, but the structure of the zero set in the neighborhood

of the singular point t = 0 cannot be described precisely. This is due to some special

restriction on the weight function σ(t): uniqueness theorems proved earlier allowed

to use only Lebesgue measure, that is, to consider only the following weight function

σ(t) = 1. Our theorem gives an opportunity to consider different measures: in this

paper we use the function σ(t) = 1/tq, where q ∈ [0,1). This permits us to obtain

sharp results concerning the structure of the roots set N .

4. Structure of the singular spectrum in a neighborhood of the origin. In order

to apply the uniqueness theorem (Theorem 3.2) proved above for the description of

the structure of the set N near the singular point zero, we need to know the behavior

ofM(λ) near its roots. In what follows, we restrict our consideration to the case where

the function ϕ belongs to the class Lipα, α ∈ (0,1/2), in other words, for a certain

α∈ (0,1/2) the following inequality holds:∣∣ϕ(x+h)−ϕ(x)∣∣≤ C|h|α, |h|< 1. (4.1)

If α≥ 1/2, then the roots set N , as it has been shown in [15], is empty near zero and

consists of at most finitely many eigenvalues of finite multiplicity.
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We need the next refinement of the Pavlov and Petras lemma [12] (see also

[9, 13, 14]).

Lemma 4.1 (on smoothness ofM(λ)). Let the functionϕ belong to L2(R)∩Lipα,α∈
(0,1/2), and the point λ0 ∈N . Then the following estimate holds in an ε-neighborhood

of λ0 with 0≤ ε ≤ λ0/4

∣∣M(λ)∣∣= ∣∣M(λ)−M(λ0
)∣∣≤ C

∣∣λ−λ0

∣∣2α

λ1/2+α
0

. (4.2)

Proof. From the representation (3.1) by Sohockiy’s formulas we find that

M(λ)=1+v.p.
∫ +∞

0

∣∣ϕ2
(√
τ
)∣∣+∣∣ϕ2

(−√τ )∣∣
τ−λ

dτ
2
√
τ
+iπ

∣∣ϕ2
(√
λ
)∣∣+∣∣ϕ2

(−√λ)∣∣
2
√
λ

. (4.3)

Hence, from the equalityM(λ0)= 0 it follows thatϕ(
√
λ0)=ϕ(−

√
λ0)= 0. Obviously,

it suffices to check the estimate (4.2) for the function

f(λ) := v.p.
∫ +∞
−∞

η(t)
t−λdt+iη(λ), (4.4)

where the function η(t) is defined as follows:

η(t) :=




0, t ≤ 0,∣∣ϕ2
(√
t
)∣∣

√
t

, t > 0.
(4.5)

It is easy to check that η(t) satisfies a local Lipschitz condition in (0,+∞), therefore,

understanding the integral
∫+∞
−∞ (·)dt as limN→+∞

∫N
−N(·)dt, we can write

f(λ)−f (λ0
)=

∫ +∞
−∞

η(t)−η(λ)
t−λ dt−

∫ +∞
−∞

η(t)−η(λ0
)

t−λ0
dt+iη(λ). (4.6)

Letting δ := |λ−λ0|, define the interval S := (λ0−2δ,λ0+2δ). Then, since η(λ0) = 0,

the difference f(λ)−f(λ0) can be rewritten in the form, [12],

f(λ)−f (λ0
)=

∫
S

η(t)−η(λ)
t−λ dt+

∫
R\S

η(t)−η(λ0
)

t−λ dt−
∫
R\S

η(λ)
t−λdt

−
∫
S

η(t)−η(λ0
)

t−λ0
dt−

∫
R\S

η(t)−η(λ0
)

t−λ0
dt+iη(λ).

(4.7)

Combining the second integral with the last one and calculating the third integral, we

find that

f(λ)−f (λ0
)=

∫
S

η(t)−η(λ)
t−λ dt−

∫
S

η(t)−η(λ0
)

t−λ0
dt

+
∫
R\S

(
λ−λ0

) η(t)−η(λ0
)

(t−λ)(t−λ0
)dt+(i+sgn

(
t−λ0

)
ln3

)
η(λ)

≡ I1+I2+I3+I4,

(4.8)

and we estimate each summand separately.
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For the function η(t) the following estimate holds

∣∣η(t)∣∣≤ C
∣∣t−λ0

∣∣2α

√
t ·λα0

, (4.9)

the constant C is independent of λ0 ∈N . Indeed, according to (4.1), for |√t−
√
λ0|< 1

we have

∣∣ϕ(√t)∣∣= ∣∣ϕ(√t)−ϕ(√λ0
)∣∣≤ C∣∣√t−√λ0

∣∣α. (4.10)

The relationϕ ∈ L2(R) together with (4.1) means thatϕ(t)→ 0 as t→+∞. Therefore,

substituting the constant C in inequality (4.10) for (maxR |ϕ(τ)|+C), we see that this

inequality is also valid for |√t−
√
λ0| ≥ 1. Consequently,

∣∣η(t)∣∣=
∣∣ϕ(√t)−ϕ(√λ0

)∣∣2

√
t

≤ C
∣∣√t−√λ0

∣∣2α

√
t

= C
∣∣t−λ0

∣∣2α

√
t
(√
t+
√
λ0
)2α ≤ C

∣∣t−λ0

∣∣2α

√
t ·λα0

.
(4.11)

Clearly, if t ∈ S, then 1/t ≤ 2/λ0, therefore,

∣∣η(t)−η(λ0
)∣∣= ∣∣η(t)∣∣≤ C

∣∣t−λ0

∣∣2α

λ1/2+α
0

, t ∈ S. (4.12)

Now, we immediately deduce that

∣∣I2∣∣≤ C
λ1/2+α

0

∫ 2δ

0

t2α

t
dt ≤ C δ2α

λ1/2+α
0

,

∣∣I4∣∣≤ C∣∣η(λ)∣∣= C∣∣η(t)∣∣|t=λ ≤ C δ2α

λ1/2+α
0

.
(4.13)

Since 1/|t−λ| ≤ 2/|t−λ0| for t �∈ S, by (4.9), we obtain

∣∣I3∣∣≤ C
(∫ λ0/2

0
+
∫ λ0−2δ

λ0/2
+
∫ +∞
λ0+2δ

)
δ·
∣∣t−λ0

∣∣2α−2

√
t ·λα0

dt

≤ Cδ
(
λα−2

0

∫ λ0/2

0

dt√
t
+
∫ λ0−2δ

λ0/2

∣∣t−λ0

∣∣2α−2

λ1/2+α
0

dt+
∫ +∞

2δ

t2α−2

λ1/2+α
0

dt
)
.

(4.14)

Hence,

∣∣I3∣∣≤ C
(

δ
λ3/2−α

0

+ δ2α

λ1/2+α
0

)
. (4.15)

For estimating I1 we need to consider the difference η(t)−η(λ) for t ∈ S.

∣∣η(t)−η(λ)∣∣≤
∣∣∣∣ϕ2

(√
t
)∣∣−∣∣ϕ2

(√
λ
)∣∣∣∣

√
t

+
∣∣ϕ(√λ)−ϕ(√λ0

)∣∣2

√
t
√
λ

·
∣∣√t−√λ∣∣. (4.16)
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Using (4.1) and (4.9), we find

∣∣∣∣ϕ2
(√
t
)∣∣−∣∣ϕ2

(√
λ
)∣∣∣∣

√
t

≤ C
∣∣ϕ(√t)−ϕ(√λ)∣∣√

λ0

(∣∣∣ϕ(√t)−ϕ(√λ0

)∣∣∣+∣∣∣ϕ(√λ)−ϕ(√λ0

)∣∣∣)

≤ C |t−λ|
α

λ1/2+α/2
0

·
∣∣λ−λ0

∣∣α
λα/20

,

∣∣ϕ(√λ)−ϕ(√λ0
)∣∣2

√
t
√
λ

·
∣∣√t−√λ∣∣≤ C

∣∣(√λ)−(√λ0
)∣∣2α

λ0
·
√
|t−λ|

≤ C
∣∣λ−λ0

∣∣α
λ0

·|t−λ|1/2.

(4.17)

Thus we have

∣∣I1∣∣≤ C
∫ 2δ

0

dt
t

(
tα ·

∣∣λ−λ0

∣∣α
λ1/2+α

0

+t1/2 ·
∣∣λ−λ0

∣∣α
λ0

)

≤ C
(
δ2α

λ1/2+α
0

+ δ
1/2+α

λ0

)
.

(4.18)

Finally, for λ0 ∈N and δ≤ λ0/4 we obtain

∣∣f(λ)−f (λ0
)∣∣≤ C( δ2α

λ1/2+α
0

+ δ
λ3/2−α

0

+ δ
1/2+α

λ0

)
≤ 3C

δ2α

λ1/2+α
0

. (4.19)

This completes the proof of Lemma 4.1.

For γ > 1 we define the metric ργ on the positive half of the real axis

ργ(x,y) :=
∣∣∣∣
∫ y
x

du
uγ

∣∣∣∣, x,y ∈ (0,+∞). (4.20)

Let Bδ(x) := {y > 0 : ργ(y,x) < δ} be the ball of radius δ with the center at the

point x. The following lemma gives us a certain information on the structure of the

set Bδ(x) from the point of view of the Euclidean metric.

Lemma 4.2. If εx = 2δxγ , x > 0, then for each x from any finite interval (0,a), a> 0,

for all sufficiently small δ (depending on γ and a but independent of x) there exists the

inclusion (
x− εx

3
,x+ εx

3

)
⊂ Bδ(x)⊂

(
x−εx,x+εx

)
. (4.21)

Proof. Obviously, for checking the inclusion Bδ(x)⊆ (x−εx,x+εx), it suffices to

show that for all sufficiently small δ uniformly for x ∈ (0,a) the inequality

δ >
∫ x+ε
x

du
uγ

(4.22)

implies ε < εx .
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From (4.22) we see that ε→ 0 as δ→ 0. After making the change of variables u= xt,
we have ∫ x+ε

x

du
uγ

= 1
xγ−1

∫ 1+ε/x

1

dt
tγ
. (4.23)

Therefore,

δ >
1

aγ−1

∫ 1+ε/x

1

dt
tγ
. (4.24)

Hence, ε/x tends to 0 with δ uniformly for x ∈ (0,a). Now,

δ >
∫ x+ε
x

du
uγ

= 1
(γ−1)xγ−1

[
1−

(
1− ε

x

)1−γ]

= 1
(γ−1)xγ−1

[
(γ−1)

ε
x
+o
(
ε
x

)]
.

(4.25)

For sufficiently small δ uniformly for x ∈ (0,a), we have∣∣∣∣o
(
ε
x

)∣∣∣∣< 1
2
(γ−1)

ε
x
. (4.26)

Consequently,

δ >
ε

2xγ
or ε < 2δxγ ≡ εx. (4.27)

Further,
∫ x
x−εx/3

du
uγ

= 1
(γ−1)xγ−1

[
(γ−1)

εx
3x

+o
(
εx
x

)]
, (4.28)

where εx/x = 2δxγ−1 ≤ 2δaγ−1 tends to 0 with δ uniformly for x ∈ (0,a). Therefore

for δ small enough uniformly for x ∈ (0,a)∣∣∣∣o
(
εx
x

)∣∣∣∣< 1
2
(γ−1)

εx
3x
. (4.29)

Thus,
∫ x
x−εx/3

du
uγ

<
εx

2xγ
= δ, (4.30)

and the proof is complete.

Now, by combining a uniqueness theorem with Lemma 4.1 on smoothness ofM(λ),
we can prove the main theorem of this section.

Theorem 4.3. Let the function ϕ belong to L2(R)∩Lipα, α∈ (0,1/2). Let the mea-

sure σ(x)dx with the positive weight function σ(x) satisfy conditions (3.22) and (3.24).

Then for all sufficiently small δ > 0 the estimate

σ −mes
{
λ > 0 : ρ(1/2+α)/2α(λ,N) < δ

}≤ Cδ2α (4.31)

holds with the constant C depending only on the weight function σ(x).
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Proof. Consider the setNδργ := {λ > 0 : ργ(λ,N) < δ}, which is the δ-neighborhood

of the set N in the metric ργ . It is clear that Nδργ =∪x∈NBδ(x). The set N is bounded,

hence, according to Lemma 4.2, the set ∪x∈NBδ(x) embeds into ∪x∈N(x−εx,x+εx)
with εx = 2δxγ . At the same time, by Lemma 4.1, for x ∈ N in the interval (x− εx,
x+εx) the following inequality holds

∣∣M(λ)∣∣≤ C |λ−x|2α
x1/2+α ≤ C ε2α

x
x1/2+α ≤ Cδ2αx2αγ−(1/2+α). (4.32)

With γ = (1/2+α)/2α this gives the uniform estimate |M(λ)| ≤ Cδ2α. So for this value

of γ the following inclusion holds

Nδργ ⊂
{
λ > 0 :

∣∣M(λ)∣∣<Cδ2α}. (4.33)

Hence, by (3.49), we get

σ −mesNδργ ≤ σ −mes
{
λ > 0 :

∣∣M(λ)∣∣<Cδ2α}≤ Cδ2α. (4.34)

The theorem is proved.

Thus, the σ -measure of the δ-neighborhood in the metric ργ with γ = (1/2+α)/2α
of the roots set N is O(δ2α) as δ → 0. It is evident that the estimate (4.31) imposes

some restrictions on the possible structure of the set N , and hence, on the structure

of σsing(A2)⊂N∪{0}, too.

Corollary 4.4. If the function ϕ belongs to L2(R)∩ Lipα, α ∈ (0,1/2), and the

sequence {λk}∞k=1 of eigenvalues of the operator A2 = t2 ·+(·,ϕ)ϕ decreases to zero in

a power scale, that is, λk = 1/kβ, then it follows from the estimate (4.31) that the index

β≥ 4α
1−2α

. (4.35)

Proof. Suppose that

β <
4α

1−2α
. (4.36)

Then the intervals Ik := (λk − ελk/3,λk + ελk/3) will be overlapping for all k large

enough. In fact, if λk = 1/kβ, then ∆λk := λk−λk+1 ≤ C/kβ+1. The intervals Ik and Ik+1

will intersect provided ∆λk ≤ ελk/3. Since ελk = 2δλγk with γ = (1/2+α)/2α, the last

inequality is necessarily fulfilled if

C
kβ+1

≤ 2δ
3kβγ

. (4.37)

Hence, for k ≥ C(1/δ)1/(1−β(γ−1)) =: m the ελk/3-neighborhoods of the points λk
will be overlapping, and therefore, (0,λm) ⊆ ∪+∞k=1(λk− ελk/3,λk+ ελk/3). (Note that

1−β(γ−1) > 0 if and only if β < 4α/(1−2α).) By (4.21) and (4.31), we obtain

Cδ2α ≥ σ −mes
{
λ > 0 : ργ(λ,N) < δ

}

≥ σ −mes
(
∪+∞k=1

(
λk−

ελk
3
,λk+

ελk
3

))
≥
∫ λm

0
σ(t)dt.

(4.38)
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Consequently, for σ(t)= 1/|t|q, q ∈ [0,1), we have

Cδ2α ≥
∫ λm

0

dt
tq

(4.39)

with the constant C independent of δ (but possibly dependent on q).

∫ λm
0

dt
tq
= 1

1−q ·
1

mβ(1−q) ≥ Cδβ(1−q)/(1−β(γ−1)). (4.40)

Thus for all sufficiently small δ > 0 there must be fulfilled the following inequality:

δβ(1−q)/(1−β(γ−1)) ≤ Cδ2α. (4.41)

It follows that β(1−q)/(1−β(γ−1))≥ 2α for all q ∈ [0,1). As γ = (1/2+α)/2α this

implies that

β ≥ 4α
3−2q−2α

∀q ∈ [0,1). (4.42)

Letting q→ 1− yields β≥ 4α/(1−2α), contrary to (4.36).

The index β makes sense of the convergence speed of λk to zero. The estimate

(4.35) implies that the points of N , in particular, the eigenvalues of the operator A2

cannot tend to zero too slowly. The slower accumulation corresponds to a greater

density of N and hence to a greater value of its measure. As the function 4α/(1−
2α) is increasing for α ∈ (0,1/2) a better smoothness of the perturbation operator

V = (·,ϕ)ϕ corresponds to a greater lower bound of the admissible values of β, that

is, to a greater rarefaction of the roots set N . Further, the index β ↑ +∞ as α ↑ 1/2,

that is, the smoothness α = 1/2 is critical. This fact is consistent with the finiteness

of the roots set N for α≥ 1/2 (see [15]).

Theorem 4.3 can also be used for describing the structure of N outside of any

neighborhood of zero, that is, of the set Nb :=N∩[b,+∞) for any b > 0. In this case

(4.31) coincides with the result of [12] (we already noted in Section 1 that the structure

of the roots set of the operator S1 = t ·+(·,ϕ)ϕ is identical with that of Nb). In fact,

the setN is bounded, in every finite interval bounded away from zero εx ≥ cδ, and the

measures dt/tq are equivalent for different q. Putting q = 0, we obtain the following

estimate of Lebesgue measure of the δ-neighborhood of the set Nb

mes
{
λ > 0 : dist

(
λ,Nb

)
< δ

}≤ Cδ2α. (4.43)

For the eigenvalues (roots) λk = λ0+1/kβ, λ0 > 0, of the operator A2 the estimate

(4.43) leads to the restriction β ≥ 2α/(1−2α). It follows therefore from (4.35) that

we observe the duplication of the admissible speed of the eigenvalues convergence to

the limit point λ0 = 0.
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