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Abstract. A one-dimensional pure stress initial boundary value problem of linear elasto-
dynamics for a microperiodic layered semi-space in which a microstructural length is taken
into account is revisited. Also, the plane stress harmonic waves propagating in a micrope-
riodic layered infinite elastic space are discussed. It is shown that (i) for a particular sys-
tem of the length and time units the transient stress waves in the microperiodic layered
semi-space are independent of the microstructural length, and (ii) there are two dispersive
plane stress harmonic waves propagating in a microperiodic layered infinite elastic space.
The graphs illustrating the transient stress waves in the semi-space and the dispersion of
harmonic waves in the infinite space are included.
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1. Basic field equations for a microperiodic layered elastic semi-space. Consider

a layered semi-infinite elastic solid composed of an infinite number of identical sub-

units that are mechanically bonded to form a spatially periodic pattern as shown in

Figure 1.1. Each subunit consists of two layers that, in general, have different dimen-

sions and are made of different homogeneous isotropic elastic materials. Let li, ρi, λi,
and µi (i= 1,2), respectively, denote the physical dimension, density, Lamé modulus,

and shear modulus of the ith layer in a subunit. If the interface conditions between any

two adjacent layers are assumed to be of an ideal mechanical contact type, that is, the

displacement and stress vectors are continuous across an interface, and a mechanical

load is uniformly distributed over the boundary x = 0 for every time t ≥ 0, an elastic

process in the layered semi-space can be described by a solution to a one-dimensional

initial boundary value problem of classical elastodynamics. In such a problem the field

equations of homogeneous isotropic elastodynamics are to be satisfied for each layer

and suitable initial, interface, and boundary conditions at x = 0 and x =∞ are to be

met. Since an exact solution to the problem is not feasible, the classical formulation

for the layered semi-space is replaced by the approximate one of a refined average

theory (RAT), (see [1, 2, 4]). The field equations of the approximate theory read: the

h-approximation of the displacement field

u(x,t)=U(x,t)+h(x)V(x,t). (1.1)

The equations of motion

Sx−〈ρ〉Utt = 0, H+〈ρh2〉Vtt = 0. (1.2)
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Figure 1.1. Configuration of a microperiodic layered elastic semi-space.

The constitutive relations

S = 〈Λ〉Ux+
〈
Λhx

〉
V,

H = 〈Λhx〉Ux+〈Λh2
x
〉
V.

(1.3)

Here, h= h(x) is a dimensionless oscillating periodic function on [0,∞) with period

l that satisfies the conditions

〈h〉 = 0, 〈ηh〉 = 0, 〈ηhx〉≠ 0, (1.4)

for any function η= η(x) on [0, l] of the form

η(x)=

η1 for 0≤ x < l1,
η2 for l1 ≤ x ≤ l,

(1.5)

where η1 and η2 are constants (η1 ≠ η2); and for any function F = F(x) on [0, l] the

symbol 〈·〉 represents the mean value of F on [0, l]

〈F〉 = 1
l

∫ l
0
F(x) dx. (1.6)

In addition, the function h= h(x) satisfies the asymptotic estimate

h(x)= l 0(1) as l �→ 0. (1.7)

If l is small, the function h = h(x) represents a micro-periodic shape function.

A typical micro-periodic shape function h = h(x) restricted to the interval [0, l] is

shown in Figure 1.2.

Other symbols in (1.1), (1.2), and (1.3) have the following meaning. In (1.1) the func-

tion u represents a displacement in the x-direction; U is a macro-displacement in
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Figure 1.2. A microperiodic shape function h = h(x) over the interval 0 ≤
x ≤ l.

the x-direction and V is a displacement corrector. In (1.2) and (1.3) the function S
is a stress component in the x-direction and H is a body force component in the x-

direction; moreover, Λ= λ+2µ, where λ and µ are Lamé moduli, and ρ is the density.

The subscripts in (1.2) and (1.3) indicate partial derivatives.

The kinetic energy density K =K(x,t) and the potential energy density P = P(x,t),
associated with (1.2) and (1.3) are represented by the functions

K(x,t)= 1
2

[〈ρ〉U2
t +

〈
ρh2〉V 2

t
]
,

P(x,t)= 1
2

[〈Λ〉U2
x+2

〈
Λhx

〉
UxV +

〈
Λh2

x
〉
V 2],

(1.8)

respectively.

Note that (1.2) and (1.3) form a complete set of four field equations of the one-

dimensional theory for the four unknownsU , V ; S, andH. By eliminating the functions

U , V , and H from (1.2) and (1.3) we arrive at the stress equation for S
(
∂2

∂x2
− 1
c2

∂2

∂t2

)(
∂2

∂t2
+κ2

)
S−ω

2

c2

∂2

∂t2
S = 0, (1.9)

where

c = 〈Λ〉
1/2

〈ρ〉1/2 , κ =Ω
〈
Λ∗
〉1/2

〈Λ〉1/2 ,

ω=Ω
(

1−
〈
Λ∗
〉

〈Λ〉
)1/2

, Ω =
〈
Λh2

x
〉1/2

〈
ρh2

〉1/2 ,

(1.10)

〈
Λ∗
〉= 〈Λ〉−

〈
Λhx

〉2

〈Λh2
x
〉 . (1.11)

Clearly, c has the dimension of velocity, andΩ has the dimension of frequency, that is,

[c]= [LT−1], [Ω]= [κ]= [ω]= [T−1], (1.12)

where L and T stand for the length and time units, respectively; and [·] represents

the dimension of a physical quantity.
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As a result, for the microperiodic layered semi-space subject to homogeneous initial

conditions and a uniform pressure s = s(t) on its boundary x = 0, the following pure

stress initial boundary value problem can be formulated.

Find a stress field S = S(x,t) on [0,∞)×[0,∞) that satisfies the field equation

(
∂2

∂x2
− 1
c2

∂2

∂t2

)(
∂2

∂t2
+κ2

)
S−ω

2

c2

∂2

∂t2
S = 0 for x > 0, t > 0 (1.13)

subject to the initial conditions

S(x,0)= 0,
∂
∂t
S(x,0)= 0,

∂2

∂t2
S(x,0)= 0,

∂3

∂t3
S(x,0)= 0, for x > 0 (1.14)

and the boundary condition

S(0, t)=−s(t) for t > 0, (1.15)

where s = s(t) is a prescribed function. Moreover, the function S and its partial deriva-

tives of a finite order are to vanish as x→∞ for every t > 0.

If a solution S to the problem (1.13), (1.14), and (1.15) is found, the functions H, U ,

and V are computed from the formulas

H(x,t)=
〈
Λhx

〉
〈Λ〉

∫ t
0

cosκ(t−τ) ∂S
∂τ
(x,τ)dτ,

U(x,t)= 1
〈ρ〉

∫ t
0
(t−τ) ∂S

∂x
(x,τ)dτ,

V(x,t)=− 1〈
ρh2

〉 ∫ t
0
(t−τ)H(x,τ)dτ.

(1.16)

Also, note that the pure stress problem (1.13), (1.14), and (1.15) contains two high

frequency parameters κ and ω, since, by (1.7) and (1.10), we have

κ = l−10(1), ω= l−10(1), as l �→ 0. (1.17)

2. Uniqueness and Green’s function theorem for the pure stress problem

Uniqueness theorem. The pure stress initial boundary value problem (1.13),

(1.14), and (1.15) may have at most one solution.

Proof. See [2, Theorem 3.1].

Representation theorem. A solution to problem (1.13), (1.14), and (1.15) admits

the representation

S(x,t)= 1
κ

∫ t
0

sinκ(t−τ)Σ(x,τ) dτ, (2.1)

where

Σ(x,t)=
∫ t

0
G(x,t−τ)[s̈(τ)+κ2s(τ)

]
dτ (2.2)
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and G =G(x,t) is a Green’s function for the integro-differential problem. Find a func-

tion G =G(x,t) that satisfies the equation

(
∂2

∂x2
− 1
c2

∂2

∂t2

)
G−ω

2

c2

∫ t
0

cosκ(t−τ)∂G
∂τ
(x,τ) dτ = 0 for x ≥ 0, t ≥ 0, (2.3)

the initial conditions

G(x,0)= 0,
∂
∂t
G(x,0)= 0, for x ≥ 0, (2.4)

the boundary condition

G(0, t)=−δ(t), (2.5)

and vanishing conditions at infinity. In (2.5) δ= δ(t) is the Dirac delta function.

Proof. See [2, equations (38)–(42)].

Green’s function theorem. (i) A solution to the integro-differential problem (2.3),

(2.4), and (2.5) admits the series representation of the Neumann’s type

G(x,t)=−δ
(
t− x

c

)
−H

(
t− x

c

)
g
(
x,t− x

c

)
, (2.6)

where H =H(t) is the Heaviside function

H(t)=

1 for t > 0,

0 for t < 0,

g(x,t)=
∞∑
n=1

(−1)n

n!

(
xω2

2c

)n[
{cosκt}n+n

∞∑
m=1

(−1)m

m!

(
ω2

4

)m

× (n+2m−1)!
(n+m)!(m−1)!

{
tm−1}{cosκt}n+m

]
for x≥0, t≥0.

(2.7)

Here, for arbitrary functions a = a(t) and b = b(t) on [0,∞), the symbol {a}{b}
represents the convolution product of a= a(t) and b = b(t) defined by (see [3])

{a}{b} =
∫ t

0
a(t−τ)b(τ) dτ ≡ a∗b. (2.8)

In particular, {f}n represents thenth convolutional power of a function {f(t)} ≡ f(t).
(ii) The series representation of g = g(x,t) and its partial derivatives of a finite

order converge uniformly for every point (x,t)∈ (0,∞)×(0,∞) and for arbitrary finite

parameters ω, κ, and c.

Proof. See [2, equations (43)–(47)].

It follows from the representation theorem that if s(t)= δ(t) then S(x,t)≡G(x,t).
Hence, the Green’s function for the pure stress problem represents a transient stress

wave in the microperiodic layered elastic semi-space x > 0 subject to a unit impulsive

pressure on its boundary x = 0.
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Also, it follows from (2.6) and (2.7) that the transient stress wave described by the

function G =G(x,t) depends strongly on the layering period l through the frequency

parametersω and κ which become large as l→ 0 (see (1.17)). In the following we prove

that the pure stress problem (1.13), (1.14), and (1.15) can be reduced to a dimension-

less form in which the microstructural length is absent. More precisely, we prove the

following theorem.

The scale-independent stress wave theorem. For a particular system of the

length and time units, RAT description of the stress waves in a microperiodic layered

elastic semi-space is independent of the layering period.

Proof. Let l0 and t0 denote the length and time units, respectively, defined by

l0 = 〈Λ〉
1/2

〈ρ〉1/2
1
ω
, t0 = 1

ω
, (2.9)

and let ξ and τ denote the dimensionless space and time variables, respectively. Then

the governing integro-differential equation (2.3) reduces to the dimensionless form
(
∂2

∂ξ2
− ∂2

∂τ2

)
Ĝ(ξ,τ)−

∫ τ
0

cos κ̂(τ−u)∂Ĝ
∂u
(ξ,u) du= 0, (2.10)

where

κ̂ =
〈
Λ∗
〉1/2

[〈Λ〉−〈Λ∗〉]1/2 (2.11)

and a stress wave in the semi-space ξ ≥ 0 for every τ ≥ 0 is represented by the l-
independent formula

Ĝ(ξ,τ)=−δ(τ−ξ)−H(τ−ξ)ĝ(ξ,τ−ξ), (2.12)

where

ĝ(ξ,τ)=
∞∑
n=1

(−1)n

n!
ξn

2n
{

cos κ̂τ
}n

+
∞∑
n=1

(−1)n

(n−1)!
ξn

2n

∞∑
m=1

(−1)m(n+2m−1)!
m!(n+m)!(m−1)!

1
4m
{
τm−1}{cos κ̂τ

}n+m.
(2.13)

This completes the proof of the theorem.

Note that the functions Ĝ and ĝ in (2.10), (2.11), (2.12), and (2.13) are dimensionless.

In particular, Ĝ = Ĝ(ξ,τ) represents the dimensionless stress related to the nominal

stress S(x,t)=G(x,t) through the formula

Ĝ = t0G. (2.14)

The dimensionless material parameter κ̂ ranges over the semi-infinite interval

0< κ̂ <∞. (2.15)

The stress Ŝ = Ĝ as a function of τ at the cross-section ξ = 1 for κ̂ = 1.5 and κ̂ = 2.0
are shown in Figures 2.1 and 2.2, respectively. A part of Ŝ represented by the Dirac

delta function −δ(τ−1) is not shown in these figures.
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Figure 2.1. The stress Ŝ as a function of dimensionless time τ (0≤ τ ≤ 14)
at the cross-section ξ = 1 and for κ̂ = 1.5.
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Figure 2.2. The stress Ŝ as a function of dimensionless time τ (0≤ τ ≤ 14)
at the cross-section ξ = 1 and for κ̂ = 2.0.

3. Dispersion of the harmonic stress waves in a microperiodic layered infinite

elastic space

The dispersion theorem. There are two plane stress waves of the form

Ŝ = Ŝ(ξ,τ)= S0 exp
[
i(kξ−ωτ)], (3.1)
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Figure 3.1. The velocities c1 and c2 as functions of λ (0 ≤ λ ≤ 1) for fixed
values of κ̂.
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Figure 3.2. The velocities c1 and c2 as functions of λ (0 ≤ λ ≤ 5) for fixed
values of κ̂.

where k= wave number, ω= frequency, c =ω/k= velocity, propagating in a micro-

periodic layered infinite elastic body with the velocities

c1.2
(
λ; κ̂

)= 1√
2

{(
1+ 1+ κ̂2

4π2
λ2
)
±
[(

1+ 1+ κ̂2

4π2
λ2
)2

− κ̂
2λ2

π2

]1/2
}1/2

, (3.2)

whereλ= 2π/k is the length of a wave, (S0 > 0). Hence, both these waves are dispersive.
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Proof. The proof of this theorem is based on the observation that a plane har-

monic wave satisfies the governing equation (see (1.9) reduced to the dimensionless

form)

(
∂2

∂ξ2
− ∂2

∂τ2

)(
∂2

∂τ2
+ κ̂2

)
Ŝ− ∂2

∂τ2
Ŝ = 0 for |ξ|<∞, τ > 0. (3.3)

By substituting Ŝ from (3.1) into (3.3) and getting rid of the exponential factor we

obtain an algebraic equation for c. It follows then that there are only two physically

admissible velocities c1 and c2 that satisfy the algebraic equation, and these velocities

are given by (3.2). This completes the proof of the theorem.

The velocities c1 and c2 as functions of λ for fixed values of κ̂ are shown in Figures

3.1 and 3.2. It follows from these figures that a harmonic stress wave propagating with

the velocity c1 is almost dispersionless over a range of small wave lengths, while that

propagating with the velocity c2 is almost dispersionless for large κ̂ and λ. Otherwise,

both these waves are strongly dispersive.
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