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1. Introduction. It is known that the Clebsch-Gordan coefficients for highest weight

representations of SU(1,1) may be identified with three classical systems of orthog-

onal polynomials, namely, the Jacobi polynomials, the Hahn polynomials, and the

continuous Hahn polynomials [41]. They correspond to the three conjugacy classes

of one-parameter subgroups of SU(1,1). In our previous papers [29, 31] we found

that many multi-variable polynomials occurring in the literature have a similar in-

terpretation, as coupling coefficients for an n-fold tensor product of highest weight

representations. This interpretation leads to simple proofs of many properties of such

polynomials.

The purpose of this paper is to generalize some of these results to the context of

quantum groups and q-series. Several authors have found that q-Hahn polynomials

appear as Clebsch-Gordan coefficients for the SU(2) and SU(1,1) quantum groups

[16, 19, 22, 34, 39]. More recently, Granovskĭı and Zhedanov [11] and Koelink and Van

der Jeugt [20] found similar interpretations of q-Racah polynomials and Askey-Wilson

polynomials, respectively. In this paper, however, we only consider multivariable gen-

eralizations of q-Hahn polynomials. This case is more elementary and more similar

to the Lie algebra case.

For comparison, we will summarize some of the basic facts of [29, 31]. Let, for ν > 0,

�ν be the Hilbert space of analytic functions on the complex unit disc with norm

‖f‖2 =
∞∑
k=0

k!
(ν)k

∣∣f̂ (k)∣∣2. (1.1)

Here f(z) =∑ f̂ (k)zk and (ν)k = ν(ν+1)···(ν+k−1) is the Pochhammer symbol.

For ν > 1 one has the integral formula

‖f‖2 = ν−1
π

∫
|z|<1

∣∣f(z)∣∣2(
1−|z|2)ν−2dxdy. (1.2)
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The norm of �ν is invariant under the transformations

f(z) � �→ 1
(cz+d)ν f

(
az+b
cz+d

)
,
(a b
c d

)
∈ SU(1,1), (1.3)

which give rise to a unitary representation of a covering group of SU(1,1) on each

space �ν . This representation is irreducible and has the highest weight vector 1 of

weight −ν . The derived representation of the complexified Lie algebra sl (2,C) is given

by the densely defined operators

X+ = − d
dz
, X− = z2 d

dz
+νz, H =−

(
ν+2z

d
dz

)
, (1.4)

which satisfy the structure equations

[
X+X−

]=H, [
HX+

]= 2X+,
[
HX−

]=−2X−, (1.5)

and the su(1,1) reality conditions

X∗± = −X∓, H∗ =H. (1.6)

Consider a Hilbert tensor product �ν1 ⊗···⊗�νn of such spaces. It decomposes

under the Lie algebra action as

�ν1⊗···⊗�νn =
∞⊕
s=0

(
n+s−2
n−2

)
�|ν|+2s , (1.7)

(where |ν| =∑νi), that is, �|ν|+2s occurs with the multiplicity
(
n+s−2
n−2

)
. A highest weight

vectorQ in �ν1⊗···⊗�νn of weight−(|ν|+2s) is an image of 1 under an intertwining

embedding

�|ν|+2s �→�ν1⊗···⊗�νn . (1.8)

In our realization this means that Q is a homogeneous polynomial of degree s which

can be expressed as a function of the differences zi−zj of the coordinates. Equiva-

lently, Q satisfies

Q
(
az1+b,. . . ,azn+b

)= asQ(z1, . . . ,zn
)
, a,b ∈ C. (1.9)

In agreement with (1.7), the space of such polynomials has dimension
(
n+s−2
n−2

)
.

Let, for each highest weight vector Q, �Q be the intertwining operator

�Q : �ν1⊗···⊗�νn �→�|ν|+2s (1.10)

determined by �∗Q1 = Q. In the present realization, �Q is a differential operator. In

fact, if

Q(z)=
∑
|t|=s

ctz
t1
1 ···ztnn , (1.11)
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then

�Q
(
f1⊗···⊗fn

)
(z)=

∑
|t|=s

c̄t
f (t1)1 (z)···f (tn)n (z)(
ν1
)
t1 ···

(
νn
)
tn

. (1.12)

In particular, if n= 2 and Q(z1,z2)= (z1−z2)s then

�Q
(
f1⊗f2

)
(z)=

s∑
k=0

(
s
k

)
(−1)s−k(
ν1
)
k
(
ν2
)
s−k
f (k)1 (z)f (s−k)2 (z). (1.13)

These bilinear operators occur (although usually expressed in homogeneous coordi-

nates (cf. Appendix A) and with νi replaced by negative integers) in classical invariant

theory and are called transvectants. They have also been used in the theory of modular

forms, where they are called Rankin-Cohen brackets [26, 43].

It follows from (1.12) that, writing em(z)= zm,

�Q
(
em1⊗···⊗emn

)= T1Q(m)e|m|−s , (1.14)

where T1Q is the polynomial

T1Q
(
m1, . . . ,mn

)= (−1)s
∑
|t|=s

ct

(−m1
)
t1 ···

(−mn
)
tn(

ν1
)
t1 ···

(
νn
)
tn

. (1.15)

Since the monomials are eigenfunctions of the rotations of the disc, this exhibits T1Q
as a coupling coefficient, with respect to this subgroup, of our representation. If Q′ is

another highest weight vector then, by an application of Schur’s lemma to �Q′�
∗
Q,

∑
|m|=k+s

(
ν1
)
m1
···(νn)mn

m1!···mn!
T1Q(m)T1Q′(m)=

(|ν|+2s
)
k

k!

〈
Q,Q′〉⊗n

i=1 �νi (1.16)

for k = 0,1,2, . . . . Thus, given an orthogonal system of highest weight vectors, the

transform T1 gives a corresponding system of discrete orthogonal polynomials. For

fixed k one may eliminate one variable and view these as polynomials ofn−1 variables.

In the case n= 2 one obtains in this way the Hahn polynomials.

Replacing the monomials by formal eigenvectors to other one-parameter subgroups

gives multivariable Jacobi polynomials

T2Q
(
x1, . . . ,xn

)= ∑
|t|=s

ct
xt11 ···xtnn(

ν1
)
t1 ···

(
νn
)
tn

(1.17)

and multivariable continuous Hahn polynomials

T3Q
(
x1, . . . ,xn

)= ∑
|t|=s

ct

(
ν1/2−ix1

)
t1 ···

(
νn/2−ixn

)
tn(

ν1
)
t1 ···

(
νn
)
tn

. (1.18)

Many orthogonal and biorthogonal polynomial systems occurring in the literature

may be obtained by applying the three transforms Ti to specific bases in the space of

highest weight vectors; confer [31] and the references given there.

In this paper, we will obtain a q-analogue of the transform T1, leading to multivari-

able q-Hahn polynomials. One may also consider more general coupling coefficients



334 HJALMAR ROSENGREN

connected with the so-called twisted primitive elements of the quantum algebra. This

leads to multivariable generalizations of Askey-Wilson polynomials and q-Racah poly-

nomials; confer [32] for some further remarks.

The plan of the paper is as follows. Section 2 contains preliminaries on q-series

and quantum algebra. In Section 3 we find a q-analogue of the expression (1.12).

This is used in Section 4 to find analogues of the transform T1 and of the orthog-

onality relations (1.16). In Section 5 we study q-analogues of the coupling kernels

introduced in [31]. These are the reproducing kernels for spaces of coupling coef-

ficients. In Section 6 we discuss identities involving multivariable q-Hahn polynomi-

als and coupling kernels which follow from the quantum algebraic interpretation.

In Section 7 we consider explicit examples of orthogonal and biorthogonal systems

which may be obtained as coupling coefficients. There are two appendices, where we

use quasi-commuting homogeneous coordinates to give an algebraic description of

the space of highest weight vectors.

2. Preliminaries

2.1. Notation. Throughout the paper, q will be a fixed number in the range 0<q<1.

It will be convenient to use the symmetric q-factorials and q-Pochhammer symbols

defined by

[k]!= [1][2]···[k], [a]k = [a][a+1]···[a+k−1], (2.1)

where

[a]= q
a/2−q−a/2
q1/2−q−1/2 . (2.2)

This is related to the more standard notation of [10],

(a;q)k = (1−a)(1−aq)···
(
1−aqk−1), (2.3)

by

[a]k =
(
qa;q

)
k

(1−q)k q
−(1/4)k(2a+k−3),

[a]k
[b]k

=
(
qa;q

)
k(

qb;q
)
k
q(1/2)k(b−a). (2.4)

Sometimes we will use the multi-index notation

[a]k =
[
a1
]
k1
···[an]kn , [k]!= [k1

]
!···[kn]!. (2.5)

The basic hypergeometric series rφs is defined by [10]

rφs
[a1, . . . ,ar
b1, . . . ,bs

;q,z
]
=

∞∑
k=0

(
a1;q

)
k ···

(
ar ;q

)
k

(q;q)k
(
b1;q

)
k ···

(
bs ;q

)
k

(
(−1)kq(

k
2)
)1+s−r

zk; (2.6)

in particular,

r+1φr

[
qa1 , . . . ,qar+1

qb1 , . . . ,qbr
;q,z

]
=

∞∑
k=0

[
a1
]
k ···

[
ar+1

]
k

[k]!
[
b1
]
k ···

[
br
]
k
q(1/2)k(|a|−|b|−1)zk, (2.7)
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where |x| =∑xi. The q-Hahn polynomials, introduced by Hahn [12], are given by

Qn
(
q−x ;α,β,N | q)= 3φ2

[
q−n,αβqn+1,q−x

αq,q−N
;q,q

]
, n= 0,1, . . . ,N ; (2.8)

this is a polynomial of degree n in q−x . They form an orthogonal system with respect

to a measure supported on {1,q, . . . ,q−N}; confer [18]. The dual orthogonality relation

may be written as an orthogonality relation for a different system of polynomials,

namely, the dual q-Hahn polynomials.

We will write

Dqf(z)= f
(
q1/2z

)−f (q−1/2z
)

q1/2z−q−1/2z
, f [k](z)=Dkqf(z), (2.9)

for the symmetric q-derivative. It satisfies the q-Leibniz rule

Dq(fg)(z)=
(
Dqf

)
(z)g

(
q−1/2z

)+f (q1/2z
)(
Dqg

)
(z). (2.10)

We will need the following simple lemma in a special case.

Lemma 2.1. For αij scalars, fi formal power series and zi, wi formal variables, the

following identity holds:

∞∑
k1,...,kn=0

wk1
1 ···wkn

n[
k1
]
!···[kn]!f

[k1]
1

(
αk1

11 ···αkn1nz1

)
···f [kn]n

(
αk1
n1 ···αknnnzn

)

=
∞∑

k1,...,kn=0

zk1
1 ···zknn[

k1
]
!···[kn]!f

[k1]
1

(
αk1

11 ···αknn1w1

)
···f [kn]n

(
αk1

1n ···αknnnwn

)
.

(2.11)

Proof. It suffices to take fi(z)= zmi . Since then

f [ki]i (z)=
[
mi

]
![

mi−ki
]
!
zmi−ki (2.12)

the left-hand side is given by

m1,...,mn∑
k1,...,kn=0

[
m1

]
!···[mn

]
![

k1
]
!
[
m1−k1

]
!···[kn]![mn−kn

]
!
wk1

1 ···wkn
n z

m1−k1
1 ···zmn−kn

n

n∏
i,j=1

α
kj(mi−ki)
ij .

(2.13)

Changing k to m−k gives the same expression with z and w interchanged and αij
replaced by αji. This proves the lemma.

For any x ∈Rn, we will denote by x∗ the element in Rn with coordinates

x∗i =
i−1∑
j=1

xj−
n∑

j=i+1

xj, i= 1, . . . ,n. (2.14)
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Then

{x,y} =
n∑
i=1

xiy∗i =
∑
i>j
xiyj−

∑
i<j
xiyj (2.15)

defines a skew-symmetric form on Rn. It appears naturally in connection with multi-

variable q-series; for instance, one has the multivariable q-Chu-Vandermonde formula

(equivalent to [10, Exercise 1.3])

[
x1+···+xn

]
k

[k]!
=

∑
i1+···+in=k

[
x1
]
i1 ···

[
xn
]
in[

i1
]
!···[in]! q(1/2){i,x}. (2.16)

2.2. Quantum algebra. The quantum algebra (or quantized universal enveloping

algebra) � = �q1/2(su(1,1)) is the associative involutive algebra over the complex

numbers defined by generators

X+, X−, K, K−1, (2.17)

relations
KK−1 =K−1K = 1,

KX±K−1 = q±1/2X±,

X+X−−X−X+ = K2−K−2

q1/2−q−1/2 ,

(2.18)

and involution (
K±

)∗ =K±, X∗± = −X∓; (2.19)

here and below we write K+ = K, K− = K−1 when convenient. We refer to [4] for an

introduction to quantum group theory. A unitary representation of � is a represen-

tation by densely defined operators on a Hilbert space, such that the involution ∗
coincides with the Hilbert space adjoint.

The algebra � has the additional structure of a Hopf algebra. We need to discuss

only the coproduct, which is the map ∆ : �→�⊗� given on the generators by

∆
(
K±

)=K±⊗K±, ∆
(
X±
)=K⊗X±+X±⊗K−1. (2.20)

This means that, given two unitary representations H1 and H2 of �, another one is

defined on the Hilbert tensor product H1⊗H2 by

K± =K±⊗K±, X± =X±⊗K+K−1⊗X±. (2.21)

The coproduct is non-cocommutative, that is, the flip f⊗g� g⊗f is not an intertwin-

ing map H1⊗H2 →H2⊗H1. It is, however, coassociative in the sense that there is only

one way to repeat it to obtain a representation on a finite tensor productH1⊗···⊗Hn,

namely, by

K± =K±⊗···⊗K±,

X± =X±⊗K⊗···⊗K+K−1⊗X±⊗K⊗···⊗K

+···+K−1⊗···⊗K−1⊗X±.
(2.22)
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It is easily proved that

Xk± =
∑

j1+···+jn=k

[k]![
j1
]
!···[jn]!X

j1± Kj
∗
1 ⊗···⊗Xjn± Kj

∗
n

=
∑

j1+···+jn=k

[k]![
j1
]
!···[jn]!Kj

∗
1 Xj1± ⊗···⊗Kj

∗
nXjn± ,

(2.23)

where ∗ is given by (2.14).

2.3. Holomorphic realization. We will work with the holomorphic realization of

highest weight representations of �q1/2(su(1,1)); confer [13, 17, 21]. A “geometric”

motivation for this realization is provided in Appendix A.

For ν > 0 and 0 < q < 1, we denote by �ν
q the Hilbert space of analytic functions

with the norm

‖f‖2 = 〈f ,f 〉 =
∞∑
k=0

[k]!
[ν]k

∣∣f̂ (k)∣∣2, (2.24)

where f(z)=∑ f̂ (k)zk. By Cauchy’s q-binomial formula [10], �ν
q has the reproducing

kernel

kw(z)=
∞∑
k=0

[ν]k
[k]!

(
zw̄

)k = ∞∏
j=0

1−q1/2+ν/2+jzw̄
1−q1/2−ν/2+jzw̄

(2.25)

(here we use that 0< q < 1) and thus the natural domain of definition is the disc

{
z ∈ C; |z|< qν/4−1/4}. (2.26)

We write ek(z)= zk for monomials, so that

〈f ,g〉 =
∞∑
k=0

[ν]k
[k]!

〈
f ,ek

〉〈
ek,g

〉
. (2.27)

There is a unitary representation of �q(su(1,1)) on �ν
q , given by

X+f(z)=−f
(
q1/2z

)−f (q−1/2z
)

q1/2z−q−1/2z
,

X−f(z)= zq
ν/2f

(
q1/2z

)−q−ν/2f (q−1/2z
)

q1/2−q−1/2 ,

K±f(z)= q∓ν/4f (q∓1/2z
)
.

(2.28)

In the limit q→ 1,

X+ �→− d
dz
,

X− �→ z2 d
dz

+νz,

4logq K± �→∓
(
ν+2z

d
dz

)
,

(2.29)

so we recover the Lie algebra operators (1.4).
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Though we will not use it, we remark that for ν > 1 there is an integral formula for

the norm of �ν
q [17]. In terms of Jackson’s q-integral [10]

∫ c
0
f(x)dqx = c(1−q

) ∞∑
k=0

qkf
(
qkc

)
, (2.30)

it can be written as

‖f‖2 = [ν−1]
(
1+q−1/2)
2π

∫ π
−π

∫ q(1/4)(ν−1)

0
r
∣∣f (reiθ)∣∣2

∞∏
j=0

1−r 2q(1/2)(3−ν)+j

1−r 2q(1/2)(ν−1)+j dq1/2r dθ,

(2.31)

which is a q-analogue of (1.2). In contrast to the case q = 1, this formula extends to the

case 0< ν < 1, though the mass on the outer circle |z| = q(1/4)(ν−1) is then negative.

3. Quantum transvectants. In this section we will obtain an expression for the

multilinear transvectants in the present context. As in the case q = 1, there is a de-

composition

�
ν1
q ⊗···⊗�νn

q =
∞⊕
s=0

(
n+s−2
n−2

)
�|ν|+2s
q , (3.1)

where |ν| =∑νi. We define a transvectant of order s to be an intertwining map

� : �
ν1
q ⊗···⊗�νn

q �→�|ν|+2s
q ; (3.2)

thus the transvectants of order s form a linear space of dimension
(
n+s−2
n−2

)
.

A highest weight vector is, by definition, a solution in
⊗n

i=1 �
νi
q to

KQ= q(−1/4)(|ν|+2s)Q, X+Q= 0. (3.3)

These are mapped to constants by the transvectants of order s. The first equation

means that they are homogeneous polynomials of degree s. For each highest weight

vector Q, we denote by �Q the transvectant of order s determined by �∗Q1 =Q. This

gives a one-to-one correspondence between highest weight vectors and transvectants.

We will now fix Q and seek a q-analogue of the expression (1.12) for �Q. It will be

convenient to write µ = |ν|+2s,

〈f ,g〉ν = 〈f ,g〉�
ν1
q ⊗···⊗�

νn
q
, 〈f ,g〉µ = 〈f ,g〉�

µ
q
. (3.4)

Since

ek = 1
[µ]k

Xk−1 (3.5)

in �
µ
q , we must have

�∗Qek =
1
[µ]k

Xk−Q. (3.6)

For f a polynomial (to avoid questions of convergence) in
⊗n

i=1 �
νi
q , it follows that

�Qf(w)=
〈
�Qf ,kw

〉
µ =

∞∑
k=0

[µ]k
[k]!

wk〈�Qf ,ek
〉
µ =

∞∑
k=0

[µ]k
[k]!

wk〈f ,�∗Qek〉ν
=

∞∑
k=0

wk

[k]!
〈
f ,Xk−Q

〉
ν =

∞∑
k=0

(−1)kwk

[k]!
〈
Xk+f ,Q

〉
ν =

〈
τwf ,Q

〉
ν ,

(3.7)
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where τw is the q-translation operator

τw =
∞∑
k=0

(−wX+)k
[k]!

. (3.8)

Lemma 3.1. As an operator on the subspace of polynomials in
⊗n

i=1 �
νi
q , τw is given by

τw
(
f1⊗···⊗fn

)
(z)

=
∞∑

k1,...,kn=0

wk1+···+kn[
k1
]
!···[kn]!q(1/4){k,ν}f

[k1]
1

(
q−(1/2)k

∗
1 z1

)···f [kn]n
(
q−(1/2)k

∗
nzn

)

=
∞∑

k1,...,kn=0

zk1
1 ···zknn[

k1
]
!···[kn]!f

[k1]
1

(
q(1/2)k

∗
1 +(1/4)ν∗1 w

)···f [kn]n
(
q(1/2)k

∗
n+(1/4)ν∗nw

)
.

(3.9)

Proof. The first expression follows from (2.23). The second one then follows from

Lemma 2.1, in the case when

αij =



q, i < j,
1, i= j,
q−1, i > j.

(3.10)

Plugging the last expression of the lemma into the equality

�Q
(
f1⊗···⊗fn

)
(w)= 〈τw(f1⊗···⊗fn

)
,Q
〉
ν (3.11)

gives the following explicit expression for the transvectant.

Theorem 3.2. If

Q
(
z1, . . . ,zn

)= ∑
|t|=s

ctz
t1
1 ···ztnn (3.12)

is a highest weight vector, then

�Q
(
f1⊗···⊗fn

)
(w)

=
∑
|t|=s

c̄t[
ν1
]
t1 ···

[
νn
]
tn
f [t1]1

(
q(1/4)ν

∗
1 +(1/2)t∗1 w

)···f [tn]n
(
q(1/4)ν

∗
n+(1/2)t∗nw

)
,

(3.13)

where ∗ is defined by (2.14).

As an example, for n = 2 the space of highest weight vectors of degree s is one-

dimensional. It is easy to verify that it is spanned by

Q
(
z1,z2

)= s−1∏
j=0

(
qν2/4+j/2z1−q−ν1/4−j/2z2

)

=
∑
i+j=s

[s]!
[i]![j]!

(−1)jq(1/4)((s−1)(i−j)+ν2i−ν1j)zi1z
j
2;

(3.14)
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confer also Section 7 and Appendix B. The corresponding transvectant is

�Q
(
f1⊗f2

)
(w)

=
∑
i+j=s

[s]!
[i]![j]!

(−1)jq(1/4)((s−1)(i−j)+ν2i−ν1j) f
[i]
1

(
q−ν2/4−j/2w

)
f [j]2

(
qν1/4+i/2w

)
[
ν1
]
i
[
ν2
]
j

,

(3.15)

which is a q-analogue of (1.13).

4. Coupling coefficients. To each highest weight vectorQwe associate the function

P on Zn+ given by

�Q
(
em1⊗···⊗emn

)= P(m1, . . . ,mn)e|m|−s , (4.1)

where s is the degree of Q. Equivalently,

[|ν|+2s
]
k

[k]!
�∗Qek =

∑
|m|=k+s

[
ν1
]
m1
···[νn]mn[

m1
]
!···[mn

]
!
P(m)em1⊗···⊗emn. (4.2)

This exhibits P as a coupling coefficient for the quantum algebra. If Q is given by

(3.12), it follows from Theorem 3.2 that

P(m)=
∑
|t|=s

ct

[−m1
]
t1 ···

[−mn
]
tn[

ν1
]
t1 ···

[
νn
]
tn

(−1)sq(1/4)(ν
∗
1 +2t∗1 )(m1−t1)+···+(1/4)(ν∗n+2t∗n)(mn−tn).

(4.3)

Using that
∑
i xix∗i = 0, one may rewrite the exponent of q as

1
8
{ν+2m,ν+2t}, (4.4)

where { , } is given by (2.15). Thus P = TQ, where T is the linear operator defined by

T
(
et1⊗···⊗etn

)
(m)= (−1)|t|

[−m1
]
t1 ···

[−mn
]
tn[

ν1
]
t1 ···

[
νn
]
tn

q(1/8){ν+2m,ν+2t}. (4.5)

Now let Q and Q′ be two highest weight vectors. Then, by an application of Schur’s

lemma to �Q′�
∗
Q,

〈
Q,Q′〉∥∥ek∥∥2 = 〈�∗Qek,�

∗
Q′ek

〉

=
∞∑

m1,...,mn=0

[
ν1
]
m1
···[νn]mn[

m1
]
!···[mn

]
!

〈
�∗Qek,em

〉〈
em,�∗Q′ek

〉

=
∑

|m|=k+s

[
ν1
]
m1
···[νn]mn[

m1
]
!···[mn

]
!
TQ(m)TQ′(m)

∥∥ek∥∥4.

(4.6)

This gives the following orthogonality property.
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Theorem 4.1. For Q and Q′ two highest weight vectors in
⊗n

i=1 �
νi
q and k a non-

negative integer,

∑
|m|=k+s

[
ν1
]
m1
···[νn]mn[

m1
]
!···[mn

]
!
TQ(m)TQ′(m)=

[|ν|+2s
]
k

[k]!
〈
Q,Q′〉, (4.7)

where s is the degree of Q (or of Q′).

The function TQ is not a polynomial. To obtain orthogonal polynomials from

Theorem 4.1, we introduce the new variablesxi = q−(m1+m2+···+mi), i= 1, . . . ,n. Switch-

ing to standard notation (2.3) and using

|m||t| = {m,t}+
∑
i
miti+2

∑
i<j
mitj (4.8)

we obtain

q(−1/2)s|m|−(1/4){m,ν}TQ
(
m1, . . . ,mn

)

=
∑
|t|=s

ct(−1)sq(1/4){ν,t}+(1/2)
∑n
i=1 νitixt21 ···xtnn−1

(
x1;q

)
t1

(
x2/x1;q

)
t2···

(
xn/xn−1;q

)
tn(

qν1 ;q
)
t1

(
qν2 ;q

)
t2···

(
qνn ;q

)
tn

,

(4.9)

which is a polynomial in the variables xi of total degree |t|. Given a complete orthogo-

nal (biorthogonal) family of highest weight vectors, Theorem 4.1 gives an orthogonal-

ity (biorthogonality) relation for the corresponding polynomials. For fixed k, one may

view this as a system of polynomials in the n−1 variables x1, . . . ,xn−1. By a dimension

count, the latter system will be complete.

In particular, for n= 2 and Q as in (3.14) one has

TQ
(
m1,m2

)= q(1/4)(ν1m2−ν2m1)

×
∑
i+j=s

[s]!
[−m1

]
i
[−m2

]
j

[i]![j]!
[
ν1
]
i
[
ν2
]
j
(−1)iq(1/4)(s−1)(i−j)+(1/2)i(ν2+m2)−(1/2)j(ν1+m1).

(4.10)

Using transformation formulas from [10] one may check that

q−(1/2)s(m1+m2)−(1/4)(ν1m2−ν2m1)TQ
(
m1,m2

)

= q(1/2)s(ν2−ν1)−(1/4)s(s−1)
(
q−m1−m2 ;q

)
s(

qν2 ;q
)
s

Qs
(
q−m1 ;qν1−1,qν2−1,m1+m2 | q),

(4.11)

where the right-hand side is a q-Hahn polynomial as defined in (2.8). Theorem 4.1 then

gives the orthogonality relation for q-Hahn polynomials; confer [22, 34].

5. Coupling kernels. In [31] we introduced certain functions called coupling ker-

nels. We expressed them explicitly as multivariable hypergeometric sums. The discrete

coupling kernels, connected with the transform T1, were used in [30] to study Wigner

9j-symbols. The coupling kernels connected with T2 were independently introduced
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by Xu [42], who used them to study Cesàro summability of multivariable Jacobi polyno-

mial expansions. In this section we will generalize the explicit expression for discrete

coupling kernels to the quantum algebra case.

Just as coupling coefficients are matrix elements for the intertwining maps �Q :⊗n
i=1 �

νi
q →�|ν|+2s

q , coupling kernels are matrix elements for the intertwining projec-

tion Πs from
⊗n

i=1 �
νi
q onto the isotypic subspace equivalent to

(
n+s−2
n−2

)
�|ν|+2s
q . More

precisely, for any elements X, Y of the quantum algebra, consider the matrix element

〈
ΠsXek,Yel

〉= 〈ΠsX(ek1⊗···⊗ekn
)
,Y
(
el1⊗···⊗eln

)〉⊗n
i=1 �

νi
q

(5.1)

of Πs . Let (Qj)j be an orthonormal basis of the space �s of highest weight vectors of

degree s. Then, by Hilbert space arguments,

Πs =
∑
j

�∗Qj�Qj (5.2)

and thus 〈
ΠsXek,Yel

〉= Ps(k,l)〈Xe|k|−s ,Ye|l|−s〉�
|ν|+2s
q

, (5.3)

where

Ps(k,l)=
∑
j
TQj(k)TQj(l). (5.4)

We call the functions Ps coupling kernels. Since

Qs
(
z,w̄

)=∑
j
Qj(z)Qj(w) (5.5)

is the reproducing kernel for the space �s , it follows from Theorem 4.1 that Ps is

the reproducing kernel for the corresponding space of coupling coefficients, with the

reproducing property

[|ν|+2s
]
k

[k]!
TQ(l)=

∑
|m|=k+s

[
ν1
]
m1
···[νn]mn[

m1
]
!···[mn

]
!
TQ(m)Ps(l,m) (5.6)

for k = 0,1,2, . . . and Q ∈ �s . Choosing Q = ∑
j TQj(l′)Qj , so that TQ(l) = Ps(l,l′),

gives the addition formula

[|ν|+2s
]
k

[k]!
Ps(l,l′)=

∑
|m|=k+s

[
ν1
]
m1
···[νn]mn[

m1
]
!···[mn

]
!
Ps(l,m)Ps

(
m,l′

)
(5.7)

for coupling kernels. Since, again by Hilbert space arguments,

Qs
(
z,w̄

)= ∑
|t|=|u|=s

[ν]t[ν]u
[t]![u]!

〈
Πset,eu

〉
ztw̄u, (5.8)
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we may also write

Ps(l,m)=
∑

|t|=|u|=s

[−l]t[−m]u
[t]![u]!

〈
Πset,eu

〉
q(1/8){ν+2l,ν+2t}+(1/8){ν+2m,ν+2u}. (5.9)

We will use this identity to prove the following theorem.

Theorem 5.1. The coupling kernel Ps is given by

Ps(l,m)=
(−1)s

[−|l|]s[−|m|]s[|ν|+s−1
]
s[s]!

×
∞∑

j1,...,jn=0

[|ν|+s−1
]
|j|[−s]|j|[−|l|]|j|[−|m|]|j|

[−l]j[−m]j
[ν]j[j]!

q(1/4){ν+l+m,ν+2j},
(5.10)

with the convention 0/0= 0, so that the sum is actually finite.

We remark that for n= 2 the space of coupling coefficients is one-dimensional, and

therefore its reproducing kernel Ps factors as a product of two q-Hahn polynomials.

This gives a quantum algebraic proof of Rahman’s Watson-type product formula for

the q-Hahn polynomials [28].

The proof of Theorem 5.1 is similar to the case q = 1 treated in [31]. It is based on

the following projection formula.

Lemma 5.2. Let �s denote the subspace of
⊗n

i=1 �
νi
q consisting of homogeneous poly-

nomials of degree s. Then the restriction of Πs to �s is given by

s∑
k=0

(−1)k

[k]!
[
2−|ν|−2s

]
k
Xk−Xk+. (5.11)

Since we failed to do so in [31], we give some history of this type of formulas. In the

case q = 1 and the realization of su(1,1) coming from spherical harmonics (X+ = ∆,

X− =
∑
i x2

i generate a realization of (�1/2⊕�3/2)⊗n on L2(Rn)), Lemma 5.2 goes back

to Clebsch [5]; confer also [7]. For su(2), it was rediscovered and used by Löwdin [23]

in the context of quantum physics. This was the starting point for projection oper-

ator methods in quantum physics and representation theory, developed by Ašerova,

Smirnov and Tolstoy; confer [2, 35, 37].

We indicate the simple proof of Lemma 5.2. Using the fact that �s is an

eigenspace of K± and the elementary identity

[a]+[b][a+b+1]= [b+1][a+b], (5.12)

one proves by induction on k that

X+Xk−
∣∣

�s =Xk−X+−[k]
[|ν|+2s+k−1

]
Xk−1
− . (5.13)

We note that the restriction ofΠs to �s is the orthogonal projection onto the subspace

�s of highest weight vectors. Denoting the operator in (5.11) byA, it follows from (5.13)

that X+A = 0, so that A�s ⊆�s . On the other hand, the image of Id−A is in X−�s−1,
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which is the orthogonal complement of �s in �s . Thus A is indeed the orthogonal

projection onto �s .

Now let t and u be two multi-indices of length s. We want to compute the scalar

product 〈Πset,eu〉 occurring in (5.9). Since X∗− = −X+, Lemma 5.2 gives

〈
Πset,eu

〉= s∑
k=0

1
[k]!

[
2−|ν|−2s

]
k

〈
Xk+et,Xk+eu

〉
. (5.14)

Now, by (2.23),

Xk+et =
∑
|j|=k

[k]!
[j]!

[−t]jq(1/4){j,ν+2t}et−j

= (−1)|t|
∑

|j|=|t|−k

[k]!
[j]!

[−t]jq(1/4){t−j,ν+2t}ej,
(5.15)

which gives

〈
Πset,eu

〉=∑
j

[
s−|j|]![

2−|ν|−2s
]
s−|j|

[−t]j[−u]j
[j]![ν]j

q(1/4){t−j,ν+2t}+(1/4){u−j,ν+2u}. (5.16)

Inserting this expression in (5.9) gives

Ps(l,m)=
∑

|t|=|u|=s

∑
j

[
s−|j|]![

2−|ν|−2s
]
s−|j|

[−l]t[−m]u
[t]![u]!

[−t]j[−u]j
[j]![ν]j

×q(1/4){t−j,ν+2t}+(1/4){u−j,ν+2u}+(1/8){ν+2l,ν+2t}+(1/8){ν+2m,ν+2u}.

(5.17)

Replace t, u by t+j, u+j. The exponent of q may then be expressed as

1
4
{ν+l+m,ν+2j}+ 1

2
{t,j−l}+ 1

2
{u,j−m}. (5.18)

Thus, changing the order of summation, we obtain

Ps(l,m)=
∑
j

[
s−|j|]![

2−|ν|−2s
]
s−|j|

[−l]j[−m]j
[j]![ν]j

q(1/4){ν+l+m,ν+2j}

×
∑

|t|=s−|j|

[j−l]t
[t]!

q(1/2){t,j−l}
∑

|u|=s−|j|

[j−m]u
[u]!

q(1/2){u,j−m},

(5.19)

where the inner sums are of the form (2.16). This leads to the expression

Ps(l,m)=
∑
j

[|j|−|l|]s−|j|[|j|−|m|]s−|j|[
2−|ν|−2s

]
s−|j|

[
s−|j|]!

[−l]j[−m]j
[j]![ν]j

q(1/4){ν+l+m,ν+2j}, (5.20)

which may be rewritten as in Theorem 5.1.
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6. Convolution and linearization formulas. In the case q = 1, matrix elements for

the group action in the basis of monomials are given by Meixner polynomials [18]

Mn(k;ν,c)= 2F1

(−n,−k
ν

∣∣∣∣1− 1
c

)
, (6.1)

where 2F1 is Gauss’ hypergeometric function. The interpretation of the polynomials

T1Q as coupling coefficients leads to the convolution formula
(|ν|+2s

)
k

k!
T1Q(l)cs2F1

(
−k,s−|l|
|ν|+2s

∣∣∣∣c
)

=
∑

|m|=k+s

(
ν1
)
m1
···(νn)mn

m1!···mn!
T1Q(m)

n∏
j=1

2F1

(
−mj,−lj

νj

∣∣∣∣c
) (6.2)

and the linearization formula

n∏
j=1

2F1

(
−kj,−lj
νj

∣∣∣∣c
)
=

min(|k|,|l|)∑
s=0

Ps(k,l)cs2F1

(
s−|k|,s−|l|
|ν|+2s

∣∣∣∣c
)

(6.3)

for Meixner polynomials, confer [31]. In this section we will generalize these formulas

to the present setting.

Let τλ be the q-translation operator occurring in Lemma 3.1. We will consider the

matrix element

〈
τλek,τµel

〉= 〈τλ(ek1⊗···⊗ekn
)
,τµ

(
el1⊗···⊗eln

)〉⊗n
i=1 �

νi
q
, (6.4)

which, by Lemma 3.1, equals

∞∑
j1,...,jn=0

[−k]j[−l]j
[j]![ν]j

q(1/4){ν+k+l,ν+2j}λ|k|−|j|µ|l|−|j|

= q(1/4){k+l,ν}λ|k|µ|l|
n∏
j=1

2φ1


q−kj ,q−lj

qνj
;q,
q(1/2)(νj+kj+lj+1−ν∗j −k∗j −l∗j )

λµ


.

(6.5)

Here we use the quantum algebra approach [8], considering q-exponentials of quan-

tum algebra elements as generalized group elements. We remark that we would have

obtained the same results considering instead the matrix elements

〈
eq
(−λX+K)ek,Eq(−µX+K−1)el〉⊗n

i=1 �
νi
q
, (6.6)

where eq and Eq are the q-exponential functions [10]

eq(z)=
∞∑
n=0

zn

(q;q)n
, Eq(z)=

∞∑
n=0

q(
n
2)zn

(q;q)n
, (6.7)

confer [9, 14, 44].

Consider the identity

〈
τλ�∗Qek,τµel

〉= ∞∑
m1,...,mn=0

[
ν1
]
m1
···[νn]mn[

m1
]
!···[mn

]
!

〈
�∗Qek,em

〉〈
τλem,τµel

〉
. (6.8)
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Since τλ is a lowering operator there is no problem with convergence. Since τλ com-

mutes with �∗Q, the left-hand side equals

TQ(l)
〈
τλek,τµe|l|−s

〉
�
|ν|+2s
q

. (6.9)

Inserting the expression (6.5) for matrix elements and letting c = 1/λµ we obtain the

following proposition.

Proposition 6.1. For Q a highest weight vector in
⊗n

i=1 �
νi
q of degree s, and for k

a nonnegative integer, one has the identity

[|ν|+2s
]
k

[k]!
TQ(l)cs2φ1

[
q−k,qs−|l|

q|ν|+2s ;q,q(1/2)(|ν|+k+|l|+s+1)c
]

=
∑

|m|=k+s

[ν]m
[m]!

q(1/4){m+l,ν}TQ(m)
n∏
j=1

2φ1

[
q−mj ,q−lj

qνj
;q,q(1/2)(νj+mj+lj+1−ν∗j −m∗

j −l∗j )c
]
.

(6.10)

For n = 2 this is a degenerate case of identities proved in [20]. We must point out

that it is possible to deduce the general case from the casen= 2 by choosing a basis in

the space of highest weight vectors constructed by binary coupling; confer Section 7.

We also remark that for λ= 0, (6.8) takes the form

[
s−|l|]k
[k]!

TQ(l)= (−1)s
∑

|m|=k+s

[−l]m
[m]!

q(1/8){ν+2l,ν+2m}TQ(m). (6.11)

A linearization formula may be obtained by considering the identity

〈
τλek,τµel

〉= ∞∑
s=0

〈
Πsτλek,τµel

〉= min(|k|,|l|)∑
s=0

Ps(k,l)
〈
τλe|k|−s ,τµe|l|−s

〉
�
|ν|+2s
q

. (6.12)

This leads to the following proposition.

Proposition 6.2. There is the identity

q(1/4){k+l,ν}
n∏
j=1

2φ1

[
q−kj ,q−lj

qνj
;q,q(1/2)(νj+kj+lj+1−ν∗j −k∗j −l∗j )c

]

=
min(|k|,|l|)∑

s=0

Ps(k,l)cs2φ1

[
qs−|k|,qs−|l|

q|ν|+2s ;q,q(1/2)(|ν|+|k|+|l|+1)c
]
.

(6.13)

Inserting the expression for coupling kernels given in Theorem 5.1, this is not hard

to prove directly. It can be obtained as a special case of Verma’s expansion formula

[40], confer also [36]. This gives an alternative proof of Theorem 5.1, since the ex-

pansion (6.13) determines the coefficients Ps . For n = 2, factoring Ps as a product of

two Clebsch-Gordan coefficients, this linearization formula occurs in [14, 34, 39] in a

similar context.
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The special case λ= 0 of (6.12) is

[−l]k
[ν]k

q(1/8){ν+2l,ν+2k} = (−1)s
min(|k|,|l|)∑

s=0

[
s−|l|]|k|−s[|ν|+2s

]
|k|−s

Ps(k,l), (6.14)

which, for |l| = |k|, reduces to

[k]!
[ν]k

δk,l =
|k|∑
s=0

[|k|−s]![|ν|+2s
]
|k|−s

Ps(k,l). (6.15)

For n= 2, factoring Ps as a product of two terminating 3φ2 series, this is the orthog-

onality relation for dual q-Hahn polynomials.

7. Examples. In this section we will consider some examples of orthogonal and

biorthogonal multivariable Hahn polynomials which may be obtained by our method.

One way to construct orthogonal bases in the space of coupling coefficients is by

binary coupling. This leads to multivariable polynomials which may be factored as

products of q-Hahn polynomials. For q a power of a prime, such polynomials arise

in connection with finite fields [6]. In the limit q→ 1, the corresponding polynomials

are of importance in the quantum theory of angular momentum, and they have also

been used in certain stochastic models in genetics [15]. To obtain them as coupling

coefficients, we first note that ifQ1 ∈
⊗k

i=1 �
νi
q andQ2 ∈

⊗n
i=k+1 �

νi
q are highest weight

vectors of degrees t1, t2 and weights−µ1,−µ2, respectively, andQs is a highest weight

vector of degree s in �
µ1
q ⊗�

µ2
q (unique up to a multiplicative constant), then the

equation

�(Q1,Q2)s
(
f1⊗···⊗fn

)= �Qs
(
�Q1

(
f1⊗···⊗fk

)⊗�Q2

(
fk+1⊗···⊗fn

))
(7.1)

determines a highest weight vector (Q1,Q2)s ∈
⊗n

i=1 �
νi
q . Choosing fi(z)= zmi gives

T
(
Q1,Q2

)
s(m)= TQ1

(
m′)TQ2

(
m′′)TQs(∣∣m′∣∣−t1,∣∣m′′∣∣−t2), (7.2)

where m′ = (m1, . . . ,mk), m′′ = (mk+1, . . . ,mn). Moreover, one has the identity

〈(
Q1,Q2

)
s ,
(
Q3,Q4

)
t
〉= δst∥∥Qs∥∥2〈Q1,Q3

〉〈
Q2,Q4

〉
. (7.3)

As an example, the polynomials

Qqr =
(
(1,1)q,1

)
r , q+r = s (7.4)

form an orthogonal basis in the space of highest weight vectors of degree s in a three-

fold tensor product �
ν1
q ⊗�

ν2
q ⊗�

ν3
q . Applying the transform T gives a system of

orthogonal polynomials which, by (7.2), factor as products of two q-Hahn polynomials.

The orthogonality relation, as well as the convolution formula in Proposition 6.1, then

follow from the corresponding identities for q-Hahn polynomials. The coefficients

〈(
(1,1)q,1

)
r ,
(
1,(1,1)t

)
u
〉

(7.5)
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are Racah coefficients, or Wigner 6j-symbols, for �q1/2(su(1,1)), which may be identi-

fied with q-Racah polynomials [16]. For an (n+1)-fold tensor product, there is a large

number of ways to construct orthogonal bases by binary coupling, and the coefficients

for a change between two such bases are given by Wigner 3nj-symbols.

As a different example of coupling coefficients, we will construct q-analogues of

certain biorthogonal multivariable Hahn polynomials introduced by Rahman [27] for

n= 3 and by Tratnik [38] in general. For Jacobi-type weights, this kind of polynomials

were first studied by Appell; confer [1]. In the case q = 1, they correspond to highest

weight vectors of the form

(
z1−zn

)t1 ···(zn−1−zn
)tn−1 (7.6)

and to the dual basis.

It will be convenient to write �q (for Dirichlet, cf. Appendix A) for the space of

polynomials in one variable, viewed as a �-module with the action

X+zk =−[k]zk−1, X−zk = [k]zk+1, K±zk = q∓(1/2)kzk, (7.7)

which may be obtained by formally letting ν = 0 in (2.28). Write δ for the dilation

operator δf(z)= f(qz), so that K = q−ν/4δ−1/2 as an operator on �ν
q . Thus

−X+
∣∣⊗n

i=1 �
νi
q
= q(1/4)ν∗1 Dq⊗δ−1/2⊗···⊗δ−1/2+···+q(1/4)ν∗n δ1/2⊗···⊗δ1/2⊗Dq,

(7.8)

where Dq is the q-derivative (2.9), while

−X+
∣∣

�⊗nq =Dq⊗δ−1/2⊗···⊗δ−1/2+···+δ1/2⊗···⊗δ1/2⊗Dq. (7.9)

Applying the commutation rule

Dqδλ = qλδλDq (7.10)

gives the following lemma.

Lemma 7.1. The operators X+|⊗n
i=1 �

νi
q

and X+|�⊗nq are connected by

X+
∣∣⊗n

i=1 �
νi
q
= S−1X+

∣∣
�⊗nq S, (7.11)

where

S = δ(1/4)ν∗1 ⊗···⊗δ(1/4)ν∗n . (7.12)

In particular, this shows that if �s is the space of highest weight vectors of degree s
in
⊗n

i=1 �
νi
q , then S�s is, as a space of polynomials, independent of the parameters νi.

Lemma 7.2. Let j be an integer with 1 ≤ j ≤ n. If f and g are two elements in �⊗n
q

such that f depends only on the variables z1, . . . ,zj and g only on zj, . . . ,zn, then

X+(fg)=X+fKg+K−1fX+g. (7.13)
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Proof. For n= 1 this is (2.10). To prove it in general, decompose �⊗n
q as �

⊗(j−1)
q ⊗

�q⊗�
⊗(n−j)
q . By linearity, one may assume f = f1⊗f2⊗1, g = 1⊗g2⊗g3. The lemma

then follows from the case n= 1, using the coproduct rule

X+ =X+⊗K⊗K+K−1⊗X+⊗K+K−1⊗K−1⊗X+. (7.14)

The lemma also follows from the results of Appendix B, where we describe a product

• on �⊗n
q which satisfies

X+(f •g)=X+f •Kg+K−1f •X+g (7.15)

and which agrees with the usual product of polynomials under the assumptions of

the lemma.

Proposition 7.3. For any multi-index t = (t1, . . . , tn−1), the polynomial

Q̃t(z)=
t1−1∏
j=0

(
z1−q−(j+t2+···+tn−1)zn

)

×
t2−1∏
j=0

(
z2−q−(j+t3+···+tn−1)zn

)··· tn−1−1∏
j=0

(
zn−1−q−jzn

) (7.16)

is annihilated by X+|�⊗nq , and thus

Qt(z)= q(1/4)(ν
∗
1 t1+···+ν∗n−1tn−1)S−1Q̃t(z)

= q(1/4){(t,0),ν}Q̃t
(
q−(1/4)ν

∗
1 z1, . . . ,q−(1/4)ν

∗
n zn

) (7.17)

is a highest weight vector in
⊗n

i=1 �
νi
q .

Note that

Qt
∣∣
zn=0 = zt11 ···ztn−1

n−1 . (7.18)

Since the dimension of the space of monomials of degree s inn−1 variables equals the

dimension
(
n+s−2
n−2

)
of the space of highest weight vectors of degree s, the polynomials

(Qt)|t|=s form a basis of the latter space. In particular, it follows thatQt is the unique

highest weight vector satisfying (7.18).

Proof of Proposition 7.3. Let j be the smallest number such that tj ≠ 0. Then

Q̃t
(
z1, . . . ,zn

)= (zj−q1−|t|zn
)
Q̃t′

(
z1, . . . ,zn

)
, (7.19)

where t′ = (0, . . . ,0, tj−1, tj+1, . . . , tn). Proceeding by induction on |t|, we may assume

that X+Q̃t′ = 0. Since Q̃t′ depends only on the variables zj, . . . ,zn, Lemma 7.2 gives

X+Q̃t =X+
(
zjQ̃t′

)−q1−|t|X+
(
Q̃t′zn

)
=X+zjKQ̃t′ +K−1zjX+Q̃t′ −q1−|t|X+Q̃t′Kzn−q1−|t|K−1Q̃t′X+zn.

(7.20)

Since X+Q̃t′ = 0, X+zj = X+zn = −1 and K±Q̃t′ = q∓(1/2)(|t|−1)Q̃t′ , it follows that

X+Q̃t = 0.
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To obtain an expression for the coupling coefficients Pt = TQt , we expand Q into

monomials. Using the terminating q-binomial formula

s−1∏
j=0

(
x−q−jy)= (−1)s

s∑
l=0

[−s]l
[l]!

q−(1/2)(s−l)(s−1)xlys−l, (7.21)

one obtains

Q̃t(z)= (−1)s
∑

l1,...,ln−1

[−t1]l1 ···[−tn−1
]
ln−1[

l1
]
!···[ln−1

]
!

×q−(1/2)
∑
i(ti−li)(ti−1)−∑i<j(ti−li)tj zl11 ···zln−1

n−1 z
s−l1−···−ln−1
n ,

(7.22)

where s = |t|. Put ln = s−l1−···−ln−1. Using (4.8) one may then rewrite the exponent

of q as

1
2
ln+ 1

2

{
(t,0),l

}
. (7.23)

Writing also

1
2

{
(t,0),l

}+ 1
4

{
(t,0),ν

}+ 1
4
{ν,l} = 1

8

{
ν+2(t,0),ν+2l

}
(7.24)

gives

Qt(z)= (−1)s
∑

l1+···+ln=s

[−t1]l1 ···[−tn−1
]
ln−1[

l1
]
!···[ln−1

]
!

q(1/2)ln+(1/8){ν+2(t,0),ν+2l}zl11 ···zlnn
(7.25)

and thus

Pt(m)=
∑

l1+···+ln=s

[−t1]l1 ···[−tn−1
]
ln−1[

l1
]
!···[ln−1

]
!

×
[−m1

]
l1 ···

[−mn
]
ln[

ν1
]
l1 ···

[
νn
]
ln

q(1/2)ln+(1/4){ν+m+(t,0),ν+2l}.

(7.26)

Next we consider the dual basis of (Pt)|t|=s . It can be expressed in terms of coupling

kernels. To see this we first observe that, because of (7.18),

〈
Qt,z

u1
1 ···zun−1

n−1

〉=
[
t1
]
!···[tn−1

]
![

ν1
]
t1 ···

[
νn−1

]
tn−1

δt,u (7.27)

for arbitrary ui. Thus the dual basis (Q′
t) of (Qt) is given by

Q′
t =

[
ν1
]
t1 ···

[
νn−1

]
tn−1[

t1
]
!···[tn−1

]
!
Πs
(
zt11 ···ztn−1

n−1

)
, (7.28)

where, as above, Πs is the orthogonal projection onto the space of highest weight
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vectors. It follows from (5.9) that, in general,

T Πs
(
zt11 ···ztnn

)
(m)= Ps(t,m), |t| = s, (7.29)

which gives

P ′t (m)= TQ′
t(m)=

[
ν1
]
t1 ···

[
νn−1

]
tn−1[

t1
]
!···[tn−1

]
!
Ps
(
t1, . . . , tn−1,0,m1, . . . ,mn

)
. (7.30)

We insert the explicit expression for Ps from Theorem 5.1. Then the summation vari-

able jn may be put equal to zero. Writing x̂ = (x1, . . . ,xn−1) for x ∈Rn, we obtain

P ′t (m)=
[−|m|]s[|ν|+s−1

]
s

[
ν̂
]
t

[t]!

×
∞∑

j1,...,jn−1=0

[|ν|+s−1
]
|j|[−|m|]|j|
[−t]j

[−m̂]
j[

ν̂
]
j[j]!

q(1/4){ν+m+(t,0),ν+2(j,0)}
(7.31)

(which should be interpreted as a finite sum, as in Theorem 5.1). Thus, as a conse-

quence of Theorem 4.1, we have the following fact.

Theorem 7.4. The coupling coefficients Pt(m) and P ′u(m) given by (7.26) and (7.31),

respectively, satisfy the relations

∑
|m|=s+k

[
ν1
]
m1
···[νn]mn[

m1
]
!···[mn

]
!
Pt(m)P ′u(m)=

[|ν|+2s
]
k

[k]!
δt,u, (7.32)

where s = |t| (or s = |u|).

As indicated in Section 4, we may view this as a biorthogonality relation for a com-

plete system of (n−1)-variable polynomials. It may be worth writing this out explicitly,

in standard notation. To facilitate comparison with the one-variable case, we view the

qνi−1 as parameters and normalize the polynomials so that they take the value 1 at

m1 = ··· =mn−1 = 0. Thus, we write

q−(1/2)|t||m|−(1/4){m,ν}Pt(m)
q−(1/2)|t||m|−(1/4)|m||ν̂|Pt

(
0,|m|)

= pt
(
q−m1 ,q−(m1+m2), . . . ,q−(m1+···+mn−1);qν1−1, . . . ,qνn−1,|m|;q),

(7.33)

and p′t for the polynomials similarly obtained from P ′t . Replacing n by n+ 1, and

writing Φ1:2
1:1 for the q-Kampé de Fériet function

Φ1:2
1:1

(a
d

:
b1,c1

e1
; . . . ;

bn,cn
en

;q;x1, . . . ,xn
)

=
∞∑

k1,...,kn=0

(a;q)|k|
(d;q)|k|

(
b1;q

)
k1

(
c1;q

)
k1

(q;q)k1

(
e1;q

)
k1

···
(
bn;q

)
kn

(
cn;q

)
kn

(q;q)kn
(
en;q

)
kn
xk1

1 ···xknn ,
(7.34)
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we have

pt
(
x1, . . . ,xn;a1, . . . ,an,b,N ;q

)

= x|t|n
(
x−1
n q−N ;q

)
|t|(

q−N ;q
)
|t|

Φ1:2
1:1

( b−1q−|t|

xnq1+N−|t| :
q−t1 ,x1

a1q
;
q−t2 ,x2/x1

a2q
; . . . ;

q−tn ,xn/xn−1

anq
;

q;a1 ···anbqN+|t|+n+1,a2 ···anbx1qN+|t|−t1+n

, . . . ,anbxn−1qN+tn+2
)
,

p′t
(
x1, . . . ,xn;a1, . . . ,an,b,N ;q

)

= Φ1:2
1:1

(a1 ···anbq|t|+n
q−N

:
q−t1 ,x1

a1q
;
q−t2 ,x2/x1

a2q
; . . . ;

q−tn ,xn/xn−1

anq
;

q;q,
x1

a1
q−t1 , . . . ,

xn−1

a1 ···an−1
q2−n−|t|+tn

)
.

(7.35)

In terms of these polynomials, Theorem 7.4 may be rewritten as

∑
0≤m1≤···≤mn≤N

(
a1q;q

)
m1

(
a2q;q

)
m2−m1

···(anq;q
)
mn−mn−1

(bq;q)N−mn

(q;q)m1(q;q)m2−m1 ···(q;q)mn−mn−1(q;q)N−mn

n∏
j=1

(
ajq

)−mj

×pt
(
q−m1 , . . . ,q−mn ;a1, . . . ,an,b,N ;q

)
p′u
(
q−m1 , . . . ,q−mn ;a1, . . . ,an,b,N ;q

)

= δtu
(q;q)t1 ···(q;q)tn(
a1q;q

)
t1 ···

(
anq;q

)
tn

(bq;q)|t|(
q−N ;q

)
|t|

(
a1 ···anbqn+|t|;q

)
N+1

(q;q)N

× 1
1−a1 ···anbqn+2|t| (−1)|t|q(

|t|
2 )−N|t|(a1 ···anqn

)−N ∏
1≤i≤j≤n

(
ajq

)ti .
(7.36)

Appendices

A. Quasi-commuting homogeneous coordinates. In this appendix we will use

quasi-commuting homogeneous coordinates to give a “geometric” motivation for the

holomorphic realization, where geometric may be understood in the sense of non-

commutative geometry (cf. [25]). First recall the classical case. If f is a function de-

fined in the unit disc, one may (at least for integer ν) introduce a function F defined

in the cone |x|< |y| in C2 by

F(x,y)= 1
yν
f
(
x
y

)
. (A.1)

The natural right action on F by SU(1,1),

F(x,y) � �→ F(ax+by,cx+dy),
(a b
c d

)
∈ SU(1,1) (A.2)

then gives rise to the action (1.3) on f .
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In the quantum case we must replace the coordinate functions x, y by quasi-

commuting elements, that is, quantities satisfying xy = q1/2yx. Since we need frac-

tional powers, we let �q be the associative algebra over C generated by xα, yα, α∈R,

with relations

x0 =y0 = 1, xαxβ = xα+β, yαyβ =yα+β, xαyβ = q(1/2)αβyβxα. (A.3)

To proceed, we need a q-analogue of the action of SL(2,C) on functions on C2. This

will be the action of � on �q given by

X+
(
xαyβ

)=−q(1/4)(1+β−α)[α]xα−1yβ+1,

X−
(
xαyβ

)=−q(1/4)(1+α−β)[β]xα+1yβ−1,

K±
(
xαyβ

)= q±(1/4)(β−α)xαyβ.
(A.4)

In fact, this makes �q into a �-module algebra, that is, the equations

K±(1)= 1, X±(1)= 0,

K±(fg)=K±(f )K±(g),

X±(fg)=X±(f )K(g)+K−1(f )X±(g),

(A.5)

are satisfied. The existence of this module algebra is well known.

We now fix ν > 0, consider the �-submodule of �q generated by (xky−ν−k)∞k=0, pass

to the inhomogeneous notation

zk = q(1/4)k(ν+k)xky−ν−k = q−(1/4)k(ν+k)y−ν−kxk (A.6)

and identify the zk with powers of a complex variable. The action (A.4) is then given by

X+zk =−[k]zk−1,

X−zk = [ν+k]zk+1,

K±zk = q∓(1/4)(ν+2k)zk,

(A.7)

or equivalently by (2.28). If this defines a unitary action on a Hilbert space in the sense

of (2.19), it is easily seen that one must have (assuming the normalizing condition

‖1‖ = 1) ∥∥zk∥∥2 = [k]![
ν
]
k
. (A.8)

Thus we recover the unitary representation of � on the space �ν
q .

Similarly, for ν = 0 we obtain the space �q considered in Section 7. Since

q(1/4)k
2
xky−k = (q(1/4)xy−1)k, (A.9)

the map zk � qk2/4xky−k embeds �q as a sub-module algebra of �q. We will ex-

ploit this fact in the next appendix. We also mention that �q/C is a unitarizable
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�q1/2(su(1,1))-module. Its completion is the quantum Dirichlet space, consisting of

analytic functions on the disc |z|< q−1/2, modulo constants, with the norm

‖f‖2 =
∞∑
k=1

[k]
∣∣f̂ (k)∣∣2 =

∥∥Dqf∥∥2
�2
q
. (A.10)

It is equivalent to the quantum Bergman space �2
q, an intertwining map being the

q-derivative Dq.

B. The algebra of highest weight vectors. In this section we will describe the ker-

nel of X+ in
⊗n

i=1 �
νi
q . In the case q = 1, X+ = −

∑n
i=1 ∂/∂zi satisfies the Leibniz rule

X+(fg) = X+(f )g + fX+(g), so the kernel is formally an associative algebra. (The

product is unbounded, but one can obtain a well-defined algebra for instance as the

subspace of polynomials.) In this appendix we will find a product • on the space of

polynomials in
⊗n

i=1 �
νi
q which satisfies

X+(f •g)=X+(f )•K(g)+K−1(f )•X+(g), (B.1)

so that it gives an algebra structure to the space of polynomials annihilated by X+,

that is, to the span of the highest weight vectors.

First we recall the universal R-matrix

R = q(1/4)(H⊗H)
∞∑
j=0

(
1−q−1

)j
[j]!

q(1/4)j(j−1)(KX+)j⊗(K−1X−
)j , (B.2)

where H satisfies q(1/4)H = K. It may be viewed as an element of a suitable extension

of �⊗�. For “nice” �-modules V1 and V2,

Ψ = σ ◦R : V1⊗V2 �→ V2⊗V1 (B.3)

is intertwining, where σ is the flip σ(f ⊗g) = g⊗ f . We will only need this when

V1 = V2 =�q.

There is a canonical way to give a module algebra structure to a tensor product of

module algebras, known as the braided tensor product [24]. Namely, if A1 and A2 are

�-module algebras with products

mi :Ai⊗Ai �→Ai, i= 1,2, (B.4)

then A1⊗A2 is another one with the product

(
m1⊗m2

)◦(1⊗Ψ⊗1). (B.5)

This construction is associative in the sense that regardless of how it is iterated to

define a module algebra structure on a finite tensor product A1⊗···⊗An, the result

is the same.

Consider the space �q⊗�q, consisting of polynomials in two variables z1 and z2,

and view it as a sub-module algebra of the braided tensor product �q ⊗�q. Thus

we write

z1 = q1/4xy−1⊗1, z2 = 1⊗q1/4xy−1. (B.6)
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Denoting by • the product defined by (B.5), we have

z1 •z2 = q1/4xy−1⊗q1/4xy−1 = z1z2, (B.7)

where the product on the right-hand side is the usual product of polynomials, while

z2 •z1 = Ψ
(
q1/4xy−1⊗q1/4xy−1)

= q3/2xy−1⊗xy−1+(1−q)x2y−2⊗1

= qz1z2+(1−q)z2
1.

(B.8)

By associativity, this determines the product • uniquely. One may prove by induction

that, more generally, the product on �⊗n
q considered as a sub-module algebra of �⊗n

q

is determined by

zi •zj =

zizj, i≤ j,
qzjzi+(1−q)z2

j , i > j.
(B.9)

With this product, the kernel of X+ is a graded algebra KerX+|�⊗nq = ∑∞
s=0 �̃s , where

�̃s consists of homogeneous polynomials of degree s. It is generated by �̃0, which is

the space of constants, together with �̃1 = {a1z1+···+anzn; a1+···+an = 0}.
By Lemma 7.1, these observations carry over to the space

⊗n
i=1 �νi . The span of all

highest weight vectors is a graded algebra generated by 1 and �1 = S−1�̃1, with the

product

Q1 •Q2 = S−1(SQ1 •SQ2
)

(B.10)

given on zi by

zi •zj =

zizj, i≤ j,
qzjzi+(1−q)q(1/4)(ν

∗
i −ν∗j )z2

j , i > j,
(B.11)

where ν∗i −ν∗j = νj+2(νj+1+···+νi−1)+νi.
For n= 2, the space �̃s is one-dimensional and generated by (z1−z2)•s . Now, by a

generalized binomial formula due to Benaoum [3], (cf. also [33]), one has

(
z1−z2

)s = s∑
k=0

[s]!
[k]![s−k]!q

(1/2)k(s−1)(−1)s−kzk1z
s−k
2 (B.12)

for variables satisfying z2z1 = qz1z2+ (1−q)z2
1. However, for commuting variables,

the right-hand side of this equation equals

s−1∏
j=0

(
qjz1−z2

)
, (B.13)

which thus generates �̃s . Applying S−1 gives, up to a multiplicative constant, the poly-

nomial (3.14).
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