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Abstract. We obtain stochastic inequalities, error bounds, and classification probability
for a general class of distributions. We introduce the notion of variability ordering via the
probability functional and comparisons made for the weighted and the original distribu-
tions. We present moment inequalities, comparisons, and applications.
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1. Introduction. Weighted distributions are of tremendous practical importance in

various aspects of reliability, biometry, survival analysis and renewal theory to men-

tion a few areas. In renewal theory the residual lifetime has a limiting distribution

that is a weighted distribution with the weight function equal to the reciprocal of

the hazard (failure) rate function. When observations are selected with probability

proportional to their “length” the resulting distribution is referred to as a length-

biased distribution. Length-biased distributions occur naturally in a wide variety of

settings and are discussed by several authors including but not limited to Gupta and

Akman [4], Zelen and Feinleib [6]. The problem of providing error bounds for ex-

ponential approximations to classes of life distributions in particular, the class of

weighted distributions is addressed in this paper. Keilson [5] suggested a measure

of departure from exponentiality within the class of completely monotone distribu-

tions (mixture of exponential distributions). These measures of departure are given

in terms of ρ = |µ2/2µ2−1|, where µ2 = E(X2) and µ = E(X). This is due to the fact

that the exponential distribution satisfies ρ = 0. Brown [2] obtained bounds for the

class of increasing mean residual life (IMRL) functions.

The main objective of this paper is to obtain inequalities for weighted reliability

measures, partial order via probability functional and compare reliability measures

for weighted and in particular length-biased distributions. This paper is organized as

follows. Section 2 contains some basic definitions, utility notions and comparisons.

In Section 3 we present some moment inequalities for weighted reliability measures.

In Section 4 some partial ordering via the probability functional are presented. The

results are used to compare experiments for weighted distributions. Section 5 is con-

cerned with comparisons for weighted and related distributions. The results are ap-

plied to length-biased mixtures of distributions.

2. Some definitions, utility notions, and comparisons. In this section, we present

some definitions and useful notions. Let � be the set of absolutely continuous
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distribution function satisfying

H(0)= 0, lim
x→∞H(x)= 1, sup

{
x :H(x) < 1

}=∞. (2.1)

Note that if the mean of a random variable in � is finite, it is positive.

Let X be a nonnegative random variable with reliability function F̄ and probability

density function (pdf) f , where F̄(x)=
∫∞
x f(t)dt. The weighted random variable has

a pdf given by

fW(x)= W(x)f(x)δ∗
, (2.2)

where δ∗ is a normalizing constant.

Definition 2.1. A distribution function F is said to have increasing mean residual

life (IMRL) on (0,∞) if µ =
∫∞
0 F̄(x)dx <∞, F(0) < 1 and E(X−x |X >x) is increasing

in x ≥ 0.

Definition 2.2. A distribution function F is said to have increasing (decreasing)

hazard rate on [0,∞), denoted by IHR (DHR), if F(0−)= 0, F(0) < 1 and P(X > x+t |
X > t)= F̄(x+t)/F̄(t) is decreasing (increasing) in t ≥ 0 for each x > 0.

Note that if F has DHR and µX =
∫∞
0 F̄(x)dx <∞, then F has IMRL.

Definition 2.3. LetX and Y be two nonnegative random variables with probability

density functions f and g, respectively. The random variable X is said to be larger

than Y in monotone likelihood ratio ordering (X ≥lr Y) if f(x)/g(x) is nondecreasing

in x ≥ 0.

The following definition is due to Ebrahimi and Pellerey [3].

Definition 2.4. The uncertainty of residual life distribution H(X;t), of a compo-

nent at time t, is the entropy of the residual life random variable (X−t | X > t), and

is given by

H(X;t)=−
∫∞
t

f (x)
F̄(t)

log
f(x)
F̄(t)

dx

= log F̄(t)−{F̄(t)}−1
∫∞
t
f (x) logf(x)dx

= 1−{F̄(t)}−1
∫∞
t
f (x) log

{
λF(x)

}
dx,

(2.3)

where λF(x)= f(x)/F̄(x).

The entropy of the weighted residual life random variable (XW − t | XW > t) is

given by

H
(
XW ;t

)=−
∫∞
t

fW (x)
F̄W (t)

log
fW(x)
F̄W (t)

dx

= log F̄W (t)−
{
F̄W (t)

}−1
∫∞
t
fW (x) logfW(x)dx.

(2.4)
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Under length-biased sampling, H(XW ;t) reduces to

H
(
Xl;t

)= 1−{F̄(t)VF(t)}−1
∫∞
t
xf(x) log

(
xλF(x)
VF(x)

)
dx, (2.5)

where VF(t) = E(X − t | X > t)+ t. H(X;t) is the expected uncertainty in the con-

ditional distribution of X − t, given X > t about the predictability of the remaining

lifetime of the component that has survived for time t.
Let Xt denote the residual lifetime of a unit functioning at time t. Then as t →∞,

Xt has the limiting probability density function

fe(x)= F̄(x)µF
, x ≥ 0. (2.6)

The length-biased equilibrium survival function is given by

F̄le (x)=
(
µ2
F +σ 2

F
)−1

∫∞
x
F̄(u)

{
u+δF(u)

}
du, (2.7)

where δF(u) =
∫∞
x F̄(t)dt/F̄(u), u ≥ 0, and σ 2

F is the variance of F . Note that if the

weight function W(x) is increasing on [0,∞), then Y ≥lr X and λG(x)≤ λF(x) for all

x ≥ 0, so that Ḡ(x)≥ F̄(x) for all x ≥ 0.

Proposition 2.5. If X ≤lr Y , then H(X;t) ≤ H(Y ;t), for all t ≥ 0, where Y is the

length-biased random variable with equilibrium distribution Fle .

Proof. The length-biased equilibrium survival function is given by

F̄l(x)= F̄(x)δF(x)µX
, (2.8)

where δF(x) = VF(x)−x, and µX =
∫∞
0 F̄(x)dx. Clearly, F̄l(x) ≥ F̄(x), for all x ≥ 0.

This follows from the fact that Y ≥lr X, so thatX has a DFR distribution. Consequently,

H(X;t)≤H(Y ;t), for all t ≥ 0.

3. Moment inequalities for weighted reliability measures. In this section, we

present some inequalities for weighted distributions. Let � be the set of absolutely

continuous distribution function given by (2.1). The weighted survival function is

given by

Ḡ(x)= δ∗−1
∫∞
x
W(y)dF(y), (3.1)

where W(y) is a positive real function and 0< δ∗ = E(W(X)) <∞.

It is well known that ifG1 andG2 are absolutely continuous with respect to aσ -finite

measure ν , with Radon-Nikodym derivative g1 and g2, then

∫ ∣∣g2−g1

∣∣dν = 2sup
γ

∣∣G1(∆)−G2(∆)
∣∣, (3.2)

where γ is the collection of Borel subsets of [0,∞). Indeed if P(X = Y) is small, then

g1 and g2 are close in L1(ν) norm, where the distributions of X and Y are given by



324 B. O. OLUYEDE AND M. TERBECHE

G1 and G2, respectively. The weighted survival function Ḡ(x) can be written as

Ḡ(x)
F̄(x)

= E
[
W(X) |X >x]

δ∗
(3.3)

and the corresponding ratio of hazard functions is given by

λG(x)
λF(x)

= W(x)
E
[
W(X) |X >x] . (3.4)

The quantity E[W(X) | X > x] is referred to as the weighted vitality function. Under

size-biased sampling, W(x)= x and

VF(x)= E(X−x |X >x)+x, (3.5)

where

E[X−x |X >x]=
∫∞
x

F̄(y)dy
F̄(x)

(3.6)

is the residual life function (MRLF).

It is clear that if VF(x) is increasing in x, then

Ḡl(x)= µ−1
∫∞
x
y dF(y)≥ c−1F̄(x)≥ F̄(x), (3.7)

where c = F̄(0), Ḡ(0)= 1, and c−1 = Ḡ(0)/F̄(0). Indeed if the weighted vitality function

E[W(X) |X >x] is increasing in x, then Ḡ(x)/F̄(x) is increasing in x.

Theorem 3.1 (see [1]). If F has DMRL, then Sk(x) ≤ Sk(0)e−x/µ , k = 1,2, . . . , and

Sk(x)≥ µSk−1(0)e−x/µ−µSk−1(0)+Sk(0), k= 2,3, . . . , where

Sk(x)=



F̄(x) if k= 0,
∫∞

0

F̄(x+t)tk−1dt
(k−1)!

if k= 1,2, . . . ,
(3.8)

is a sequence of decreasing functions for which F possess moments of order J, that is,

µk = E(Xk) exists, k= 1,2, . . . ,J.

Let S−1(x) = f(x) be the pdf of F if it exists. Then Sk(0) = µk/k!, and S′k(x) =
−Sk−1(x), k= 0,1,2, . . . ,J. The ratio Sk−1(x)/Sk(x) is a hazard function of a distribu-

tion function with survival function Sk(x)/Sk(0). The inequalities in Theorem 3.1 are

reversed if F has increasing mean residual life (IMRL).

Theorem 3.2. Let Ḡ(x) be an IHR weighted distribution function with monotone

weight function. Then

∫∞
0

∣∣Ḡ(x)−Ḡl(x)∣∣dx ≤ 2µ(1+β), (3.9)

where β= µ−µ2/2µ2, and Ḡl(x)= (1+x/µ)e−x/µ , for x ≥ 0.
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Proof. Let A= {x | Ḡ ≤ (1+x/µ)exp(−x/µ)}. Then we have for x ≥ 0,

∫∞
0

∣∣∣∣Ḡ(x)−
(

1+ x
µ

)
e−x/µ

∣∣∣∣dx

≤ 2
∫
A

((
1+ x

µ

)
e−x/µ−Ḡ(x)

)
dx

≤ 2
∫∞

0

((
1+ x

µ

)
e−x/µ− F̄(x)

)
dx

= 2
∫∞

0

((
1+ x

µ

)
e−x/µ− S1(x)

µ

)
dx = 2

(
µ2+µ− µ2

2µ

)

= 2µ
(

1+µ− µ2

2µ

)
= 2µ(1+β).

(3.10)

The first inequality is trivial and the second inequality is due to the stochastic order

between Ḡ(x) and Ḡl(x) whenever W(x) is increasing in x ≥ 0.

Theorem 3.3. Let Ḡ(x) be a DHR weighted distribution function with monotone

weight function W(x)≥ 0. Then for ε≥ µ ≥ 1,

∫∞
0

∣∣Ḡ(x)−e−x/µ∣∣dx ≥ 2µe−ε/µ(µ−1). (3.11)

Proof. Let ε≥ µ, then for x ≥ 0, we have

∫∞
0

∣∣Ḡ(x)−e−x/µ∣∣dx = 2
∫∞
ε

{
Ḡ(x)−e−x/µ}dx

≥ 2
∫∞
ε

{
F̄(x)−e−x/µ}dx

= 2
(
µS1(ε)−µe−ε/µ

)

≥ 2µ
{
S1(0)e−ε/µ−e−ε/µ

}

= 2µe−ε/µ
(
S1(0)−1

)

= 2µe−ε/µ(µ−1).

(3.12)

The first inequality is due to the fact that Ḡ(x) and F̄(x) are stochastic ordered

whenever W(x) is increasing in x ≥ 0, and the second inequality follows from

Theorem 3.1.

The next result is due in part to an application of the lemma given by Brown [2].

Theorem 3.4. Assume that the weighted vitality function E[W(X) | X > x] is in-

creasing in x, 0< δ∗ = E[W(X)] <∞ and µF =
∫∞
0 F̄(x)dx <∞, then

sup
x

∣∣Ḡ(x)− F̄(x)∣∣≤ 1− δ
∗

µG
, (3.13)

where µG =
∫∞
0 Ḡ(x)dx.
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Proof. Since E[W(X) |X >x]= δ∗Ḡ(x)/F̄(x) is increasing, we obtain

sup
x

∣∣Ḡ(x)− F̄(x)∣∣≤ 1−δ∗−1
∫∞

0

(
F̄(x)
Ḡ(x)

)
W(x)f(x)dx

= 1−δ∗−1
∫∞

0

(
F̄(x)
Ḡ(x)

)2( F̄(x)
Ḡ(x)

)
W(x)f(x)dx

≤ 1−δ∗−1µG
(∫∞

0

W(x)f(x)dx
µG

)2

= 1− δ
∗

µG
.

(3.14)

Theorem 3.5. Under length or size-biased sampling

sup
x

∣∣Ḡl(x)− F̄(x)∣∣≤ 1− µ
2

µ2
= σ 2

F(
σ 2
F +µ2

F
) , (3.15)

where µ2 = E(X2) and σ 2
F = Var(X) is the variance of X.

Proof. This follows from the fact that

EG
(
Xr
)= EF

(
Xr+1

)
µF

, (3.16)

r ≥ 1 and δ∗ reduces to µF =
∫∞
0 F̄(x)dx.

4. Partial ordering via probability functional. Let (X,y) be a random vector, where

X lies on the real line and is observable. Let y be 0 or 1. We assume the conditional

probability density function of X, given y = 1 and y = 0 are g1(x)= f(y | x = 1) and

g0(x)= f(y | x = 0), respectively. Consider a simple classification procedure defined

as a partition of C = (C0,C1) in R, such that y1 = i if and only if X ∈ Ci, i = 0,1. The

mean probability of true classification is

P
(
Y1 =y

)= 1
2
P
(
X ∈ C0 |y = 0

)+ 1
2
P
(
X ∈ C1 |y = 1

)
. (4.1)

For this setting, the optimal Bayes rule A= (A0,A1) that maximizes the mean proba-

bility of true classification is of the form

A0 =
{
x | g0(x)≥ g1(x)

}
, A1 =

{
x | g1(x) > g0(x)

}
. (4.2)

The true probability of classification is given by

∆= 1
2

∫
R

max
(
g0(x),g1(x)

)
dx = 1

2
+ 1

4

∫
R

∣∣g0(x)−g1(x)
∣∣dx. (4.3)
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For the weighted distribution with weight function W(x) ≥ 0 and 0 < E[W(X)] <∞,

the probability functional (4.3) reduces to

1
2

∫∞
0

max
(
W(x)f(x)
E
(
W(X)

) ,f (x)
)
dx

= 1
2
+ 1

4δ
{
E
{

max
(
W(X)−δ,0)}+E{max

(
δ−W(X),0)}},

(4.4)

where 0≠ δ= E[W(X)].
Let gWi(x)=Wi(x)fi(x)/δi, i= 1,2, then

∫∞
0

max
(
gW1(x),f1(x)

)
dx ≥

∫∞
0

max
(
gW2(x),f2(x)

)
dx (4.5)

if and only if

E
∣∣∣∣
{
W1(X)
δ1

}
−1
∣∣∣∣≥ E

∣∣∣∣
{
W2(X)
δ2

}
−1
∣∣∣∣, (4.6)

where 0≠ δi = E[Wi(X)], i= 1,2.

Let (Xi,yi) be random vectors and g0i and g1i, i= 1,2, be given by (4.3).

Definition 4.1. We say the random vector (X1,y1) is more varied than the random

vector (X2,y2) if

∆1 = 1
2
+ 1

4

∫
R

∣∣g01(x)−g11(x)
∣∣dx ≥∆2 = 1

2
+ 1

4

∫
R

∣∣g02(x)−g22(x)
∣∣dx. (4.7)

This is denoted by (X1,y1)
mv≥ (X2,y2).

Now suppose one of the hypotheses given below is true. The hypotheses are

H0 :
(
X1 |y1 = 0

)∼ g0,
(
X1 |y1 = 1

)∼ g1,

H1 :
(
X1 |y1 = 0

)∼ g1,
(
X1 |y1 = 1

)∼ g0.
(4.8)

Let πi denote the prior probability thatHi is true and R(πi) the Bayes risk when the

experimentX1 |y1 = i, i= 0,1 is the case. The next theorem allows for the comparison

of two experiments X1 |y1 = 1 and X1 |y1 = 0 in terms of Bayes risk.

Theorem 4.2.

RX1|y1=1
(
π0
)≥ RX1|y1=0

(
π0
)

(4.9)

if and only if

∫
R

max
(
g0(x),γg1(x)

)
dx ≥

∫
R

max
(
γg0(x),g1(x)

)
dx, (4.10)

where γ =α0π0/α1π1, π1 > 0 and αi > 0 is the loss if Hi is true and not accepted.
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Proof. Let A= {x : γg0(x)≤ g1(x)} and di the Bayes decision to accept Hi. Then

RX1|y1=1
(
π0
)=α0π0P

(
d1 |H0

)+α0π0P
(
d0 |H1

)

=α0π0

∫
A
g1(x)dx+α1π1

∫
Ac
g0(x)dx

=α1π1

∫
R

max
(
γg0(x),g1(x)

)
dx,

RX1|y1=1
(
π0
)=α1π1

∫
R

max
(
g0(x),γg1(x)

)
dx,

(4.11)

where γ = α0π0/α1π1, π1 > 0. The result now follows. If γ = 1 or g0 and g1 are

mutually disjoint, thenRX1|y1=1(π0)= RX1|y1=0(π0). The optimal choice of experiment

depends only on g0, g1 and the value of γ.

5. Comparisons for weighted and related models. It is important to compare ex-

periments for some family of models. For any such comparisons, interest should be in

comparisons that are compatible and practically possible. In this light, one might be

inclined to investigate and compare the possibility of sampling or selection of exper-

iment from weighted distribution as opposed to the parent or original distribution.

In a similar setting comparison might be restricted to a class of distributions includ-

ing possibly distributions with monotone likelihood ratios, comparisons via some

informational measures such as informational energy functions, Fisher, Shannon or

Kullback-Leibler information.

Let the conditional density of X, given y = 1, differ from g0(x) by a shift, that is,

g1(x)= g0(x−c). Let H(g0,c)=
∫
R |g0(x)−g0(x−c)|dx, c > 0.

Proposition 5.1.

inf
g0∈G

H
(
g0,c

)≤ c(a)−1/2, (5.1)

where G is the class of probability density functions on R with constant variance.

Proof. Consider the family of distribution functions with mean zero and finite

support on the interval [−√a,√a], a> 0, and the random variable U such that P(U =
−√a)= P(U =√a)= 1/2. Then

E|U−c| ≥ E|X−c|, (5.2)

for all c > 0 and by the assumption

H
(
g0,c

)= c(a)−1/2. (5.3)

Consequently,

inf
g0∈G

H
(
g0,c

)≤ c(a)−1/2. (5.4)
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Let f(x) and fl(x) denote the original and length-biased probability density func-

tions, respectively. The true probability of classification in this regard is given by

∆l = 1
2

∫∞
0

max
(
f(x),fl(x)

)
dx = 1

2
+ 1

4

∫∞
0

∣∣f(x)−xf(x)/µX∣∣dx

= 1
2
+ 1

4µX

∫∞
0

∣∣X−µX∣∣dx = 1
2
+ 1

4µX
E
{∣∣X−µX∣∣}.

(5.5)

It is clear that
∫∞

0

∣∣f(x)−fl(x)∣∣dx = 1
4µX

∫∞
0

(
1−FX−µX (u)

)
du, (5.6)

due to the fact that

E
∣∣X−µX∣∣= E{max

(
X−µX,0

)}+E{max
(
µX−X,0

)}

=
∫∞

0

(
1−FX−µX (u)

)
du+

∫ 0

−∞
FX−µX (u)du.

(5.7)

We have the following result.

Theorem 5.2. Let X1 and X2 be two nonnegative random variables with probabil-

ity density functions g1 and g2 and corresponding length-biased probability density

functions gl1 and gl2 , respectively. Assume 0< E|Xi|<∞, and µX1 = µX2 , then

∆l1 =
1
2

∫∞
0

max
(
g1(x),gl1(x)

)
dx ≥∆l2 =

1
2

∫∞
0

max
(
g2(x),gl2(x)

)
dx (5.8)

if and only if

E
∣∣X1−µX1

∣∣≥ E∣∣X2−µX2

∣∣. (5.9)

Let {Fθ : θ ∈Θ}. The survival function H̄, given by

H̄(x)=
∫
Θ
F̄θ(x)dK(θ), (5.10)

is a mixture of F̄θ , where K is the mixing distribution. Assume that F̄θ(x) has density

f(x), then the density of h is given by

h(x)=
∫
Θ
fθ(x)dK(θ). (5.11)

A sufficient condition for dilation is that µX1 = µX2 and g1−g2 has two sign changes,

zero disregarded and order of the sign sequence is+,−,+, this is denoted by X1
dil≤ X2,

where g1 and g2 are the probability functions of X1 and X2, respectively.

Theorem 5.3. Let X1 and X2 be two nonnegative random variables with probabil-

ity density functions g1 and g2 and corresponding length-biased probability density

functions gl1 and gl2 , respectively. Consider the mixtures given by

h1(x)=
∫
Θ
g1θ(x)dK1(θ), h2(x)=

∫
Θ
g2θ(x)dK(θ), (5.12)
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respectively. Then

∫∞
0

∣∣h1(x)−hl1(x)
∣∣dx ≥

∫∞
0

∣∣h2(x)−hl2(x)
∣∣dx (5.13)

if E|X1−µX1 | ≥ E|X2−µX2 | and K1
dil≥ K2.

Proof. Note that
∫∞

0
max

(
h(x),hl(x)

)
dx =

∫∞
0

max
(∫

Θ
fθ(x)dK(θ),

∫
Θ
flθ (x)dK(θ)

)
dx

≥
∫
Θ

(∫∞
0

max
(
fθ(x),flθ (x)

)
dx
)
dK(θ),

(5.14)

where flθ (x) is the length-biased probability density function corresponding to fθ(x),
and from Theorem 5.2 the result follows.
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