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A GENERALIZATION OF KY FAN’S INEQUALITY
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Abstract. Let Pn,r (x) be the generalized weighted means. Let F(x) be a C1 function,
y = y(x) an implicit decreasing function defined by f(x,y) = 0 and 0 < m < M ≤m′,
n ≥ 2, xi ∈ [m,M], yi ∈ [m′,M′]. Then for −1 ≤ r ≤ 1, if f ′x/f ′y ≤ 1, |(F(Pn,1(y))−
F(Pn,r (y)))/(F(Pn,1(x)) − F(Pn,r (x)))| < (maxm′≤ξ≤M′ |F ′(ξ)|)/(minm≤η≤M |F ′(η)|) ·
M/m′. A similar result exists for f ′x/f ′y ≥ 1. By specifying f(x,y) and F(x), we get various
generalizations of Ky Fan’s inequality. We also present some results on the comparison of
Pαn,s(y)−Pαn,r (y) and Pαn,s(x)−Pαn,r (x) for s ≥ r , α∈R.

2000 Mathematics Subject Classification. 26D15, 26D20.

1. Introduction. Let Pn,r (x) be the generalized weighted means defined by Pn,r (x)=
(
∑n
i=1ωixri )1/r , where wi, 1 ≤ i ≤ n are positive real numbers with

∑n
i=1wi = 1 and

x = (x1,x2, . . . ,xn). Here we denote Pn,0(x) as limr→0+ Pn,r (x). Let f(x,y) be a real

function, we write f(x,y)= 0 for y= (y1,y2, . . . ,yn) if for all i= 1, . . . ,n, f (xi,yi)= 0.

In this paper, we always assume x1 ≤ x2 ≤ ··· ≤ xn, f(x,y)= 0 and denote x1 =m,

xn = M , y1 = M′, yn =m′. We also write An = Pn,1(x), Gn = Pn,0(x), Hn = Pn,−1(x),
A′n = Pn,1(y), G

′
n = Pn,0(y), H

′
n = Pn,−1(y).

The following inequality, originally due to Ky Fan, was first published in the mono-

graph Inequalities by Beckenbach and Bellman [6, page 5].

Theorem 1.1. For f(x,y)= x+y−1, xi ∈ [0,1/2],
A′n
G′n

≤ An
Gn

(1.1)

with equality holding if and only if x1 = ··· = xn.

Ky Fan’s inequality has evoked the interest of several mathematicians and many

papers appeared providing new proofs, generalizations and sharpenings of (1.1). We

refer the reader to the survey article [3] and the references therein.

Under the same condition of Theorem 1.1, the following additive analogue of (1.1)

was proved by Alzer [1].

Theorem 1.2. For f(x,y)= x+y−1, xi ∈ [0,1/2],

A
′
n−G

′
n ≤An−Gn (1.2)

with equality holding if and only if x1 = ··· = xn.

Refinements of (1.1) and (1.2), were obtained by Alzer (see [4, 5]) in the following

two theorems, respectively.
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Theorem 1.3. Let xi ∈ (0,1/2] (i= 1,2, . . . ,n; n≥ 2) and m<M , then

m
1−m <

A′n−G′n
An−Gn

<
M

1−M . (1.3)

Theorem 1.4. Let xi ∈ [a,b] (i= 1,2, . . . ,n; 0<a< b < 1), then

(
An
Gn

)(a/(1−a))2
<
A′n
G′n

<
(
An
Gn

)(b/(1−b))2
. (1.4)

Recently, Mercer obtained the following generalized Ky Fan’s inequality [7].

Theorem 1.5. For f(x,y)= xp+yp−1, p ≥ 1, n≥ 2, xi ∈ [0,2−(1/p)],

Pn,1(x)Pn,0(y)≥ Pn,1(y)Pn,0(x) (1.5)

with equality holding if and only if x1 = ··· = xn.

Our main goal in this paper is to present a theorem which provides essentially a

unified treatment of Theorems 1.1, 1.2, 1.3, 1.4, and 1.5 and also gives new extensions

of Ky Fan’s inequality. In Section 3, applications to Ky Fan’s inequality will be given

by specifying the functions f(x,y), F(x).
More generally, we can talk about the comparison of Pαn,s(y)−Pαn,r (y) and Pαn,s(x)−

Pαn,r (x) for real α. The case of A′αn −G
′α
n and Aαn−Gαn was discussed in [5] and we will

give some results related to the general case in Section 4.

2. The main theorem

Theorem 2.1. Let F(x) be a C1 function, y =y(x) an implicit decreasing function

defined by f(x,y)= 0 and 0<m<M ≤m′, n≥ 2. Then for −1≤ r ≤ 1, if fx/fy ≤ 1,

∣∣∣∣F
(
Pn,1(y)

)−F(Pn,r (y))
F
(
Pn,1(x)

)−F(Pn,r (x))
∣∣∣∣< maxm′≤ξ≤M′

∣∣F ′(ξ)∣∣
minm≤η≤M

∣∣F ′(η)∣∣ · M
m′ . (2.1)

If f ′x/f ′y ≥ 1,

minm′≤ξ≤M′
∣∣F ′(ξ)∣∣

maxm≤η≤M
∣∣F ′(η)∣∣ ·

m
M′ <

∣∣∣∣F
(
Pn,1(y)

)−F(Pn,r (y))
F
(
Pn,1(x)

)−(Pn,r (x))
∣∣∣∣ (2.2)

provided the denominators on both sides are nonzero.

Proof. Since the proofs of (2.1) and (2.2) are very similar, we only prove (2.1) for

r ≠ 0 here, the case r = 0 is also similar. We will consider the case F(x)= x first. We

define for 1≤ i≤n−1 and 0<x <xi+1:

xi =
(
x,. . . ,x,xi+1, . . . ,xn

)
,

yi =
(
y,. . . ,y,yi+1, . . . ,yn

)
,

D
(
xi
)= xn(Pn,1(xi)−Pn,r (xi))−yn(Pn,1(yi)−Pn,r (yi)),

g
(
xi
)= xnPn,r (xi)1−r ·xr−1+ynPn,r

(
yi
)1−r ·yr−1,

(2.3)

and Di(x)=D(xi), gi(x)= g(xi).
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We need to show that D1(x1) > 0. Differentiation of D1(x1) yields

Ω−1
i D

′
i(x)= xn

(
1−Pn,r

(
xi
)1−r ·xr−1

)
+yn

f ′x
f ′y

(
1−Pn,r

(
yi
)1−r ·yr−1

)

≤ xn
(
1−Pn,r

(
xi
)1−r ·xr−1

)
+yn

(
1−Pn,r

(
yi
)1−r ·yr−1

)
= xn+yn−gi(x),

(2.4)

where Ωi =
∑i
j=1ωi.

Consider

g′i(x)=−(1−r)
n∑

j=i+1

ωj


(Pn,r (xi)

x

)1−2r

·
xnxrj
xr+1

− f
′
x
f ′y
·
(
Pn,r

(
yi
)

y

)1−2r

·
ynyrj
yr+1




≤−(1−r)
N∑

j=i+1

ωj


(Pn,r (xi)

x

)1−2r

·
xnxrj
xr+1

−
(
Pn,r

(
yi
)

y

)1−2r

·
ynyrj
yr+1


< 0.

(2.5)

The last inequality holds, since when −1≤ r ≤ 1/2, k= i+1, . . . ,n, we have

(
Pn,r

(
xi
)

x

)1−2r

≥
(
Pn,r

(
yi
)

y

)1−2r

,
xk
x
>
yk
y
,

xn
yn

·
(
xj
yj

)r
≥
(
xj
yj

)1+r
>
(
x
y

)1+r
,

(2.6)

when 1/2≤ r ≤ 1, we have

(Pn,r (xi)
x

)1−2r
≥
(
xn
x

)1−2r
,

(Pn,r (yi)
y

)1−2r
≤
(
yn
y

)1−2r
,

(
xn
yn

)2−2r

·
(
xj
yj

)r
≥
(
xj
yj

)2−2r

·
(
xj
yj

)r
=
(
xj
yj

)2−r
>
(
x
y

)2−r
.

(2.7)

Thus gi(x) > gi(xi+1) = gi+1(xi+1) ≥ gi+1(xi+2) ≥ ··· ≥ gn−1(xn−1) ≥ gn−1(xn) =
xn+yn, which implies D′i(x) < 0 for all x ∈ (0,xi+1), so

D1
(
x1
)≥D1

(
x2
)=D2

(
x2
)≥D2

(
x3
)≥ ··· ≥Dn−1

(
xn−1

)≥Dn−1
(
xn
)= 0. (2.8)

Since Di is strictly decreasing, we conclude from m<M that D1(x1) > 0.

Next, for arbitrary F , by using the mean value theorem, (2.1) is equivalent to

F
(
Pn,1(y)

)−F(Pn,r (y))
F
(
Pn,1(x)

)−F(Pn,r (x)) =
F ′(ξ)
F ′(η)

· Pn,1(y)−Pn,r (y)
Pn,1(x)−Pn,r (x)

, (2.9)

where m′ ≤ ξ ≤ M′, m ≤ η ≤ M . Taking absolute value and applying the result for

F(x)= x, we get the desired inequality (2.1). This completes the proof.
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3. Consequences of Theorem 2.1. In this section, by choosing different functions

f(x,y), F(x), we will give several results of generalized Ky Fan’s inequality of type

(2.1). There are corresponding ones of type (2.2) and we leave the statements to the

reader. To simplify expressions, we define

∆s,r ,α =
Pαn,s(y)−Pαn,r (y)
Pαn,s(x)−Pαn,r (x) (3.1)

with

∆s,r ,0 =
(
ln
(
Pn,s(y)/Pn,r (y)

))
(
ln
(
Pn,s(x)/Pn,r (x)

)) . (3.2)

Also in order to include the case of equality for various inequalities in our discus-

sion, we define 0/0= 1 from now on.

As a generalization of Theorem 1.3, we have the following corollary.

Corollary 3.1. Let f(x,y) = axp + byp − 1, 0 < a ≤ b, p ≥ 1, 0 < m < M ≤
(a+b)−(1/p), n ≥ 2. For α ≤ 1, let F(x) = lnx if α = 0, or F(x) = xα, otherwise. Then

for −1≤ r < 1

∆1,r ,α <
(
M
m′

)2−α
. (3.3)

Proof. This follows from f ′x/f ′y ≤ 1, maxm′≤ξ≤M′ |F ′(ξ)|/minm≤η≤M |F ′(η)| ≤
(M/m′)1−α.

We remark here in Corollary 3.1, the case α = 0 gives Pn,1(y)/Pn,r (y) < (Pn,1(x)/
Pn,r (x))(M/m

′)2 , which partially generalizes Theorem 1.4. Also for the case α = 0, by

only assumingxi ∈ [0,(a+b)−(1/p)], we get Pn,1(y)/Pn,r (y)≤ Pn,1(x)/Pn,r (x) for−1≤
r ≤ 1 with the equality holding if and only if x1 = ··· = xn. This is a generalization of

Theorem 1.5.

As a generalization of Theorem 1.2, we have the following corollary.

Corollary 3.2. Let f(x,y)= axp+byp−1, 0<a≤ b, p ≥ 1, xi ∈ [0,(a+b)−1/p].
For α≤ 1, let F(x)= lnx if α= 0 or F(x)= xα, otherwise. Then for −1≤ r ≤ p

0<∆1,r ,α ≤ 1 (3.4)

with equality holding if and only if x1 = ··· = xn.

Proof. The first inequality is trivial, and the second inequality for the case −1 ≤
r ≤ 1 follows from (3.3) by noticing M/m′ ≤ 1. For 1 ≤ r ≤ p, we will prove the case

α= 1 and the general case follows from using the mean value theorem. We define for

1≤ i≤n−1 and xn−i < x ≤M

xi =
(
x1, . . . ,xn−i,x, . . . ,x

)
,

yi =
(
y1, . . . ,yn−i,y, . . . ,y

)
,

E
(
xi)= Pn,r

(
xi
)−An(xi)−Pn,r (yi)+An(yi),

(3.5)

and Ei(x)= E(xi).
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We need to show that E1(xn)≥ 0, notice first for x1 ≤ ··· ≤ xn

Pn,r (x)1−r ·xr−1
n +Pn,r (y)1−r ·yr−1

n ≥ 2

(
Pn,r (x)Pn,r (y)

xnyn

)(1−r)/2
, (3.6)

Pn,r (x)Pn,r (y)
xnyn

=

 n∑
i=1

ω2
i

(
xiyi
xnyn

)r
+

∑
1≤i<j≤n

ωiωj

(( xiyj
xnyn

)r
+
( xjyi
xnyn

)r)
1/r

.

(3.7)

Since the function x[(1/b)(1−axp)]1/p is increasing for 0 ≤ xp ≤ 1/2a, we have

(xiyi/xnyn)r ≤ 1 for all i.
Now for fixed i≤ j, define

h(x)= 2xrj y
r
j −yrxrj −xryrj , (3.8)

then h′(xi) ≤ rxp−1
i yr−pi xrj −rxr−1

i yrj ≤ 0 since r ≤ p and xi/yi ≤ 1 ≤ yj/xj . Thus

h(xi)= 2xrj y
r
j −yri xrj −xri yrj ≥ h(xj)= 0, which implies

( xiyj
xnyn

)r
+
( xjyi
xnyn

)r
≤
(xiyj
xjyj

)r
+
(xjyi
xjyj

)r
=
(
xi
xj

)r
+
(
yi
yj

)r
≤ 2. (3.9)

Back to (3.7), we have

Pn,r (x)Pn,r (y)
xnyn

=
(( n∑

i=1

ωi
xri
xrn

)( n∑
i=1

ωi
yri
yrn

))1/r

≤
( n∑
i=1

ω2
i +
∑
i<j

2ωiωj

)1/r

= 1.

(3.10)

In particular this gives (where Ω−1
i =∑n

k=n−i+1ωk)

Ω−1
i E

′
i(x)= Pn,r

(
xi
)1−r ·xr−1−1+ a

b
· x

p−1

yp−1

(
Pn,r

(
yi
)1−r ·yr−1−1

)
≥ Pn,r

(
xi
)1−r ·xr−1−1+Pn,r

(
yi
)1−r ·yr−1−1≥ 0.

Thus we deduce

E1
(
xn
)≥ E1

(
xn−1

)= E2
(
xn−1

)≥ ··· ≥ En−1
(
x2
)≥ En−1

(
x1
)= 0. (3.11)

A close look of the proof tells us the equality holds in (3.4) if and only if x1 =
··· = xn and the proof is completed.

As a special case of the above corollary, we have A′n−H
′
n ≤An−Hn for generalized

weighted means, a proof of this for the special case where ω1 = ··· =ωn was given

in [2].

We remark here if 0< b < a, then in general Pn,1(x)−Pn,r (x) and Pn,1(y)−Pn,r (y)
are not comparable. For example, if we let a = 2, b = 1, n = 2, ω1 =ω2, then when

x1 = 1/3, x2 = 1/27, A2−G2 =A′2−G′2; when x1 = 1/3, x2 = 0, A2−G2 >A′2−G′2 and

when x1 = 1/3, x2 = 1/4, A2−G2 <A′2−G′2.

The classical case of Ky Fan’s inequality corresponds to the choice of f(x,y) =
x +y − 1, where f ′x/f ′y = 1. In this case both inequalities (2.1) and (2.2) hold and

combinations of previous results yield the following corollary.



424 PENG GAO

Corollary 3.3. For f(x,y)= x+y−1, 0<m<M ≤ 1/2, n≥ 2 then for −1≤ r ≤
1, α≤ 1 (

m
1−m

)2−α
<∆1,r ,α <

(
M

1−M
)2−α

. (3.12)

4. The comparison of Pαn,s(y)−Pαn,r (y) and Pαn,s(x)−Pαn,r (x). In this section, fixing

f(x,y) = x+y −1, xi ∈ [0,1/2], we give some results relating the comparison of

Pαn,s(y)−Pαn,r (y) and Pαn,s(x)−Pαn,r (x), where s > r , α∈R.

Our first result is the following lemma.

Lemma 4.1. Given s > r , if for α0 ∈ R, we have ∆s,r ,α0 ≤ (≥)1 with equality holding

if and only if x1 = ··· = xn, then for all α≤ (≥)α0, ∆s,r ,α ≤ (≥)1 with equality holding

if and only if x1 = ··· = xn.

Proof. Let i = s,r , v = x,y, we can assume Pn,i(v) ≠ 0. If α0 ≠ 0, write Pαn,s(v)−
Pαn,r (v)= (Pα0

n,s(v))α/α0−(Pα0
n,r (v))α/α0 = (α/α0)ξα−α0(Pα0

n,s(v)−Pα0
n,r (v))with Pn,r (v) <

ξ < Pn,s(v), where when α= 0, we define (Pα0
n,i(v))0/α0 = lnPα0

n,i(v). By taking the quo-

tient, we get the desired result. If α0 = 0, we write Pαn,i(v) = eα lnPn,i(v) and proceed

similarly.

For any s ≥ r , the above lemma enables us to define a number sup(α)s,r such

that ∆s,r ,α ≤ 1 holds for all α < sup(α)s,r . A special case of this, sup(α)1,0 = 1 was

determined in [5].

The inequality ∆s,r ,α ≥ 1 seems unusual but indeed it can happen, even for the case

r = 1. Indeed we have the following theorem.

Theorem 4.2. ∆s,1,α ≥ 1 for α ≥ s ≥ 2; ∆s,1,α ≤ 1 for 1 < s ≤ 2, α ≤ s; ∆1,r ,α ≤ 1 for

α≤ r < 0, in all cases the equality holds if and only if x1 = ··· = xn.

Proof. From Lemma 4.1, it suffices to prove the theorem for α = s or r . In this

case, for x ∈ [0,1/2], consider the function f(x) = xt− (1−x)t with f ′′(x) = t(t−
1)(xt−2 − (1−x)t−2). By considering the sign f ′′(x) for various t and using corre-

sponding Jensen’s inequality:
∑
ωif(xi)≥ (≤)f (

∑
ωixi), the above assertions follow.

In Theorem 4.2, by restricting xi ∈ [m,M], 0 < m < M ≤ 1/2, we will get results

similar to Corollary 3.3 and we will leave the statements to the reader.

We have omitted the case 0 < r < 1 for Theorem 4.2 since we have a stronger

result as Corollary 3.2. We point out an interesting phenomena here that when s = 2,

∆2,1,α ≥ (≤)1 for α≥ (≤)2. We also remark here the proof of (1.1) follows by applying

Jensen’s inequality to the function lnx− ln(1−x) for x ∈ [0,1/2].
Notice Pn,s(x)−Pn,r (x)≥ Pn,s(y)−Pn,r (y) does not hold for arbitrary real numbers

s ≥ r , for otherwise we will have Pn,s(x)/Pn,r (x)≥ Pn,s(y)/Pn,r (y) which is not true in

general according to a nice result by Chen and Wang [8].

Theorem 4.3. For arbitrary n,s > r , xi ∈ (0,1/2], ∆s,r ,0 ≤ 1 holds if and only if

|r +s| ≤ 3, 2r /r ≥ 2s/s when r > 0, r2r ≤ s2s when s < 0.

By using Lemma 4.1 and Theorem 4.3, we get the following theorem.
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Theorem 4.4. sup(α)s,r ≥ 0 if |r+s| ≤ 3, 2r /r ≥ 2s/s when r > 0, r2r ≤ s2s when

s < 0. Moreover, sup(α)1,r = 1 for −1≤ r ≤ 1 and sup(α)s,1 = s for 1< s ≤ 2.

Proof. The first assertion follows from Theorem 4.3 and the definition for

sup(α)s,r . From Corollary 3.2, we know that sup(α)1,r ≥ 1 for −1 ≤ r ≤ 1 and when

α> 1, let x1 = 1/2, x2 = ··· = xn = ε, and

f
(
ω1,ε

)= (Pαn,1(x)−Pαn,r (x))−(Pαn,1(y)−Pαn,r (y)). (4.1)

A simple calculation reveals that there exist positive real numbers δ and η such

that we have f(ω1,ε) < 0, if 0 < ω1 < δ and 0 < ε < η and f(ω1,ε) > 0, if 1−δ <
ω1 < 1 and 0 < ε < η. Similar conclusion holds for sup(α)s,1 and this completes the

proof.
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