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INTERACTION BETWEEN LINE CRACKS
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We deal with the interaction between three coplanar Griffith cracks located symmetrically
in the mid plane of an orthotropic layer of finite thickness 2h. The Fourier transform
technique is used to reduce the elastostatic problem to the solution of a set of integral
equations which have been solved by using the finite Hilbert transform technique and
Cooke’s result. The analytical expressions for the stress intensity factors at the crack tips
are obtained for large h. Numerical values of the interaction effect have been computed for
and results show that interaction effects are either shielding or amplification depending
on the location of each crack with respect to each other and crack tip spacing as well as
the thickness of the layer.
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1. Introduction. In material structures, pre-existing cracks interact to form major

cracks leading fracture. Thus the study of interacting cracks subjected to a given set

of external loads become extremely important for the purpose of design and safe-life

prediction of material structures.

Problems with Griffith cracks in orthotropic elastic materials were considered by

Erdogan et al. [7], Dhaliwal [6], Satpathy and Parhi [18], Piva and Viola [13], Cinar and

Erdogan [3], Lowengrub and Srivastava [11], De and Patra [5], Kassir and Tse [9], and

others. Analytical studies of crack interaction problems can be found in Sneddon and

Lowengrub [19], Rose [14], Lam et al. [10], Brencich and Carpinteri [1], Chudnovsky

and Kachanov [2], Rubinstein [16], Horii and Nasser [8], and so forth. The interaction

between the elliptic cracks has been studied by Roy and Saha [15] and Murakami and

Nishitani [12], and others.

In the present paper, the interaction between three coplanar Griffith cracks in an or-

thotropic layer of finite depth 2h has been investigated. The resulting mixed boundary

value problem is reduced to the solution of a set of integral equations which have been

further reduced to the solution of an integro-differential equation. An iterative proce-

dure is adopted to get the approximate analytical expressions for the stress intensity

factors by retaining terms up to order of h−2 for large h. Numerical results for the

stress intensity factors at the crack tips and the interaction of the outer cracks on the

central one and conversely through stress magnification factors have been calculated.

Graphical plots of these results are also presented for illustrations.

2. Formulation of the problem. Consider the plane elastostatic problem of the

coplanar Griffith cracks of finite lengths situated in the mid-plane of an infinite or-

thotropic strip of thickness 2h. Under the assumption of plane strain in an orthotropic
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medium, the displacement equations of motion are

C11
∂2u
∂x2

+C66
∂2u
∂y2

+(C12+C66
) ∂2v
∂x∂y

= 0,

C22
∂2v
∂y2

+C66
∂2v
∂x2

+(C12+C66
) ∂2u
∂x∂y

= 0.
(2.1)

The stress displacement relations are

σxx = C11
∂u
∂x

+C12
∂v
∂y
,

σyy = C22

(
∂v
∂y

+ ∂u
∂x

)
,

σxy = C66

(
∂u
∂y

+ ∂v
∂x

)
.

(2.2)

The problem is symmetric with respect to y = 0. Assuming the cracks |x| < b, c <
|x| < 1, y = 0 opened by normal pressure p(x), the boundary conditions for the

problem to be studied are

σyy(x,0)=−p(x), |x|< b, c < |x|< 1, (2.3)

v(x,0)= 0, b ≤ |x| ≤ c, |x| ≥ 1, (2.4)

σxy(x,0)= 0, |x|<∞, (2.5)

and on y = h

u(x,h)= 0, |x|<∞, (2.6)

v(x,h)= 0, |x|<∞. (2.7)

In addition all the components of stress and displacement vanish at the remote dis-

tances from the cracks.

3. Solution of the problem. The appropriate solution of (2.1) can be taken as

u(x,y)=
∫∞

0
A(s,y)sinsxds,

v(x,y)=
∫∞

0
B(s,y)cossxds,

(3.1)

where A and B are functions of y satisfying the equations

C11s2A−C66
d2A
dy2

+(C12+C66
)
s
dB
dy

= 0,

C66s2B−C22
d2B
dy2

−(C12+C66
)
s
dA
dy

= 0,
(3.2)

which has the solution for the layer as

A(s,y)=A1(s)ch
(
γ1sy

)+A2(s)ch
(
γ2sy

)+C1(s)sh
(
γ1sy

)+C2(s)sh
(
γ2sy

)
,

B(s,y)= B1(s)sh
(
γ1sy

)+B2(s)sh
(
y2sy

)+D1(s)ch
(
γ1sy

)+D2(s)ch
(
γ2sy

)
,

(3.3)
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in which γ1 and γ2(< γ1) are positive roots of the equation

C66C22γ4+[(C12+C66
)2−C11C22−C2

66

]
γ2+C11C66 = 0, (3.4)

and Bj(s), Dj(s) are related to Aj(s) and Cj(s) by

Bj(s)=−αjγj Aj(s), Dj(s)=−αjγj Cj(s), (3.5)

where

αj =
(
C11−γ2

j C66
)

(
C12+C66

) , j = 1,2. (3.6)

The expressions for the stresses are

σxy(x,y)= C66

∫∞
0

[
β1

γ1
A1(s)sh

(
γ1sy

)+ β2

γ2
A2(s)sh

(
γ2sy

)

+ β1

γ1
C1(s)ch

(
γ1sy

)+ β2

γ2
C2(s)ch

(
γ2sy

)]
s sinsxds,

σyy(x,y)=
∫∞

0

[(
C12−C22α1

)
A1(s)ch

(
γ1sy

)+(C12−C22α2
)
A2(s)ch

(
γ2sy

)
+(C12−C22α1

)
C1(s)sh

(
γ1sy

)+(C12−C22α2
)
C2(s)sh

(
γ2sy

)]
s cossxds.

(3.7)

Applying (2.5), we obtain

C2(s)=−β1γ2

β2γ1
C1(s), (3.8)

with

βj =αj+γ2
j , j = 1,2. (3.9)

The boundary conditions (2.6) and (2.7) in conjunction with (3.8) give rise to

A1(s)= δ1(sh)C1(s), A2(s)= δ2(sh)C1(s), (3.10)

whose δ1(sh), δ2(sh) are known functions and are given by

δ1(sh)= α2β1/β2γ1+(α2/γ2)sh
(
γ1sh

)
sh
(
γ2sh

)−(α1/γ1)ch
(
γ1sh

)
ch
(
γ2sh

)
(α1/γ1)sh

(
γ1sh

)
ch
(
γ2sh

)−(α2/γ2)sh(γ2sh)ch
(
γ1sh

) ,

δ2(sh)= α1/γ1+(α1β1γ2/β2γ2
1)sh

(
γ1sh

)
sh
(
γ2sh

)
(α1/γ1)sh

(
γ1sh

)
ch
(
γ2sh

)−(α2/γ2)sh
(
γ2sh

)
ch
(
γ1sh

)
− (α2β1/β2γ1)ch

(
γ1sh

)
ch
(
γ2sh

)
(α1/γ1)sh

(
γ1sh

)
ch
(
γ2sh

)−(α2/γ2)sh
(
γ2sh

)
ch
(
γ1sh

) .
(3.11)
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The boundary conditions (2.3) and (2.4) finally yield the following integral equations:

∫∞
0
sC1(s)[1+M(sh)]cossxds =− 1

D
p(x), 0<x < b, c < x < 1, (3.12)

∫∞
0
C1(s)cossxds = 0, b < x < c, x > 1, (3.13)

where

M(sh)=−
[

1+
(
C12−C22α1

)
δ1(sh)+

(
C12−C22α2

)
δ2(sh)

D

]
,

D = (C12−C22α1
)− β1γ2

β2γ1

(
C12−C22α2

)
.

(3.14)

It should be noted that M(sh)→ 0 as h→∞.

Setting

C1(s)= 1
s

∫ b
0
h(t)sinstdt+ 1

s

∫ 1

c
g
(
u2)sinsudu, (3.15)

where h(t) and g(u2) are the unknown functions. Using the result

∫∞
0

sinst cossx
s

ds =


π
2
, t > x,

0, t < x,
(3.16)

it is found that (3.13) is identically satisfied if

∫ 1

c
g
(
u2)du= 0. (3.17)

Further, using the result

∫∞
0

sinsusinsx
s

ds = 1
2

log
∣∣∣∣u+xu−x

∣∣∣∣, (3.18)

equation (3.12) under (3.15) leads to

d
dx

∫ b
0
h(t) log

∣∣∣∣ t+xt−x
∣∣∣∣dt+ d

dx

∫ 1

c
g
(
u2) log

∣∣∣∣u+xu−x
∣∣∣∣du

+ d
dx

∫ b
0
h(t)dt

∫∞
0
s−1M(sh)sinst sinsxds

+ d
dx

∫ 1

c
g
(
u2)du

∫∞
0
s−1M(sh)sinsusinsxds

=− 2
D
p(x), 0<x < b, c < x < 1.

(3.19)
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Now assuming

h(t)= h0(t)+ 1
h2
h1(t)+O

(
1
h4

)
,

g
(
u2)= g0

(
u2)+ 1

h2
g1
(
u2)+O( 1

h4

)
,

(3.20)

for large h, integral equation (3.19) reduces to

d
dx

∫ b
0
h0(t) log | t+x

t−x |dt+2
∫ 1

c

ug0
(
u2)du

u2−x2
=− 2

D
p(x) (3.21)

d
dx

∫ b
0
h1(t) log | t+x

t−x |dt+2
∫ 1

c

ug1
(
u2
)
du

u2−x2

=−2P
[∫ b

0
th0(t)dt+

∫ 1

c
ug0

(
u2)du

]
, 0<x < b, c < x < 1

(3.22)

with ∫ 1

c
gi
(
u2)du= 0, i= 0,1, (3.23)

where

P = 1
D
((
α1
)
/
(
γ1
)−(α2

)
/
(
γ2
))

×
[

1

2γ2
1

(
C12−C22α1

)(α1

γ1
+ α2

γ2

)
+ β1

2β2γ1γ2

(
C12−C22α2

)(α1

γ1
+ α2

γ2

)

+ α2β1

β2γ1

{(
C12−C22α1

)− α1β2

α2β1

(
C12−C22α2

)}× 1(
γ1+γ2

)2

]
.

(3.24)

Rewriting equation (3.21) as

∫ b
0
h0(t) log

∣∣∣∣ t+xt−x
∣∣∣∣dt =πF1(x), (3.25)

where

F1(x)=− 1
π

∫ x
0

[
2
D
p(y)+

∫ 1

c

2ug0
(
y2
)

u2−y2
du
]
dy (3.26)

and using Cooke’s result [4], the solution of the integral equation is found to be

h0(t)= 4
π2D

t√
b2−t2

P1(t)− 2
π

t√
b2−t2

∫ 1

c

√
u2−b2g0(y2)
u2−t2

du, (3.27)

where

P1(t)=
∫ b

0

√
b2−x2

x2−t2
p(x)dx, (3.28)
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then the integral equation for g0(u2) is derived as

∫ 1

c

√
u2−b2g0

(
u2
)
du

u2−x2
=−F2(x) (3.29)

with

F2(x)=
√
x2−b2

x

[
1
D
p(x)+ 4

π2D

∫ b
0

t2P1(t)√
b2−t2

(
t2−x2

)dt
]
. (3.30)

Now using Hilbert transform technique (see Sarkar et al. [17]), the solution to (3.27) is

found to be

g0
(
u2)= 2u

π
√(
u2−c2

)(
1−u2

)(
u2−b2

)
∫ 1

c

√
x2
(
x2−c2

)(
1−x2

)
x2−u2

F2(x)dx

+ uk1√(
u2−c2

)(
1−u2

)(
u2−b2

) ,
(3.31)

where k1 is an unknown constant to be determined from (3.23). Then the closed form

of the expression for h0(t) may be obtained from (3.27) when the use of (3.29) is

made there. Again applying the same procedure and using the above result, analytical

expressions of h1(t) and g1(u2) may be derived. As a particular case of the problem

setting p(x)= p, a constant, analytical expressions for hj(t) and gj(u2), j = 0,1 are

obtained as

h0(t)=− 2p
D

√√√ t2
(
c2−t2

)
(
b2−t2

)(
1−t2

) + tk1√(
b2−t2

)(
c2−t2

)(
1−t2

) ,

h1(t)=− 2PR
π

√√√ t2
(
c2−t2

)
(
b2−t2

)(
1−t2

) − tk2√(
b2−t2

)(
c2−t2

)(
1−t2

) ,

g0
(
u2)=− 2p

D

√√√ u2
(
u2−c2

)
(
u2−b2

)(
1−u2

) + uk1√(
u2−b2

)(
u2−c2

)(
1−u2

) ,

g1
(
u2)=− 2PR

π

√√√ u2
(
u2−c2

)
(
u2−b2

)(
1−u2

) + uk2√(
u2−b2

)(
u2−c2

)(
1−u2

) ,

(3.32)

where

R =−2p
D
[
Ib0 +I1c

]−K1
[
Jb0 −J1

c
]
,

Inm =
∫ n
m

t2
√
c2−t2√(

b2−t2
)(

1−t2
) dt,

Jnm =
∫ n
m

t2dt√(
b2−t2

)(
c2−t2

)(
1−t2

) ,
kj =Aj

[(
1−b2)E

F
−(c2−b2)], j = 1,2,

(3.33)
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with

A1 = 2p
D
, A2 = 2PR

π
. (3.34)

In the above, F = F(π/2,q) and E = E (π/2,q) are the elliptic integrals of first and

second kinds, respectively, and q = √(1−c2)/(1−b2). The stress intensity factors Kb,

Kc , and K1 at the crack tips x = b, x = c, and x = 1 of the cracks are found to be

Kb = lim
x→c+

√
2(x−b)σyy(x,0)= p

√
b
(
1−b2

)
c2−b2

E
F

[
1− 2P

π
W
h2

]
+O(h−4), (3.35)

Kc = lim
x→c−

√
2(c−x)σyy(x,0)

= p
√

c(
c2−b2

)(
1−c2

)[(1−b2)E
F
−(c2−b2)][1− 2P

π
W
h2

]
+O(h−4), (3.36)

K1 = lim
x→1−

√
2(x−1)σyy(x,0)= p

√
1−b2

1−c2

[
1− E

F

][
1− 2P

π
W
h2

]
+O(h−4), (3.37)

where

W =
[
Ib0 +I1c +

{(
1−b2)E

F
−(c2−b2)}(Jb0 −J1

c
)]
. (3.38)

The stress magnification factors Mb, Mc , and M1 at the crack tips x = b, x = c, and

x = 1 are defined as Mb = Kb/K∗b , Mc = Kc/K∗c , M1 = K1/K∗1 , where K∗b is the stress

intensity factor at x = b due to the presence of the central crack only and K∗c , K∗1 are

the stress intensity factors at x = c, x = 1, respectively, due to the presence of outer

cracks only and these are given by

K∗b = p
√
b
E
F

[
1− 2P

π
Q1

h2

]
+O(h−4), (3.39)

where

Q1 = Ib0 +
(
1−b2)[E

F
−1
]
Jb0 ,

K∗c =
p√

c
(
1−c2

)
[
E
F
−c2

][
1− 2P

π
Q2

h2

]
+O(h−4),

K∗1 =
p√

1−c2

[
1− E

F

][
1− 2P

π
Q2

h2

]
+O(h−4),

Q2 = I1c −
[
E
F
−c2

]
J1
c .

(3.40)

4. Numerical results and discussion. As a particular case of the problem, the or-

thotropic material is considered to be α-Uranium. Values of the material constants

are taken as

C11 C22 C12 C66

α-Uranium 21.47 19.86 4.65 7.43
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Figure 4.1. Plot of Kb/p versus h at b = 0.5.
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Figure 4.2. Plot of Kc/p versus h at b = 0.5.
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Figure 4.3. Plot of K1/p versus h at b = 0.5.
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Figure 4.4. Plot of Kb/p versus h at c = 0.5.
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Figure 4.5. Plot of Kc/p versus h at c = 0.5.
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Figure 4.6. Plot of K1/p versus h at c = 0.5.
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Figure 4.7. Plot of Mb versus h at b = 0.5.
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Figure 4.8. Plot of Mc versus h at c = 0.5.
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Figure 4.9. Plot of M1 versus h at c = 0.5.



INTERACTION BETWEEN LINE CRACKS IN AN ORTHOTROPIC LAYER 41

The stress intensity factors Kb, Kc , and K1 at the tips of the cracks opened by a

constant pressure p have been plotted against h. Keeping the central crack length

fixed (b = 0.5), stress intensity factors at the tips of the central and outer cracks have

been plotted against the depth h for different outer crack lengths c = 0.6,0.7,0.8. It

is observed from Figures 4.1, 4.2, and 4.3, that the stress intensity factors Kb, Kc ,
and K1 decrease with the decrease in outer crack length, that is, with the increase in

the distances between the inner and outer cracks and also with the decrease in h for

different outer crack lengths.

Again, on keeping the outer crack length fixed at c = 0.5, it is observed from Figures

4.4, 4.5, and 4.6 that the stress intensity factors increase with an increase in both h
and b.

Regarding interactions between the central and the external cracks, plots of stress

magnification factors through Figures 4.7, 4.8, and 4.9 have been made. It is observed

from Figure 4.7 that on keeping the central crack length fixed at b = 0.5 the stress

magnification factor Mb decreases with a decrease in the outer crack lengths and

increase with an increase in h.

In this case the interaction effect of outer crack on central crack is a mixture of

amplification and shielding. When the outer crack is relatively smaller (c = 0.8) and

depth of the layer is narrower (h = 2) the shielding effect is maximum. Maximum

amplification is attained at the crack tip nearest to the adjacent central crack (c = 0.6)
and at large depth h= 8.

It is seen from Figures 4.8 and 4.9 that the stress magnificationsMc andM1 increase

with an increase in the central crack length and also with an increase in h when the

outer crack length is fixed at c = 0.5. It is clearly seen that the effect of central crack

on the outer cracks is amplification. At both the ends amplifications are maximum

when the central crack length and depth of the layer become large (b = 0.4,h= 8).

5. Conclusion. We have seen that the central and outer cracks interaction effect

is a mixture of shielding and amplification or simply amplification depending on the

length of the cracks and the depth of the layer. When the outer crack is smaller, there

is possible crack arrest of the central crack. When the outer crack is broad, there is

a propagation tendency of the central crack towards the outer crack. Again as the

central crack length increases, the propagation tendency of outer crack at both ends

increase due to increase of amplifications.
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